Let $SR(n)$ be the Smarandache reverse sequence at n. To wit, the first n positive integers in reverse order, i.e.

$SR(1) = 1$, $SR(2) = 21$, ..., $SR(12) = 12110987654321$, ...

Then, I have found that for $n \in \mathbb{N},$

$$SR(n) = 1 + \sum_{j=1}^{n} (1 + \left\lfloor \log_{10} j \right\rfloor)$$

where $\left\lfloor x \right\rfloor$ denotes the greatest integer not exceeding x.

“Reality is for people with no imagination”