AN IMPORTANT FORMULA TO CALCULATE THE NUMBER OF PRIMES LESS THAN X
by L. Seagull, Glendale Community College

If \(x \geq 4 \), then:

\[
\begin{array}{c|c|c|c}
\hline
\text{\(k \)} & \text{\(S(k) \)} & \text{\(\lfloor a \rfloor \)} & \text{\(\lfloor a \rfloor - 1 \)} \\
\hline
2 & \hline
\hline
\end{array}
\]

where \(S(k) \) is the Smarandache Function: the smallest integer such that \(S(k)！ \) is divisible by \(k \), and \(\lfloor a \rfloor \) means the integer part of \(a \).

Proof:
Knowing the Smarandache Function has the property that if \(p > 4 \) then
\(S(p) = p \) if only if \(p \) is prime,
and \(S(k) \leq k \) for any \(k \),
and \(S(4) = 4 \) (the only exception from the first rule),
we easily find an exact formula for the number of primes less or equal than \(x \).