A BRIEF HISTORY OF THE "SMARANDACHE FUNCTION"

by Dr. Constantin Dumitrescu
Department of Mathematics
University of Craiova, Romania

This function is originated from the exiled Romanian professor Florentin Smarandache. It is defined as follows:

For any non-null integers \(n \), \(S(n) \) is the smallest integer such that \((S(n))! \) is divisible by \(n \).

The importance of the notion is that it characterizes a prime number, i.e.:

Let \(p > 4 \), then: \(p \) is prime if and only if \(S(p) = p \).

Another properties:
If \((a,b) = 1 \), then \(S(ab) = \max \{ S(a), S(b) \} \);
and

For any non-null integers, \(S(ab) \leq S(a) + S(b) \).
(All three found and proved by the author in 1979 (see [3], 15, 12-13, 65).)

If \(n > 1 \), then \(S(n) \) and \(n \) have a proper common divisor.
(Found and proved by student Prodănescu in 1993: as a lemma needed to solve the conjecture formulated by the author in 1979 that:
the equation \(S(n) = S(n + 1) \) has no solutions
(see [3], 37, and [30]).}

Also, an infinity of open/unsolved problems, involving this function, provoked mathematicians around the world to study it and its applications (computational mathematics, simulation, quantum theory, etc.).

Thus, the unsolved question:

Calculate \(\lim_{n \to \infty} \left[1 + \sum_{k=2}^{n} \frac{1}{S(k)} - \log S(n) \right] \), (see [3], 29)

made by the author in 1979, has been separately proved by J. Thompson from USA in 1992 (see [18], 1), by Nigel Backhouse from United Kingdom in 1993 (see [25]), and by Pål Grønås from Norway in 1993 (see [51]) that this limit is equal to \(\infty \).

The author wondered if it's possible to approach the function (see [3], 1979, 25-6), but Ian Parberry expressed that one can immediately find an algorithm that computes \(S(n) \) in \(O(n\log n/\log\log n) \) time (see [38], 1993).

Some unsolved (by now!) other problems stated by the author in 1979 (see [3], 27-30):

a) To find a general form of the continued fraction expansion of \(S(n)/n \), for all \(n \geq 2 \).

b) What is the smallest \(k \) such that for any integer \(n \) at least one of the numbers \(S(n) \), \(S(n+1) \), ..., \(S(n+k-1) \) is a
perfect square?
c) To build the largest arithmetical progression \(a_1, a_2, \ldots, a_r \), for which their images by the function are also an arithmetical progression.

Etc.

In 1975 Smarandache was a student at the University of Craiova, and he was attracted by the Number Theory. He created and published a lot of proposed problems of mathematics in various scientific journals. He liked to play with the numbers...

Thus, in 1980 his research paper "A Function in the Number Theory", based on a special representation of integers, was published (for the first time) in <Analele Universității Timișoara>, Seria Științe Matematice, Vol. 18, pp. 79-88, and was reviewed in <Zentralblatt fur Mathematik>, 471.10004, 1982, by P. Kiss, and in the <Mathematical Reviews>, 83c:10008, 1983, by R. Meyer.

In 1988 he escaped from the Ceaușescu’s dictatorship, spent almost two years in a political refugee camp in Turkey (Istanbul and Ankara), and finally emigrated to the United States.

Articles, notes, quickies, comments, proposals related to the Smarandache Function were presented to international conferences within the Mathematical Association of America or the American Mathematical Society at the New Mexico State University (Las Cruces), New Mexico Tech. (Socorro), University of Arizona (Tucson), University of San Antonio, University of Victoria (Canada) etc. or published in <Octogon> (Sacele), <Gazeta Matematică> (Bucharest), <The Mathematical Spectrum> (UK), <Elemente der Mathematik> (Switzerland), <The Fibonacci Quarterly> (USA) etc.

In 1992 Dr. J. R. Sutton from United Kingdom designed a BASIC PROCedure to calculate \(S(n) \) for all powers of a prime number up to a maximum. (see [26])

Jim Duncan from United Kingdom computed up to \(S(1499999) \), the first million taking 50 hours in Lattice C on an Atari 1040ST. (see [17])

Also, John McCarthy from United Kingdom estimated that his machine would take several years to just calculate and store \(S(n) \) to disk for the entire range of \(n \) it can handle (0<\(n < 2^{32} \)), and using the compression detailed in ncld9207.c at least 12 Gigabytes of disk space would be needed. It took about 3 hours for his program to work out that 3,303,302 pages (!) would be needed to list the full range of \(n \) and \(S(n) \). (see [15])

In 1993 Henry Ibstedt from Sweden used a dtk-computer with 486/33MHz processor in Borland’s Turbo Basic and calculated \(S(n) \) for \(n \) upto \(10^6 \) which took 2 hours and 50 minutes! (see [52])

A group of professors (V. Seleacu, C. Dumitrescu, L. Tuțescu, I. Pătrascu, M. Mocanu) and scientific students from the University of Craiova, having a weekly meeting, are doing research on the function and its applicability.

References (chronologically):
4

Prof. Dr. V. Seleacu & Lect. Dr. C. Dumitrescu, Department of Mathematics, University of Craiova, Romania, editors for the next issues;
registered by the Library of Congress (Washington, D.C., USA) under the code: QA .246 .S63;
surveyed by Ulrich's International Periodicals Directory (R. R. Bowker, New Providence, NJ), 1993-94, 3437,
mentioned by Dr. Şerban Andronescu in New York Spectator, No. 39-40, March 1991, 51;
reviewed by Constantin Corduneanu in Libertas Mathematica, tomus XI, 1991, 202;
mentioned in the list of serials by Zentralblatt fur Mathematik (Berlin), Vol. 730, June 1992, 620;
and reviewed by L. Tóth (Cluj-Napoca, Romania) in Zentralblatt fur Mathematik, Vol. 745 (11004-11007), 1992;

and Canadian Mathematical Society, Winter Meeting, December 9th, 1991, University of Victoria, BC;
and The Southwest Section of the Mathematical Association of America / The Arizona Mathematics Consortium, University of Arizona, Tucson, April 3, 1992;

[26] Dr. J. R. Sutton, Mumbles, Swansea, U.K., "A BASIC PROCedure to calculate S(n) for all powers of a prime number" and Letter to Mike Mudge, Spring 1993;
[27] Pedro Melendez, Belo Horizonte, Brasil, Two proposed problems concerning the Smarandache Function (unpublished), May 1993;
[29] Thomas Martin, Aufgabe 1075 (using the reverse of the Smarandache Function), in *Elemente der Mathematik*, Editors: Dr. Peter Gallin & Dr. Hans Walser, CH-8494 Bauma & CH-8500 Frauenfeld, Switzerland, Vol. 48, No. 3, 1993;
[31] Lucian Tutescu, O generalizare a Problemei propuse de I. Prodanescu (nepublicată), Lic. No. 3, Craiova, Mai 1993;
[37] David Dillard, soft. eng., Honeywell, Inc., Phoenix, "A question about the Smarandache Function", e-mail to <SIGACT>, July 14, 1993;
[38] Ian Parberry, Editor of <SIGACT News>, Denton, Texas, Letter to R. Muller (about computing the Smarandache Function), July 19, 1993;
[40] T. Yau, "Teaching the Smarandache Function to the American Competition Students", abstract for <Mathematica Seminar>, 1993; and the American Mathematical Society Meetings, Cincinnati, Ohio, January 14, 1994;

[41] J. Rodriguez, Sonora, Mexico, Two open problems concerning the Smarandache Function (unpublished), August 1993;

[44] Dan Brown, Account Executive, Wolfram Research, Inc., Champaign, IL, Letter to T. Yau (about setting up the Smarandache Function on the computer using Mathematica® software), August 17, 1993;

[48] G. Vasilie, "Apocalipsul ca formă de guvernare", in <Baricada>, Nr.37 (192), 24, Bucharest, 14 septembrie, 1993;

[50] Pål Grønås, Norway, submitted theoretical results on both problems (0) & (V) from [13], to Mike Mudge, Summer 1993;

[51] Henry Istedt, Broby, Sweden, completed a great work on the problems (0) to (V), from [13], and won the <Personal Computer World>’s award (concerning some open problems related to the Smarandache Function) of August 1993;

[52] Dumitru Acu, Universitatea din Sibiu, Catedra de Matematică, România, Scrisoare din 29.08.1993;

[53] Francisco Bellot Rosado, Valladolid, Spain, Letra del 02.09.1993;

[54] Dr. Petre Dini, Université de Montréal, Québec, e-mail du 23-Sep-1993;

[55] Ken Tauscher, Sydney, Australia, Solved problem: To find a rank for the Smarandache Function (unpublished),
September, 1993;

[56] A. Stiuparu, Vâlcea, Problemă propusă rezolvată (unpublished), October 1993;

[57] M. Costewitz, Bordeaux, France, Généralisation du problème 1075 de l'<Elemente der Mathematik> (unpublished), October 1993;

[58] G. Dincu (Drăgășani, România), "Aritmogrif in Aritmetică" / puzzle, <Abracadabra>, Anul 2, Nr. 13, 14-5, Salinas, CA, Editor Ion Bledea, November 1993;

[59] T. Yau, student, Pima Community Community College, "Alphanumerics and Solutions" (unpublished), October 1993;

[60] Dan Fornade, "Români din Arizona", in <Luceafărul Românesc>, Anul III, Nr. 35, 14, Montréal, Canada, November 1993;

[61] F. P. Micșan, "Români pe Mapamond", in <Europa>, Anul IV, Nr. 150, 15, 2-9 November 1993;

[62] Valentin Verzeanu, "Florentin Smarandache", in <Clipa> journal, Anaheim, CA, No. 117, 42, November 12, 1993;

[63] I. Rotaru, "Cine este F.S.?", prefăță la jurnalul de lagăr din Turcia "Fugit ...", Ed. Tempus (director Gheorghe Stroe), București, 1993;

[64] T. Yau, student, Pima Comunity College, two proposed problems: one solved, another unsolved (unpublished), November 1993;

[65] G. Vasile, "America, America ...", in <Acuz>, Bucharest, Anul I, No. 1, 12, 8-14 November, 1993;

[66] Arizona State University, The "Florentin Smarandache Papers" Special Collection [1979 -], processed by Carol Moore & Marilyn Wurzburger (librarian specialists), Volume: 9 linear feet, Call #: MS SC SM-15, Locn: HAYDEN SPEC, Collections Disk 13:A:\SMARDCHE\FLRN SMA, Tempe, AZ, USA (online since November 1993); electronic mail: ICCLM@ASUACAD.BITNET, phone: (602) 965-6515;
