Five Properties of the Smarandache Double Factorial Function

Felice Russo
Via A. Infante 7
67051 Avezzano (Ag) Italy
felice.russo@katamail.com

Abstract

In this paper some properties of the Smarandache double factorial function have been analyzed.

In [1], [2], [3] and [4] the Smarandache double factorial Sdf(n) function is defined as the smallest number such that Sdf(n)!! is divisible by n, where the double factorial by definition is given by [6]:

\[m!! = 1 \times 3 \times 5 \times \ldots \times m, \text{ if } m \text{ is odd}; \]
\[m!! = 2 \times 4 \times 6 \times \ldots \times m, \text{ if } m \text{ is even}. \]

In [2] several properties of that function have been analyzed. In this paper five new properties are reported.

1. \(Sdf(p^{k+2}) = p^2 \) where \(p = 2 \cdot k + 1 \) is any prime and \(k \) any integer

Let's consider the prime \(p = 2k + 1 \). Then:

\[1 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p \cdot \ldots \cdot 3p \cdot \ldots \cdot 5p \cdot \ldots \cdot p^2 = m \cdot p^{k+2} \text{ where } m \text{ is any integer.} \]

This because the number of terms multiples of \(p \) up to \(p^2 \) are \(k+1 \) and the last term contains two times \(p \).

Then \(p^2 \) is the least value such that \(1 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p^2 \) is divisible by \(p^{k+2} \).

2. \(Sdf(p^2) = 3 \cdot p \) where \(p \) is any odd prime.
In fact for any odd \(p \) we have:

\[
1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdot p \cdots \cdot 3p = m \cdot p^2 \quad \text{where } m \text{ is any integer.}
\]

3. \(Sd \left(k \cdot \left(\frac{10^n - 1}{9} \right) \right) = Sd \left(\frac{10^n - 1}{9} \right) \) where \(n \) is any integer >1 and \(k=3,5,7,9 \)

Let's suppose that \(Sd \left(\frac{10^n - 1}{9} \right) = m \) then:

\[
1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdot m = a' \cdot \left(\frac{10^n - 1}{9} \right) \quad \text{where } a' \text{ is any integer. But in the previous multiplication there are factors multiple of 3,5,7 and 9 and then:}
\]

\[
1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdot m = a' \cdot k \cdot \left(\frac{10^n - 1}{9} \right) \quad \text{where } a' \text{ is any integer and } k=3,5,7,9. \text{ Then:}
\]

\[
Sd \left(k \cdot \left(\frac{10^n - 1}{9} \right) \right) = m = Sd \left(\frac{10^n - 1}{9} \right)
\]

4. \(Sd \left(k \cdot \left(\frac{10^n - 1}{9} \right) \right) = Sd \left(2 \cdot \left(\frac{10^n - 1}{9} \right) \right) \) where \(n \) is any integer >1 and \(k=2,4,6,8 \)

Let's suppose that \(Sd \left(2 \cdot \left(\frac{10^n - 1}{9} \right) \right) = m \) then:

\[
2 \cdot 4 \cdot 6 \cdot 8 \cdots \cdot m = a \cdot 2 \cdot \left(\frac{10^n - 1}{9} \right) \quad \text{where } a \text{ is any integer. But in the previous}
\]
multiplication there are factors multiple of 4, 6 and 8 and then:

\[2 \cdot 4 \cdot 6 \cdot 8 \cdot \ldots \cdot m = a' \cdot 2 \cdot k \cdot \left(\frac{10^n - 1}{9} \right) \]

where \(a' \) is any integer and \(k = 4, 6, 8 \).

Then:

\[Sdf \left(k \cdot \left(\frac{10^n - 1}{9} \right) \right) = m = Sdf \left(2 \cdot \left(\frac{10^n - 1}{9} \right) \right) \]

5. \(Sdf \left(p^n \right) = (2 \cdot m - 1) \cdot p \) for \(p \equiv (2m - 1) \). Here \(m \) is any integer and \(p \) any odd prime.

This is a generalization of property number 2 reported above.

References.

http://www.gallup.unm.edu/~smarandache/SNAOINT.txt

