ABOUT THE SMARANDACHE SQUARE'S COMPLEMENTARY FUNCTION

Ion Bălăcenoiu, Marcela Popescu and Vasile Seleacu
Departament of Mathematics, University of Craiova
13, Al.I.Cuza st., Craiova (1100), ROMANIA

DEFINITION 1. Let $a: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ be a numerical function defined by $a(n)=k$ where k is the smallest natural number such that $n k$ is a perfect square: $n k=s^{2}, s \in \mathbf{N}^{*}$, which is called the Smarandache square's complementary function.

PROPERTY 1.For every $n \in \mathbf{N}^{*} a\left(n^{2}\right)=1$ and for every prime natural number $a(p)=p$.
PROPERTY 2. Let n be a composite natural number and $n=p_{i_{1}}^{\alpha_{n_{1}}} \cdot p_{i_{2}}^{\alpha_{t_{2}}} \cdots p_{i_{r}}^{\alpha_{i_{r}}}$, $0<p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{r}}, \quad \alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{r}} \in \mathbf{N}$ it's prime factorization. Then $a(n)=p_{i_{1}}^{\beta_{i_{1}}} \cdot p_{i_{2}}^{\beta_{i_{2}}} \cdots p_{i_{r}}^{\beta_{i_{i}}}$ where $\beta_{i_{j}}=\left\{\begin{array}{l}1 \text { if } a_{i_{j}} \text { is an odd natural number } \\ 0 \text { if } \alpha_{i_{j}} \text { is an even natural number }\end{array} \quad j=\overline{1, r}\right.$.

If we take into account of the above definition of the function a, it is easy to prove both the properties.

PROPERTY 3. $\frac{1}{n} \leq \frac{a(n)}{n} \leq 1$, for every $n \in \mathbf{N}^{*}$ where a is the above defined function.
Proof. It is easy to see that $1 \leq a(n) \leq n$ for every $n \in \mathbf{N}^{*}$, so the property holds.
CONSEQUENCE. $\sum_{n \geq 1} \frac{a(n)}{n}$ diverges.
PROPERTY 4. The function $a: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is multiplicative:

$$
a(x \cdot y)=a(x) \cdot a(y) \text { for every } x, y \in \mathbf{N}^{*} \text { whith }(x, y)=1
$$

Proof. For $\quad x=1=y$ we have $(x, y)=1$ and $a(1 \cdot 1)=a(1) \cdot a(1)$. Let $x=p_{i_{1}}^{\alpha_{1_{1}}} \cdot p_{i_{2}}^{\alpha_{i_{2}}} \cdots p_{i_{r}}^{\alpha_{i_{r}}}$ and $y=q_{j_{1}}^{\gamma_{i_{1}}} \cdot q_{j_{2}}^{\gamma_{\Omega_{2}}} \cdots q_{j_{s}}^{\gamma_{j_{s}}} \quad$ be the prime factorization of x and y, respectively, and $x \cdot y \neq 1$. Because $(x, y)=1$ we have $p_{i_{h}} \neq q_{j_{k}}$ for every $h=\overline{1, r}$ and $k=\overline{1, s}$. Then,

$$
\begin{aligned}
& a(x)=p_{t_{1}}^{\beta_{i_{1}}} \cdot p_{i_{2}}^{\beta_{i_{n}}} \cdots p_{i_{r}}^{\beta_{7}} \text { where } \beta_{i_{j}}=\left\{\begin{array}{c}
1 \text { if } \alpha_{i j} \text { is odd } \\
0 \text { if } \alpha_{i_{j}} \text { is even }
\end{array}, j=\overline{1, r},\right. \\
& a(y)=q_{J_{1}}^{\delta_{1}} \cdot q_{j_{2}}^{\delta_{n}} \cdots q_{j_{s}}^{\delta_{j}} \text { where } \delta_{j_{k}}=\left\{\begin{array}{l}
1 \text { if } \gamma_{j_{k}} \text { is odd } \\
0 \text { if } \gamma_{j_{k}} \text { is even }
\end{array}, k=\overline{1, s}\right. \text { and } \\
& a(x y)=p_{i_{1}}^{\beta_{1}} \cdot p_{i_{2}}^{\beta_{n}} \cdots p_{t_{r}}^{\beta_{4}} \cdot q_{d_{1}}^{\delta_{n}} \cdot q_{j_{2}}^{\delta_{n}} \cdots q_{j,}^{\delta_{j,}}=a(x) \cdot a(y)
\end{aligned}
$$

Property 5. If $(x, y)=1$, x and y are not perfect squares and $x, y>1$ the equation $a(x)=a(y)$ has not natural solutions.

Proof. It is easy to see that $x \neq y$. Let $x=\prod_{k=1}^{r} p_{i_{k}}^{\alpha_{k}}$ and $y=\prod_{k=1}^{s} q_{j_{k}}^{\gamma_{k}}$, (where $p_{i_{4}} \neq q_{j_{t}}, \forall h=\overline{1, r}, k=\overline{1, s}$ be their prime factorization.

Then $a(x)=\prod_{k=1}^{\prime} p_{1_{k}}^{\beta_{4}}$ and $a(y)=\prod_{k=1}^{s} q^{\delta_{k}}$, where $\beta_{i h}$ for $h=\overline{1, r}$ and $\delta_{j k}$ for $k=\overline{1, s}$ have the above signifiecance, but there exist at least $\beta_{i_{k}} \neq 0$ and $\delta_{j} \neq 0$. (because x and y are not perfect squares). Then $a(x) \neq a(y)$.

Remark. If $x=1$ from the above equation it results $a(y)=1$, so y must be a a perfect square (analogously for $y=1$).

Consequence. The equation $a(x)=a(x+1)$ has not natural solutions, because for $x>1 x$ and $x+1$ are not both perfect squares and $(x, x+1)=1$.

Property 6. We have $a\left(x \cdot y^{2}\right)=a(x)$, for every $x, y \in \mathbf{N}^{+}$.
Proof. If $(x, y)=1$, then $\left(x, y^{2}\right)=1$ and using property 4 and property 1 we have $a\left(x \cdot y^{2}\right)=a(x) \cdot a\left(y^{2}\right)=a(x)$. If $(x, y) \neq 1 \quad$ we can write: $x=\prod_{k=1}^{n} p_{a_{n}}^{q_{n}} \cdot \prod_{t=1}^{n} d_{k}^{a_{1}}$ and $y=\prod_{k=1}^{n} q_{j k}^{r_{j k}} \cdot \prod_{t=1}^{n} d_{l t}^{r_{t}}$ where $p_{i h} \neq d_{I_{t}}, q_{j k} \neq d_{i t}, p_{i_{h}} \neq q_{j k}, \quad \forall h=\overline{1, r}, k=\overline{1, s}, t=\overline{1, n}$, but this implies $\left(\prod_{h=1}^{r} p_{i_{k}}^{\alpha_{k}} \cdot \prod_{k=1}^{s} q_{k}^{2 \tau_{h}}, \prod_{t=1}^{n} d_{h}^{\alpha_{k}+2 \gamma_{k}}\right)=1$ and

$$
\begin{aligned}
& \left(\prod_{k=1}^{r} p_{i_{k}}^{\alpha_{k}}, \prod_{k=1}^{s} q_{j_{k}}^{2 \gamma_{k}}\right)=1 \Rightarrow a\left(x y^{2}\right)=a\left(\prod_{n=1}^{r} p_{i_{k}}^{\alpha_{k}} \cdot \prod_{k=1}^{s} q_{k}^{2 \gamma_{k}} \cdot \prod_{t=1}^{n} d_{h_{k}}^{\alpha_{k}+2 \gamma_{k}}\right)= \\
& a\left(\prod_{k=1}^{r} p_{i_{k}}^{\alpha_{n}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{2 \gamma_{n}}\right) \cdot a\left(\prod_{t=1}^{n} d_{h}^{\alpha_{4}+2 z_{k}}\right)=a\left(\prod_{k=1}^{r} p_{i_{k}}^{\alpha_{k}}\right) \cdot a\left(\prod_{k=1}^{1} q_{j_{k}}^{2 \gamma_{k}}\right) \cdot a\left(\prod_{t=1}^{n} d_{\xi}^{\alpha_{4}+2 \gamma_{k}}\right)
\end{aligned}
$$

$a\left(\prod_{h=1}^{n} p_{t h}^{a_{t}}\right) \cdot a\left(\prod_{t=1}^{n} d_{t t}^{a_{t} t 2 n_{t}}\right)=a\left(\prod_{n=1}^{n} p_{t h}^{\alpha_{i n}} \cdot \prod_{t=1}^{n} d_{t t}^{\alpha_{t}}\right)=a(x)$ because
$a\left(\prod_{t=1}^{n} d_{h}^{\alpha_{4}+2 \gamma_{4}}\right)=\prod_{t=1}^{n} d_{h}^{\beta_{4}}=a\left(\prod_{t=1}^{n} d_{t}^{a l_{t}}\right)$, where $\beta_{h}=\left\{\begin{array}{l}1 \text { if } \alpha_{L_{t}}+2 \gamma_{l_{t}} \text { is odd } \\ 0 \text { if } \alpha_{l_{t}}+2 \gamma_{h_{t}} \text { is even }\end{array}\right.$
$=\left\{\begin{array}{l}1 \text { if } \alpha_{L_{4}} \text { is odd } \\ 0 \text { if } \alpha_{L_{4}} \text { is even }\end{array}\right.$
Consequence 1. For every $x \in \mathbf{N}^{*}$ and $n \in \mathbf{N}, a\left(x^{n}\right)=\left\{\begin{array}{ll}1 & \text { if } n \text { is even } \\ a(x) & \text { if } n \text { is odd }\end{array}\right.$.
Consequence 2. If $\frac{x}{y}=\frac{m^{2}}{n^{2}}$ where $\frac{m}{n}$ is a simplified fraction, then $a(x)=a(y)$. It is easy to prove this, because $x=k m^{2}$ and $y=k n^{2}$ and using the above property we have: $a(x)=a\left(k m^{2}\right)=a(k)=a\left(k n^{2}\right)=a(y)$.

Property 7. The sumatory numerical function of the function a is $F(n)=\prod_{j=1}^{k}\left(H\left(\alpha_{i}\right)\left(p_{i_{j}}+1\right)+\frac{1+(-1)^{\alpha_{i j}}}{2}\right) \quad$ where the prime factorization of n is $n=p_{n}^{\alpha_{n}} \cdot p_{n}^{\alpha_{n}} \ldots \ldots p_{n}^{\alpha_{1}}$ and $H(\alpha)$ is the number of the odd numbers which are smaller than α.

Proof. The sumatory numerical function of a is defined as $F(n)=\sum_{d / n} a(d)$, because $\left(p_{i 1}^{a_{1}}, \prod_{i=2}^{k} p_{i t}^{a_{i t}}\right)=1 \quad$ we can use the property 4 and we obtain: $F(n)=\left(\sum_{d_{1} / p_{n}^{\alpha_{1}}} a\left(d_{1}\right)\right) \cdot\left(\sum_{d_{2} / p_{n}^{n_{2}} \ldots, p_{4}^{p_{2}^{4}}} a\left(d_{2}\right)\right)$ and so on, making a finite number of steps we obtain $F(n)=\prod_{j=1}^{k} F\left(p_{i, j}^{\alpha_{i j}}\right)$. But we observe that

$$
F\left(p^{\alpha}\right)=\left\{\begin{array}{cc}
\frac{\alpha}{2}(p+1)+1 & \text { if } \alpha \text { is an even number } \\
\left(\left[\frac{\alpha}{2}\right]+1\right)(p+1) & \text { if } \alpha \text { is an odd number }
\end{array}\right.
$$

where p is a prime number.
If we take into account of the definition of $H(\alpha)$ we find $H(\alpha)= \begin{cases}\frac{\alpha}{2} & \text { if } \alpha \text { is even } \\ {\left[\frac{\alpha}{2}\right]+1} & \text { if } \alpha \text { is odd }\end{cases}$ so we can write $F\left(p^{\alpha}\right)=H(\alpha) \cdot(p+1)+\frac{1+(-1)^{\alpha}}{2}$, therefore: $F(n)=\prod_{j=1}^{k}\left(H\left(\alpha_{i,}\right)\left(p_{i,}+1\right)+\frac{1+(-1)^{\alpha_{i j}}}{2}\right.$.

In the sequel we study some equations which involve the function a.

1) Find the solutions of the equation: $x a(x)=m$, where $x, m \in \mathbf{N}^{*}$.

If m is not a perfect square then the above equation has not solutions.
If m is a perfect square, $m=z^{2}, z \in \mathbf{N}^{*}$, then we have to give the solutions of the equation $x a(x)=z^{2}$.

Let $z=p_{t_{1}}^{\alpha_{1}} \cdot p_{i_{2}}^{\alpha_{2}} \cdots p_{1_{2}}^{\alpha_{2}}$ be the prime factorization of z. Then $x a(x)=p_{i_{1}}^{2 \alpha_{1}} \cdot p_{i_{2}}^{2 \alpha_{2}} \cdots p_{i_{2}}^{2 \alpha_{2}}$, so taking account of the definition of the function a, the equation has the following solutions: $x_{1}^{(0)}=p_{i_{1}}^{2 \alpha_{1}} \cdot p_{i_{2}}^{2 \alpha_{2}} \cdots p_{i_{k}}^{2 \alpha_{4}} \quad$ (because $\quad a\left(x_{1}^{(0)}\right)=1$), $\quad x_{1}^{(1)}=p_{i_{1}}^{2 \alpha_{1}-1} \cdot p_{i_{2}}^{2 \alpha_{2}} \cdots p_{i_{4}}^{2 \alpha_{4}} \quad$ (because $\left.a\left(x_{1}^{(1)}\right)=p_{i_{1}}\right), \quad x_{2}^{(1)}=p_{i_{1}}^{2 \alpha_{1}} \cdot p_{i_{2}}^{i \alpha_{2}-1} \cdot p_{i_{3}}^{i \alpha_{3}} \cdots p_{i_{4}}^{2 \alpha_{i}} \quad$ (because $\left.\quad a\left(x_{2}^{(1)}\right)=p_{i_{2}}\right)$, $x_{k}^{(1)}=p_{i_{1}}^{2 \alpha_{1}} \cdot p_{h_{2}}^{2 \alpha_{2}} \cdots p_{i_{k}}^{2 \alpha_{k}-1} \quad$ (because $a\left(x_{k}^{(1)}\right)=p_{i_{k}}$, , then $\quad x_{t}^{(2)}=\frac{z^{2}}{p_{i_{A}} \cdot p_{i_{h}}}$, $j_{1} \neq j_{2}, j_{1}, j_{2} \in\left\{i_{1}, \ldots, i_{k}\right\}, t=\overline{1, C_{k}^{2}} \quad$ (because $a\left(x_{t}^{(2)}\right)=p_{1_{\Omega}} \cdot p_{i_{2}}$), and, in an analogue way, $x_{t}^{(3)}, t \in \overline{1, C_{k}^{3}} \quad$ has as values $\frac{z^{2}}{p_{i_{n}} \cdot p_{i_{h}} \cdot p_{i_{3}}}$, where $j_{1}, j_{2}, j_{3} \in\left\{i_{1}, \ldots, i_{k}\right\}$ $j_{1} \neq j_{2}, j_{2} \neq j_{3}, j_{3} \neq j_{1}$, and so on, $x_{1}^{(k)}=\frac{z^{2}}{p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{2}}}=\frac{z^{2}}{z}=z$. So the above equation has $1+C_{k}^{1}+C_{k}^{2}+\cdots-C_{k}^{k}=2^{k}$ different solutions where k is the number of the prime divisors of m.
2) Find the solutions of the equation: $x a(x)+y a(y)=z a(z), x, y, z \in \mathbb{N}^{*}$.

Proof. We note $x a(x)=m^{2}, y a(y)=n^{2}$ and $z a(z)=s^{2}, x, y, z \in N^{*}$ and the equation

$$
\begin{equation*}
m^{2}+n^{2}=s^{2}, m, n, s \in \mathbf{N}^{*} \tag{}
\end{equation*}
$$

has the following solutions: $m=u^{2}-v^{2}, n=2 u v, s=u^{2}+v^{2}, u>v>0, \quad(u, v)=1$ and u and v have different evenes.

If (m, n, s) as above is a solution, then ($\alpha m, \alpha n, \alpha s$), $\alpha \in N^{*}$ is also a solution of the equation (${ }^{*}$).

If (m, n, s) is a solution of the equation (*), then the problem is to find the solutions of the equation $x a(x)=m^{2}$ and we see from the above problem that there are $2^{k_{1}}$ solutions (where k_{1} is the number of the prime divisors of m), then the solutions of the equations $y a(y)=n^{2}$ and respectively $z a(z)=s^{2}$, so the number of the different solutions of the given equations, is $2^{k_{1}} \cdot 2^{k_{2}} \cdot 2^{k_{3}}=2^{k_{1}+k_{2}+k_{3}}$ (where k_{2} and k_{3} have the same signifience as k_{1}, but concerning n and s, respectively).

For $\alpha>1$ we have $x a(x)=\alpha^{2} m^{2}, y a(y)=\alpha^{2} n^{2}, z a(z)=\alpha^{2} s^{2}$ and, using an analogue way as above, we find $2^{k_{1}-k_{2}-k_{3}}$ different solutions, where $k_{i}, i=\overline{1,3}$ is the number of the prime divisors of $\alpha m, \alpha n$ and αs, respectively.

Remark. In the particular case $u=2, v=1$ we find the solution ($3,4,5$) for (*). So we must find the solutions of the equations $x a(x)=3^{2} \alpha^{2}, y a(y)=2^{4} \alpha^{2}$ and $z a(z)=5^{2} \alpha^{2}$, for $\alpha \in \mathbf{N}^{*}$. Suppose that α has not 2,3 and 5 as prime factors in this prime factorization $\alpha=p_{\eta_{1}}^{\alpha_{1}} \cdot p_{i_{2}}^{\alpha_{2}} \cdots p_{i_{2}}^{\alpha_{4}}$. Then we have:

$$
\begin{aligned}
& x a(x)=3^{2} \alpha^{2} \Rightarrow x \in\left\{3^{2} \alpha^{\alpha^{3}}, \frac{3^{2} \alpha^{2}}{p_{1}}, \cdots, \frac{3^{2} \alpha^{2}}{p_{i k}}, \frac{3^{2} \alpha^{2}}{p_{1} \cdot p_{2}}, \cdots, \frac{3^{2} \alpha^{2}}{p_{i k-1} \cdot p_{i k}}, \cdots, \frac{3^{2} \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{3^{2} \alpha^{2}}{p_{2} \cdots p_{i k}},\right. \\
& \left.3^{2} \alpha, 3 \alpha^{2}, \frac{3 \alpha^{2}}{p_{11}}, \cdots, \frac{3 \alpha^{2}}{p_{i k}}, \frac{3 \alpha^{2}}{p_{1} \cdot p_{n}}, \cdots, \frac{3 \alpha^{2}}{p_{k-1} \cdot p_{i k}}, \cdots, \frac{3 \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{3 \alpha^{2}}{p_{12} \cdots p_{i k}}, 3 \alpha\right\} \\
& y a(y)=4^{2} \alpha^{2} \Rightarrow y \in\left\{4^{2} \alpha^{2}, \frac{4^{2} \alpha^{2}}{p_{1}}, \cdots, \frac{4^{2} \alpha^{2}}{p_{k k}}, \frac{4^{2} \alpha^{2}}{p_{1} \cdot p_{2}}, \cdots, \frac{4^{2} \alpha^{2}}{p_{k-1} \cdot p_{i k}}, \cdots, \frac{4^{2} \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{4^{2} \alpha^{2}}{p_{2} \cdots p_{i k}},\right. \\
& \left.4^{2} \alpha, 8 \alpha^{2}, \frac{8 \alpha^{2}}{p_{14}}, \cdots, \frac{8 \alpha^{2}}{p_{i k}}, \frac{8 \alpha^{2}}{p_{1} \cdot p_{2}}, \cdots, \frac{8 \alpha^{2}}{p_{i k-1} \cdot p_{i k}}, \cdots, \frac{8 \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{8 \alpha^{2}}{p_{2} \cdots p_{i k}}, 8 \alpha\right\} \\
& z a(y)=5^{2} \alpha^{2} \Rightarrow z \in\left\{5^{2} \alpha^{2}, \frac{5^{2} \alpha^{2}}{p_{1}}, \cdots, \frac{5^{2} \alpha^{2}}{p_{i k}}, \frac{5^{2} \alpha^{2}}{p_{1} \cdot p_{2}}, \cdots, \frac{5^{2} \alpha^{2}}{p_{i k-1} \cdot p_{i k}}, \cdots, \frac{5^{2} \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{5^{2} \alpha^{2}}{p_{2} \cdots p_{i k}},\right. \\
& \left.5^{2} \alpha, 5 \alpha^{2}, \frac{5 \alpha^{2}}{p_{1}}, \cdots, \frac{5 \alpha^{2}}{p_{i k}}, \frac{5 \alpha^{2}}{p_{11} \cdot p_{2}}, \cdots, \frac{5 \alpha^{2}}{p_{k-1} \cdot p_{i k}}, \cdots, \frac{5 \alpha^{2}}{p_{1} \cdots p_{i k-1}}, \cdots, \frac{5 \alpha^{2}}{p_{2} \cdots p_{i k}}, 5 \alpha\right\}
\end{aligned}
$$

So any triplet (x_{9}, y_{0}, z_{9}) with x_{0}, y_{0} and z_{0} arbitrary of above corresponding values, is a solution for the equation (for example ($9,16,25$), is a solution).

Definition. The triplets which are the solutions of the equation $x a(x)+y a(y)=z a(z), \quad x, y, z \in \mathbf{Z}^{*}$ we call MIV numbers.
3) Find the natural numbers x such that $a(x)$ is a three - comered, a squared and a pentagonal number.

Proof. Because 1 is the only number which is at the same time a three - cornered, a squared and a pentagonal number, then we must find the solutions of the equation $a(x)=1$, therefore x is any perfect square.
4) Find the solutions of the equation: $\frac{1}{x a(x)}+\frac{1}{y a(y)}=\frac{1}{z a(z)}, x, y, z \in \mathbf{N}^{*}$.

Proof. We have $x a(x)=m^{2}, y a(y)=n^{2}, z a(z)=s^{2}, m, n, s \in \mathbf{N}^{*}$.
The equation $\frac{1}{m^{2}}+\frac{1}{n^{2}}=\frac{1}{s^{2}}$ has the solutions:

$$
\begin{aligned}
& m=t\left(u^{2}+v^{2}\right) 2 u v \\
& n=t\left(u^{2}+v^{2}\right)\left(u^{2}-v^{2}\right) \\
& s=t\left(u^{2}-v^{2}\right) 2 u v
\end{aligned}
$$

$u>v,(u, v)=1, u$ and v have different eveness and $t \in \mathbf{N}^{*}$, so we have

$$
\begin{aligned}
& x a(x)=t^{2}\left(u^{2}+v^{2}\right)^{2} 4 u^{2} v^{2} \\
& y a(y)=t^{2}\left(u^{2}+v^{2}\right)^{2}\left(u^{2}-v^{2}\right)^{2}
\end{aligned}
$$

$z a(z)=t^{2}\left(u^{2}-v^{2}\right)^{2} 4 u^{2} v^{2} \quad$ and we find x, y and z in the same way which is indicated in the first problem.

For example, if $u=2, v=1, t=1$ we have $m=20, n=15, s=12$, so we must find the solutions of the following equations:

$$
\begin{aligned}
& x a(x)=20^{2}=2^{4} \cdot 5^{2} \Rightarrow x \in\left\{2^{3} \cdot 5^{2}=200,2^{4} \cdot 5=80,2^{3} \cdot 5=40,2^{4} \cdot 5^{2}=400\right\} \\
& y a(y)=15^{2}=3^{2} \cdot 5^{2} \Rightarrow y \in\{15,45,75,225\} \\
& z a(z)=12^{2}=2^{4} \cdot 3^{2} \Rightarrow z \in\{24,48,72,144\}
\end{aligned}
$$

Therefore for this particular values of u, v and t we find $4 \cdot 4 \cdot 4=2^{2} \cdot 2^{2} \cdot 2^{2}=2^{6}=64$ solutions. (because $k_{1}=k_{z}=k_{3}=2$)
5) Find the solutions of the equation: $a(x)+a(y)+a(z)=a(x) a(y) a(z), x, y, z \in \mathbf{N}^{\bullet}$.

Proof. If $a(x)=m, a(y)=n$ and $a(z)=s$, the equation $m+n+s=m \cdot n \cdot s$, $m, n, s \in \mathbf{N}^{*}$ has a solutions the permutations of the set $\{1,2,3\}$ so we have:

$$
\begin{aligned}
& a(x)=1 \Rightarrow x \text { must be a perfect square, therefore } x=u^{2}, u \in \mathbf{N}^{*} \\
& a(y)=2 \Rightarrow y=2 v^{2}, \quad v \in \mathbf{N}^{*} \\
& a(z)=3 \Rightarrow z=3 t^{2}, \quad t \in \mathbf{N}^{*} .
\end{aligned}
$$

Therefore the solutions are the permutation of the sets $\left\{u^{2}, 2 v^{2}, 3 t^{2}\right\}$ where $u, v, t \in \mathbb{N}^{*}$.
6) Find the solutions of the equation $A a(x)+B a(y)+C a(z)=0, A, B, C \in \mathbf{Z}^{*}$.

Proof. If we note $a(x)=u, a(y)=v, a(z)=t$ we must find the solutions of the equation $A u+B v+C t=0$.

Using the method of determinants we have:

$$
\left|\begin{array}{lll}
A & B & C \\
A & B & C \\
\boldsymbol{m} & n & s
\end{array}\right|=0, \quad \forall m, n, s \in \mathbf{Z} \Rightarrow A(B s-C n)+B(C m-A s)+C(A n-B m)=0 \text {, and it }
$$

is known that the only solutions are $u=B s-C n$

$$
\begin{aligned}
& v=C m-A s \\
& t=A n-B m, \quad \forall m, n, s \in \mathbf{Z}
\end{aligned}
$$

so, we have $\quad a(x)=B s-C n$
$a(y)=C m-A s$
$a(z)=A n-B m \quad$ and now we know to find x, y and z.
Example. If we have the following equation: $2 a(x)-3 a(y)-a(z)=0$, usind the above result we must find (with the above mentioned method) the solutions of the equations:
$a(x)=-3 s+n$
$a(y)=-m-2 s$
$a(z)=2 n+3 m, \quad m, n$ and $s \in \mathbf{Z}$.
For $m=-1, \quad n=2, s=0: a(x)=2, a(y)=1, a(z)=1$ so, the solution in this case is $\left(2 \alpha^{2}, \beta^{2}, \gamma^{2}\right), \alpha, \beta, \gamma \in \mathbf{Z}^{*}$. For the another values of m, n, s we find the corresponding solutions.
7) The same problem for the equation $A a(x)+B a(y)=C, A, B, C \in \mathbf{Z}$.

Proof. $A a(x)+B a(y)-C=0 \Leftrightarrow A a(x)+B a(y)+(-C) a(z)=0 \quad$ with $a(z)=1 \quad$ so we must have $A n-B m=1$. If n_{0} and m_{0} are solutions of this equation ($A n_{0}-B m_{0}=1$) it remains us to find the solutions of the following equations:

$$
\begin{aligned}
& a(x)=B s+C n_{0} \\
& a(y)=-C m_{0}-A s, s \in \mathbf{Z}, \text { but we know how to find them. }
\end{aligned}
$$

Example. If we have the equation $2 a(x)-3 a(y)=5, x, y \in \mathbf{N}^{*}$ using the above results, we get: $A=2, B=-3, C=-5$ and $a(z)=1=2 n+3 m$. The solutions are $m=2 k+1$ and $n=-1-3 k, k \in \mathbf{Z}$. For the particular value $k=-1$ we have $m_{0}=-1$ and $n_{0}=2$ so we find $a(x)=-3+5 \cdot 2=10-3 s$ and $a(y)=-5(-1)-2 s=5-2 s$.

If $s_{0}=0$ we find $a(x)=10 \Rightarrow x=10 u^{2}, u \in \mathbf{Z}^{*}$

$$
a(y)=5 \Rightarrow y=5 v^{2}, v \in \mathbf{Z}^{*} \quad \text { and so on. }
$$

8) Find the solutions of the equation: $a(x)=k a(y) k \in \mathbf{N}^{*} k>1$.

Proof. If k has in his prime factorization a factor which has an exponent ≥ 2, then the problem has not solutions.

If $k=p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{r}}$ and the prime factorizarion of $a(y)$ is $a(y)=q_{j_{1}} \cdot q_{j_{2}} \cdots q_{j_{v}}$, then we have solutions only in the case $p_{i_{1}}, p_{i_{2}}, \ldots p_{i_{5}} \notin\left\{q_{j_{1}}, q_{j_{2}}, \ldots, q_{j_{n}}\right\}$.

This implies that $a(x)=p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i} \cdot q_{j_{1}} \cdot q_{J_{2}} \cdots q_{j_{k}}$, so we have the solutions

$$
\begin{aligned}
& x=p_{i 1} \cdot p_{2} \cdots p_{i r} \cdot q_{j_{1}} \cdot q_{\lambda_{2}} \cdots q_{j_{s}} \cdot \alpha^{2} \\
& y=q_{j_{1}} \cdot q_{j_{2}} \cdots q_{j_{u}} \cdot \beta^{2}, \alpha, \beta \in \mathbf{Z}^{*} .
\end{aligned}
$$

9) Find the solutions of the equation $a(x)=x$ (the fixed points of the function a).

Proof. Obviously, $a(1)=1$. Let $x>1$ and let $x=p_{\eta}^{\alpha_{\eta}} \cdot p_{\eta}^{\alpha_{i n}} \cdots p_{\psi_{r}}^{\alpha_{r}}, \alpha_{i_{j}} \geq 1$, for $j=\overline{1, r}$ be the prime factorization of x. Then $a(x)=p_{i_{1}}^{\beta_{n}} \cdot p_{i 2}^{\beta_{2}} \cdots p_{i_{r}}^{\beta_{i r}}$ and $\beta_{i j} \leq 1$ for $j=\overline{1, r}$. Because $a(x)=x$ this implies that $\alpha_{i_{j}}=\beta_{i_{j}}=1, \forall j \in \overline{1, r}$, therefore $x=p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{7}}$, where $p_{i_{j}}, j=\overline{1, r}$ are prime numbers.

REFERENCES

