Scientia Magna

Vol. 1 (2005), No. 2, 96-108

On the number of Smarandache zero-divisors and Smarandache weak zero-divisors in loop rings

W.B.Vasantha and Moon K.Chetry
Department of Mathematics
I.I.T.Madras,Chennai

Abstract

In this paper we find the number of smarandache zero divisors (S-zero divisors) and smarandache weak zero divisors (S-weak zero divisors) for the loop rings $Z_{2} L_{n}(m)$ of the loops $L_{n}(m)$ over Z_{2}. We obtain the exact number of S-zero divisors and S-weak zero divisors when $n=p^{2}$ or p^{3} or $p q$ where p, q are odd primes. We also prove $Z L_{n}(m)$ has infinitely many S-zero divisors and S-weak zero divisors, where Z is the ring of integers. For any loop L we give conditions on L so that the loop ring $Z_{2} L$ has S-zero divisors and S-weak zero divisors.

§0 . Introduction

This paper has four sections. In the first section, we just recall the definitions of Szero divisors and S-weak zero divisors and some of the properties of the new class of loops $L_{n}(m)$. In section two, we obtain the number of S-zero divisors of the loop rings $Z_{2} L_{n}(m)$ and show when $n=p^{2}$, where p is an odd prime, $Z_{2} L_{n}(m)$ has $p\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)$ S-zero divisors. Also when $n=p^{3}, p$ an odd prime, $Z_{2} L_{n}(m)$ has $p\left(1+\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)+p^{2}(1+$ $\left.\sum_{r=2, \text { reven }}^{p-1}{ }^{p+1} C_{r}\right)$ S-zero divisors. Again when $n=p q$, where p, q are odd primes, $Z_{2} L_{n}(m)$ has $p+q+p\left(\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)$ S-zero divisors. Further we prove $Z L_{n}(m)$ has infinitely many S-zero divisors. In section three, we find the number of S -weak zero divisors for the loop ring $Z_{2} L_{n}(m)$ and prove that when $n=p^{2}$, where p is an odd prime, $Z_{2} L_{n}(m)$ has $2 p\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)$ S-weak zero divisors. Also when $n=p^{3}$, where p is an odd prime, $Z_{2} L_{n}(m)$ has $2 p\left(\sum_{r=2, \text { reven }}^{p^{2}-1} p^{2}+1 C_{r}\right)+2 p^{2}\left(\sum_{r=2, r \text { even }}^{p-1} p^{p+1} C_{r}\right)$ S-weak zero divisors. Again when $n=p q$, where p, q are odd primes, $Z_{2} L_{n}(m)$ has $2\left[p\left(\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)\right]$ S-weak zero divisors. We prove $Z L_{n}(m)$ has infinitely many S-weak zero divisors. The final section gives some unsolved problems and some conclusions based on our study.

§1. Basic Results

Here we just recollect some basic results to make this paper a self contained one.
Definition 1.1[4]. Let R be a ring. An element $a \in R \backslash\{0\}$ is said to be a S-zero divisor if $a . b=0$ for some $b \neq 0$ in R and there exists $x, y \in R \backslash\{0, a, b\}$ such that

$$
\begin{array}{rlll}
i . & a . x=0 & \text { or } & x . a=0 \\
i i & b . y=0 & \text { or } & y . b=0 \\
\text { iii. } & x . y \neq 0 & \text { or } & y . x \neq 0
\end{array}
$$

Definition 1.2[4]. Let R be a ring. An element $a \in R \backslash\{0\}$ is a S-weak zero divisor if there exists $b \in R \backslash\{0, a\}$ such that $a, b=0$ satisfying the following conditions: There exists $x, y \in R \backslash\{0, a, b\}$ such that

$$
\begin{array}{rrlll}
i . & a . x=0 & \text { or } & x . a=0 \\
\text { ii. } & b . y=0 & \text { or } & y \cdot b=0 \\
\text { iii. } & \text { x. } y=0 & \text { or } & y \cdot x=0
\end{array}
$$

Definition 1.3[3]. Let $L_{n}(m)=\{e, 1,2,3 \cdots, n\}$ be a set where $n>3, n$ is odd and m is a positive integer such that $(m, n)=1$ and $(m-1, n)=1$ with $m<n$. Define on $L_{n}(m)$, a binary operation '.' as follows:

$$
\begin{gathered}
\text { i. } \quad \text { e. } i=i . e \quad \text { for } \quad \text { all } \quad i \in L_{n}(m) \backslash\{e\} \\
\quad i i . \quad i^{2} .=e \quad \text { for } \quad \text { all } \quad i \in L_{n}(m)
\end{gathered}
$$

iii. $\quad i . j=t, \quad$ where $\quad t \equiv(m j-(m-1) i)(\bmod n) \quad$ for \quad all $\quad i, j \in L_{n}(m), \quad i \neq e \quad$ and $\quad j \neq e$. Then $L_{n}(m)$ is a loop. This loop is always of even order; further for varying m, we get a class of loops of order $n+1$ which we denote by L_{n}.

Example 1.1[3]. Consider $L_{5}(2)=\{e, 1,2,3,4,5\}$. The composition table for $L_{5}(2)$ is given below:

.	e	1	2	3	4	5
e	e	1	2	3	4	5
1	1	e	3	5	2	4
2	2	5	e	4	1	3
3	3	4	1	e	5	2
4	4	3	5	2	e	1
5	5	2	4	1	3	e

This loop is non-commutative and non-associative and of order 6.
Theorem 1.1[3]. Let $L_{n}(m) \in L_{n}$. For every $t \mid n$ there exists t subloops of order $k+1$, where $k=n / t$.

Theorem 1.2[3]. Let $L_{n}(m) \in L_{n}$. If H is a subloop of $L_{n}(m)$ of order $t+1$, then $t \mid n$.

Remark 1.2[3]. Lagrange's theorem is not satisfied by all subloops of the loop $L_{n}(m)$,i.e there always exists a subloop H of $L_{n}(m)$ which does not satisfy the Lagrange's theorem, i.e $o(H) \dagger o\left(L_{n}(m)\right)$.

§2. Definition of the number of S-zero divisors in $Z_{2} L_{n}(m)$ and $Z L_{n}(m)$

In this section, we give the number of S-zero divisors in $Z_{2} L_{n}(m)$. We prove $Z L_{n}(m)$ (where $n=p^{2}$ or $p q, p$ and q are odd primes), has infinitely many S-zero divisors. Further we show any loop L of odd (or even) order if it has a proper subloop of even (or odd) order then the loop ring $Z_{2} L_{n}(m)$ over the field Z_{2} has S-zero divisors. We first show if L is a loop of odd order and L has a proper subloop of even order, then $Z_{2} L_{n}(m)$ has S-zero divisors.

Theorem 2.1. Let L be a finite loop of odd order. $Z_{2}=\{0,1\}$, the prime field of characteristic 2. Suppose H is a subloop of L of even order, then $Z_{2} L$ has S-zero divisors.

Proof. Let $|L|=n$; where n is odd. $Z_{2} L$ be the loop ring of L over $Z_{2} . H$ be the subloop of L of order m, where m is even. Let $X=\sum_{i=1}^{n} g_{i}$ and $Y=\sum_{i=1}^{m} h_{i}$, then

$$
X . Y=0 .
$$

Now

$$
\left(1+g_{t}\right) X=0, \quad g_{t} \in l \backslash H .
$$

also

$$
\left(1+h_{i}+h_{j}+h_{k}\right) Y=0, \quad h_{i}, h_{j}, h_{k} \in H .
$$

so that

$$
\left(1+g_{t}\right)\left(1+h_{i}+h_{j}+h_{k}\right) \neq 0 .
$$

Hence the claim.
Corollary 2.1. If L is a finite loop of even order n and H is a subloop of odd order m, then the loop ring $Z_{2} L$ has S-zero divisors.

It is important here to mention that $Z_{2} L$ may have other types of S-zero divisors. This theorem only gives one of the basic conditions for $Z_{2} L$ to have S-zero divisors.

Example 2.1. Let $Z_{2} L_{25}(m)$ be the loop ring of the loop $L_{25}(m)$ over Z_{2}, where $(m, 25)=1$ and $(m-1,25)=1$. As $5 \mid 25$, so $L_{25}(m)$ has 5 proper subloops each of order 6 . Let H be one of the proper subloops of $L_{25}(m)$.

Now take

$$
X=\sum_{i=1}^{26} g_{i}, \quad Y=\sum_{i=1}^{6} h_{i}, \quad g_{i} \in L_{25}(m), \quad h_{i} \in H,
$$

then

$$
\left(1+g_{i}\right) X=0, \quad g_{i} \in L_{25}(m) \backslash H
$$

$$
\left(1+h_{i}\right) Y=0, \quad h_{i} \in H
$$

but

$$
\left(1+g_{i}\right)\left(1+h_{i}\right) \neq 0
$$

so X and Y are S-zero divisors in $Z_{2} L_{25}(m)$.
Theorem 2.2. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p^{2}$, p an odd prime. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
p\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-zero divisors.
Proof. Given $L_{n}(m)$ is a loop of order $n+1$, where $n=p^{2}$ (p an odd prime). Let $Z_{2} L_{n}(m)$ be the loop ring of the loop $L_{n}(m)$ over Z_{2}. Now clearly the loop $L_{n}(m)$ has exactly p subloops of order $p+1$. The number of S-zero divisors in $Z_{2} L_{n}(m)$ for $n=p^{2}$ can be enumerated in the following way: Let

$$
X=\sum_{i=1}^{n+1} g_{i} \quad \text { and } \quad Y=\sum_{i=1}^{p+1} h_{i}
$$

where $g_{i} \in L_{n}(m)$ and $h_{i} \in H_{j}$. For this

$$
X . Y=0
$$

choose

$$
\begin{gathered}
a=(1+g), \quad g \in L_{n}(m) \backslash H_{j} \\
b=\left(h_{i}+h_{j}\right), \quad h_{i}, h_{j} \in H_{j}
\end{gathered}
$$

then

$$
a \cdot X=0 \quad \text { and } \quad b \cdot Y=0
$$

but

$$
a . b \neq 0
$$

So X and Y are S-zero divisors. There are p such S-zero divisors, as we have p subloops H_{j} $(j=1,2, \cdots, p)$ of $L_{n}(m)$.

Next consider, S-zero divisors of the form

$$
\left(h_{1}+h_{2}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad \text { where } \quad h_{1}, h_{2} \in H_{j}, \quad g_{i} \in L_{n}(m)
$$

put

$$
X=\left(h_{1}+h_{2}\right), \quad Y=\sum_{i=1}^{n+1} g_{i}
$$

we have ${ }^{p+1} C_{2}$ such S-zero divisors. This is true for each of the subloops. Hence there exists ${ }^{p+1} C_{2} \times p$ such S-zero divisors. Taking four elements $h_{1}, h_{2}, h_{3}, h_{4}$ from H_{j} at a time, we get

$$
\left(h_{1}+h_{2}+h_{3}+h_{4}\right) \sum_{i=1}^{n+1} g_{i}=0
$$

so we get ${ }^{p+1} C_{4} \times p$ such S-zero divisors. Continue in this way, we get

$$
\left(h_{1}+h_{2}+\cdots+h_{p-1}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad \text { where } \quad h_{1}, h_{2}, \cdots, h_{p-1} \in H_{j}
$$

So we get ${ }^{p+1} C_{p-1} \times p$ such S-zero divisors. Adding all these S-zero divisors, we get

$$
p\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

number of S-zero divisors in the loop ring $Z_{2} L_{n}(m)$. Hence the claim.
Example 2.2. Let $Z_{2} L_{49}(m)$ be the loop ring of the loop $L_{49}(m)$ over Z_{2}, where $(m, 49)=$ 1 and $(m-1,49)=1$. Here $p=7$, so from Theorem $2.2, Z_{2} L_{49}(m)$ has

$$
7\left(1+\sum_{r=2, r \text { even }}^{6}{ }^{7+1} C_{r}\right)
$$

S-zero divisors i.e $7\left(1+\sum_{r=2, r \text { even }}^{6}{ }^{8} C_{r}\right)=889$ S-zero divisors.
Theorem 2.3. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p^{3}, p$ an odd prime. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
p\left(1+\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)+p^{2}\left(1+\sum_{r=2, r \text { even }}^{p-1} p+1 C_{r}\right)
$$

S-zero divisors.

Proof. We enumerate all the S-zero divisors of $Z_{2} L_{n}(m)$ in the following way:
Case I: As $p \mid p^{3}, L_{n}(m)$ has p proper subloops H_{j} each of order $p^{2}+1$. In this case I, we have $p^{2}-1$ types of S-zero divisors. We just index them by type I_{1}, type I_{2}, \cdots, type $I_{p^{2}-1}$.

Type I_{1} : Here

$$
\sum_{i=1}^{n+1} g_{i} \sum_{i=1}^{p^{2}+1} h_{i}=0, \quad g_{i} \in L_{n}(m), \quad h_{i} \in H_{j},(j=1,2, \cdots, p)
$$

So we will get p S-zero divisors of this type.
Type I_{2} :

$$
\left(h_{1}+h_{2}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad h_{1}, h_{2} \in H_{j}(j=1,2, \cdots, p) .
$$

As in the Theorem 2.2, we will get ${ }^{p^{2}+1} C_{2} \times p$ S-zero divisors of this type.
Type I_{3} :

$$
\left(h_{1}+h_{2}+h_{3}+h_{4}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad h_{1}, h_{2}, h_{3}, h_{4} \in H_{j}(j=1,2, \cdots, p) .
$$

We will get ${ }^{p^{2}+1} C_{4} \times p$ S-zero divisors of this type.
Continue this way,

Type $I_{p^{2}-1}$:

$$
\left(h_{1}+h_{2}+\cdots+h_{p^{2}-1}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad h_{i} \in H_{j}
$$

We will get ${ }^{p^{2}+1} C_{p^{2}-1} \times p$ S-zero divisors of this type. Hence adding all this types of S-zero divisors we will get

$$
p\left(1+\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)
$$

S-zero divisors for case I.
Case II: Again $p^{2} \mid p^{3}$, so there are p^{2} subloops H_{j} each of order $p+1$. Now we can enumerate all the S-zero divisors in this case exactly as in case I above. So there are

$$
p^{2}\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-zero divisors. Hence the total number of S-zero divisors in $Z_{2} L_{n}(m)$ is

$$
p\left(1+\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)+p^{2}\left(1+\sum_{r=2, r \text { even }}^{p-1} p^{p+1} C_{r}\right)
$$

Hence the claim.
Example 2.3. Let $Z_{2} L_{27}(m)$ be the loop ring of the loop $L_{27}(m)$ over Z_{2}, where $(m, 27)=1$ and $(m-1,27)=1$. Here $p=3$, so from Theorem 2.3, $Z_{2} L_{27}(m)$ has

$$
3\left(1+\sum_{r=2, r \text { even }}^{8} 3^{2}+1 C_{r}\right)+3^{2}\left(1+\sum_{r=2, r \text { even }}^{2}{ }^{4} C_{r}\right)
$$

S-zero divisors i.e $3\left(1+\sum_{r=2, r \text { even }}^{8}{ }^{10} C_{r}\right)+9\left(1+\sum_{r=2, r \text { even }}^{2}{ }^{4} C_{r}\right)=1533$ S-zero divisors.
Theorem 2.4. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p q$, where p, q are odd primes. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
p+q+p\left(1+\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-zero divisors.
Proof. We will enumerate all the S-zero divisors in the following way:
Case I: As $p \mid p q, L_{n}(m)$ has p subloops H_{j} each of order $q+1$. Proceeding exactly in the same way as in the Theorem 2.3, we will get $p+p\left(1+\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)$ S-zero divisors for case I.

Case II: Again $q \mid p q$, so $L_{n}(m)$ has q subloops H_{j} each of order $p+1$. Now as above we will get $q+q\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)$ S-zero divisors for case II. Hence adding all the S-zero
divisors in case I and case II, we get

$$
p+q+p\left(1+\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(1+\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-zero divisors in $Z_{2} L_{n}(m)$.
Hence the claim.
Now we prove for the loop ring $Z L_{n}(m)$ when $n=p^{2}$ or p^{3} or $p q$, where p, q are odd primes, $Z L_{n}(m)$ has infinitely many S-zero divisors.

Theorem 2.5. Let $Z L_{n}(m)$ be the loop ring of the loop $L_{n}(m)$ over Z, where $n=p^{2}$ or p^{3} or $p q$ (p, q are odd primes), then $Z L_{n}(m)$ has infinitely many S-zero divisors.

Proof. Let $L_{n}(m)$ be a loop ring such that $n=p^{2}$. $L_{n}(M)$ has p subloops (say H_{j}) each of order $p+1$.

Now the loop ring $Z L_{n}(m)$ has the following types of S-zero divisors:

$$
X=a-b h_{1}+b h_{2}-a h_{3} \quad \text { and } \quad Y=\sum_{i=1}^{n+1} g_{i}
$$

where $a, b \in Z$ and $h_{i} \in H_{i}, g_{i} \in L_{n}(m)$ such that

$$
\left(a-b h_{1}+b h_{2}-a h_{3}\right) \sum_{i=1}^{n+1} g_{i}=0
$$

Again

$$
\left(1-g_{k}\right) Y=0, \quad g_{k} \in L_{n}(m) \backslash H_{j}
$$

also

$$
\left(a-b h_{1}+b h_{2}-a h_{3}\right) \sum h_{i}=0, \quad h_{i} \in H_{j}
$$

clearly

$$
\left(1-g_{k}\right)\left(\sum_{h_{i} \in H_{j}} h_{i}\right) \neq 0
$$

So X, Y are S-zero divisors in $Z L_{n}(m)$. Now we see there are infinitely many S-zero divisors of this type for a and b can take infinite number of values in Z. For $n=p^{2}$ or p^{3} or $p q$ we can prove the results in a similar way. Hence the claim.

§3. Determination of the number of S-weak zero divisors in $Z_{2} L_{n}(m)$ and $Z L_{n}(m)$

In this section, we give the number of S-weak zero divisors in the loop ring $Z_{2} L_{n}(m)$ when n is of the form p^{2}, p^{3} or $p q$ where p and q are odd primes. Before that we prove the existence of S-weak zero divisors in the loop ring $Z_{2} L$ whenever L has a proper subloop.

Theorem 3.1. Let n be a finite loop of odd order. Suppose H is a subloop of L of even order, then $Z_{2} L$ has S-weak zero divisors.

Proof. Let $|L|=n$; n odd. $Z_{2} L$ be the loop ring. H be the subloop of L of order m, where m is even. Let $X=\sum_{i=1}^{n} g_{i}$ and $Y=1+h_{t}, g_{i} \in L, h_{t} \in H$, then

$$
X . Y=0
$$

Now

$$
Y . \sum_{i=1}^{m} h_{i}=0, \quad h_{i} \in H
$$

also

$$
X\left(1+g_{t}\right)=0, \quad g_{t}\left(\neq h_{t}\right) \in H
$$

so that

$$
\left(1+g_{t}\right) \sum_{i=1}^{m} h_{i}=0
$$

Hence the claim.
Example 3.1. Let $Z_{2} L_{25}(m)$ be the loop ring of the loop $L_{25}(m)$ over Z_{2}, where $(m, 25)=1$ and $(m-1,25)=1$. As $5 \mid 25$, so $L_{25}(m)$ has 5 proper subloops each of order 6 .

Take

$$
X=\sum_{i=1}^{26} g_{i}, \quad Y=1+h_{t}, \quad g_{i} \in L_{25}(m), \quad h_{t} \in H
$$

then

$$
X . Y=0
$$

again

$$
\begin{gathered}
X\left(1+g_{t}\right)=0, \quad g_{t}\left(\neq h_{t}\right) \in H \\
Y \sum_{i=1}^{6} h_{i}=0, \quad h_{i} \in H
\end{gathered}
$$

also

$$
\left(1+g_{t}\right) \sum_{i=1}^{6} h_{i}=0
$$

So X and Y are S-weak zero divisors in $Z_{2} L_{25}(m)$.
Example 3.2. Let $Z_{2} L_{21}(m)$ be the loop ring of the loop $L_{21}(m)$ over Z_{2}, where where $(m, 21)=1$ and $(m-1,21)=1$. As $3 \mid 21$, so $L_{21}(m)$ has 3 proper subloops each of order 8 .

Take

$$
X=\sum_{i=1}^{8} h_{i}, \quad Y=1+h_{t}, \quad h_{i}, h_{t} \in H
$$

then

$$
X . Y=0
$$

again

$$
\begin{aligned}
X\left(1+g_{t}\right)=0, & g_{t}\left(\neq h_{t}\right) \in H \\
Y \sum_{i=1}^{22} g_{i} & =0,
\end{aligned} \quad g_{i} \in L_{21}(m)
$$

also

$$
\left(1+g_{t}\right) \sum_{i=1}^{22} g_{i}=0
$$

So X and Y are S-weak zero divisors in $Z_{2} L_{21}(m)$.

Theorem 3.2. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p^{2}, p$ an odd prime. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
2 p\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-weak zero divisors.
Proof. Clearly the loop $L_{n}(m)$ has p subloops H_{j} each of order $p+1$. As in case of Theorem 2.3, we index the $p-1$ types of S-weak zero divisors by $I_{1}, I_{2}, \cdots, I_{p-1}$. Now the number of S-weak zero divisors in $Z_{2} L_{n}(m)$ for $n=p^{2}$ can be enumerated in the following way:

Type I_{1}. Let

$$
X=h_{1}+h_{2}, \quad Y=\sum_{i=1}^{n+1} g_{i}
$$

where $h_{1}, h_{2} \in H_{j}$ and $g_{i} \in L_{n}(m)$ then

$$
X Y=0
$$

take

$$
a=\sum_{i=1}^{p+1} h_{i}, \quad \text { and } \quad b=h_{3}+h_{4} \quad \text { where } \quad h_{i} \in H_{j}, \quad(j=1,2, \cdots, p)
$$

then

$$
a X=0, \quad b Y=0
$$

also

$$
a b=0
$$

So for each proper subloop we will get ${ }^{p+1} C_{2}$ S-weak zero divisors and as there are p proper subloops we will get ${ }^{p+1} C_{2} \times p$ such S-weak zero divisors.

Type I_{2}. Again let

$$
X=h_{1}+h_{2}, \quad Y=\sum_{i=1}^{p+1} h_{i}, \quad h_{i} \in H_{j}
$$

then

$$
X Y=0
$$

take

$$
a=\sum_{i=1}^{n+1} g_{i}, \quad g_{i} \in L_{n}(m), \quad b=h_{1}+h_{2}, \quad h_{1}, h_{2} \in H_{j}
$$

then

$$
a X=0, \quad b Y=0
$$

also

$$
a b=0
$$

Here also we will get ${ }^{p+1} C_{2} \times p$ such S-weak zero divisors of this type.
Type I_{3}.

$$
\left(h_{1}+h_{2}+h_{3}+h_{4}\right) \sum_{i=1}^{n+1} g_{i}, \quad g_{i} \in L_{n}(m), \quad h_{i} \in H_{j} .
$$

As above we can say there are ${ }^{p+1} C_{4} \times p$ such S-weak zero divisors.
Type I_{4}.

$$
\left(h_{1}+h_{2}+h_{3}+h_{4}\right) \sum_{i=1}^{p+1} h_{i}, \quad h_{i} \in H_{j} .
$$

There are ${ }^{p+1} C_{4} \times p$ such S-weak zero divisors.
Continue this way,
Type I_{p-2}.

$$
\left(h_{1}+h_{2}+\cdots+h_{p-1}\right) \sum_{i=1}^{n+1} g_{i}, \quad g_{i} \in L_{n}(m), \quad h_{i} \in H_{j} .
$$

there are ${ }^{p+1} C_{p-1} \times p$ such S-weak zero divisors.
Type I_{p-1}.

$$
\left(h_{1}+h_{2}+\cdots+h_{p-1}\right) \sum_{i=1}^{n} h_{i}, \quad h_{i} \in H_{j} .
$$

Again there are ${ }^{p+1} C_{p-1} \times p$ such S-weak zero divisors of this type. Adding all these S -weak zero divisors we will get the total number of S-weak zero divisors in $Z_{2} L_{n}(m)$ as

$$
2 p\left(\sum_{r=2, r \text { even }}^{p-1} p+1 C_{r}\right)
$$

Hence the claim.
Theorem 3.3. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p^{3}, p$ an odd prime. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
2 p\left(\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)+2 p^{2}\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-weak zero divisors.
Proof. We enumerate all the S-weak zero divisors of $Z_{2} L_{n}(m)$ in the following way:
Case I: As $p \mid p^{3}, L_{n}(m)$ has p proper subloops H_{j} each of order $p^{2}+1$. Now as in the Theorem 3.2.

Type I_{1} :

$$
\left(h_{1}+h_{2}\right) \sum_{i=1}^{n+1} g_{i}=0, \quad g_{i} \in L_{n}(m), \quad h_{i} \in H_{j} .
$$

So we will get ${ }^{p^{2}+1} C_{2} \times p$ S-weak zero divisors of type I_{1}.

Type I_{2} :

$$
\left(h_{1}+h_{2}\right) \sum_{i=1}^{p^{2}+1} h_{i}=0, \quad h_{i} \in H_{j} .
$$

So we will get ${ }^{p^{2}+1} C_{2} \times p$ S-weak zero divisors of type I_{2}.
Continue in this way
Type $I_{p^{2}-2}$:

$$
\left(h_{1}+h_{2}+\cdots+h_{p^{2}-1}\right) \sum_{i=1}^{n+1} g_{i}=0
$$

So we will get ${ }^{p^{2}+1} C_{p^{2}-1} \times p$ S-weak zero divisors of this type.
Type $I_{p^{2}-1}$:

$$
\left(h_{1}+h_{2}+\cdots+h_{p^{2}-1}\right) \sum_{i=1}^{p^{2}+1} h_{i}=0
$$

So we will get ${ }^{p^{2}+1} C_{p^{2}-1} \times p$ S-weak zero divisors of type $I_{p^{2}-1}$.
Adding all this S-weak zero divisors, we will get the total number of S-weak zero divisors (in case I) in $Z_{2} L_{n}(m)$ as $2 p\left(\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)$.

Case II: Again $p^{2} \mid p^{3}$, so there are p^{2} proper subloops H_{j} each of order $p+1$. Now we can enumerate all the S-weak zero divisors in this case exactly as in case I above. So there are

$$
2 p^{2}\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-weak zero divisors in case II.
Hence the total number of S-weak zero divisors in $Z_{2} L_{n}(m)$ is

$$
2 p\left(\sum_{r=2, r \text { even }}^{p^{2}-1} p^{2}+1 C_{r}\right)+2 p^{2}\left(\sum_{r=2, r \text { even }}^{p-1} p^{p+1} C_{r}\right)
$$

Hence the claim.
Theorem 3.4. Let $L_{n}(m)$ be a loop of order $n+1$ (n an odd number, $n>3$) with $n=p q, p, q$ are odd primes. Z_{2} be the prime field of characteristic 2 . The loop ring $Z_{2} L_{n}(m)$ has exactly

$$
2\left[p\left(\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(\sum_{r=2, r \text { even }}^{p-1} p+1 C_{r}\right)\right]
$$

S-weak zero divisors.
Proof. We will enumerate all the S-weak zero divisors in the following way:
Case I: As $p \mid p q, L_{n}(m)$ has p proper subloops H_{j} each of order $q+1$. Proceeding exactly same way as in Theorem 3.3, we will get

$$
2 p\left(\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)
$$

S-weak zero divisors in case I.
Case II: Again as $q \mid p q, L_{n}(m)$ has q proper subloops H_{j} each of order $p+1$. So as above we will get

$$
2 q\left(\sum_{r=2, r \text { even }}^{p-1}{ }^{p+1} C_{r}\right)
$$

S-weak zero divisors in case II.
Hence adding all the S-weak zero divisors in case I and case II, we get

$$
2\left[p\left(\sum_{r=2, r \text { even }}^{q-1}{ }^{q+1} C_{r}\right)+q\left(\sum_{r=2, r 4 \text { even }}^{p-1}{ }^{p+1} C_{r}\right)\right]
$$

S-weak zero divisors in $Z_{2} L_{n}(m)$.
Hence the claim.
Now we prove for the loop ring $Z L_{n}(m)$ where $n=p^{2}$ or p^{3} or $p q,(p, q$ are odd primes), $Z L_{n}(m)$ has infinitely many S-weak zero divisors.

Theorem 3.5. Let $Z L_{n}(m)$ be the loop ring of the loop $L_{n}(m)$ over Z, where $n=p^{2}$ or p^{3} or $p q$ (p, q are odd primes), then $Z L_{n}(m)$ has infinitely many S-weak zero divisors.

Proof. Let $L_{n}(m)$ be a loop ring such that $n=p^{2}$. $L_{n}(M)$ has p subloops (say H_{j}) each of order $p+1$. Now the loop ring $Z L_{n}(m)$ has the following types of S -weak zero divisors:

$$
X=a-b h_{1}+b h_{2}-a h_{3} \quad \text { and } \quad Y=\sum_{i=1}^{n+1} g_{i}
$$

where $a, b \in Z, g_{i} \in L_{n}(m)$ and $h_{1}, h_{2}, h_{3} \in H_{j}$ are such that

$$
X Y=0 .
$$

Again

$$
X \sum_{i=1}^{p+1} h_{i}=0, \quad h_{i} \in H_{j}
$$

also

$$
\left(1-g_{t}\right) Y=0, \quad g_{t}\left(\neq h_{t}\right) \in H_{j}
$$

clearly

$$
\left(1-g_{t}\right)\left(\sum_{i=1}^{p+1} h_{i}\right)=0
$$

So X, Y are S -weak zero divisors in $Z L_{n}(m)$. Now we see there are infinitely many S-weak zero divisors of this type for a and b can take infinite number of values in Z.

For $n=p^{2}$ or p^{3} or $p q$ we can prove the results in a similar way.
Hence the claim.

§4. Conclusions:

In this paper we find the exact number of S-zero divisors and S-weak zero divisors for the loop rings $Z_{2} L_{n}(m)$ in case of the special type of loops $L_{n}(m) \in L_{n}$ over Z_{2}, when $n=p^{2}$ or p^{3} or $p q$ (p, q are odd primes). We also prove for the loop ring $Z L_{n}(m)$ has infinite number of S-zero divisors and S-weak zero divisors. We obtain conditions for any loop L to have S-zero divisors and S-weak zero divisors. We suggest it would be possible to enumerate in the similar way the number of S-zero divisors and S-weak zero divisors for the loop ring $Z_{2} L_{n}(m)$ when $n=p^{s}, s>3 ; p$ a prime or when $p=p_{1} p_{2} \cdots p_{t}$ where $p_{1}, p_{2}, \cdots, p_{t}$ are odd primes. However we find it difficult when we take Z_{p} instead of Z_{2}, where p can be odd prime or a composite number such that $(p, n+1=1)$ or $(p, n+1=p)$ and n is of the form $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{r}^{t_{r}}, t_{i}>1, n$ is odd and $p_{1}, p_{2}, \cdots p_{r}$ are odd primes.

References

[1] R.H. Bruck, A survey of binary system, Spinger Verlag (1958).
[2] D.S.Passman, The algebraic structure of group rings, Wiley interscience, (1977).
[3] S.V.Singh, On a new class of loops and loop rings, PhD thesis, IIT Madras, (1994).
[4] Vasantha Kandasamy,W.B, Smarandache Zero divisors, (2001). http://www.gallup.unm.edu/smarandache/Zero-divisor.pdf

