Near Pseudo Smarandache Function

A. W. Vyawahare
H. O. D. Mathematics Department,
M. M. College Of Science,
Umred Road, Sakkardara, Nagpur University,
Nagpur, PIN :- 440009, INDIA
E-mail: variant_ngp@sancharnet.in

K. M. Purohit
H. O. D. Mathematics Department,
V.M.V. Com., J.M.T. Arts & J.J.P. Science College,
Wardhaman Nagar, Nagpur University, Nagpur, PIN :- 440008, INDIA
E-mail: kiritpurohit@hotmail.com

Abstract.

The Pseudo Smarandache Functions $Z(n)$ are defined by David Gorski [1].
This new paper defines a new function $K(n)$ where $n \in \mathbb{N}$, which is a slight modification of $Z(n)$ by adding a smallest natural number k. Hence this function is “Near Pseudo Smarandache Function (NPSF)”. Some properties of $K(n)$ are presented here, separately, according to as n is even or odd. A continued fraction consisting NPSF is shown to be convergent [3]. Finally some properties of $K^{'}(n)$ are also obtained.

MS Classification No: 11-XX

Keywords: Smarandache Functions, Pseudo Smarandache Functions, Diphantine Equation, Continued Fractions, Coverage.

1.1 Definition

Near Pseudo Smarandache Function (NPSF) K is defined as follows.

$K : \mathbb{N} \to \mathbb{N}$ defined by $K(n) = m$, where $m = \Sigma n + k$ and k is the smallest natural number such that n divides m.

1.2 Following are values of $K(n)$ for $n \leq 15$

42
<table>
<thead>
<tr>
<th>n</th>
<th>Σn</th>
<th>k</th>
<th>$K(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>66</td>
<td>11</td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>78</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>91</td>
<td>13</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>105</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>15</td>
<td>120</td>
<td>15</td>
<td>135</td>
</tr>
</tbody>
</table>

For more such values see appendix A

2.1 Properties

(i) $k = n$ if n is odd and $n/2$ if n is even.

(a) Let n be odd.

Then $(n + 1)$ is even and hence $(n + 1)/2$ is an integer.

$\therefore \Sigma n = n(n + 1)/2$, being multiple of n, is divisible by n.

Hence n divides $\Sigma n + k$ iff n divides k i.e. k is a multiple of n. However, as k is smallest $k = n$.

(b) Let n be even.

Then $\Sigma n + k = n(n + 1)/2 + k = n^2/2 + n/2 + k$

As n is even hence $n/2$ is an integer and $n^2/2$ is divisible by n.

Hence n divides $\Sigma n + k$ iff n divides $n/2 + k$

i.e. iff $n \leq n/2 + k$ or $k \geq n/2$.

However, as k is smallest $k = n/2$.
(ii) \[K(n) = \frac{n(n+3)}{2} \] if \(n \) is odd and \[K(n) = \frac{n(n+2)}{2} \] if \(n \) is even.

\[K(n) = \sum n + k = \frac{n(n+1)}{2} + k \]

If \(n \) is odd then \(k = n \) and hence \(K(n) = \frac{n(n+3)}{2} \)
If \(n \) is even then \(k = \frac{n}{2} \) and hence \(K(n) = \frac{n(n+2)}{2} \).

(iii) For all \(n \in \mathbb{N} \); \(\frac{n(n+2)}{2} \leq K(n) \leq \frac{n(n+3)}{2} \)

We know \(K(n) \) is either \(\frac{n(n+2)}{2} \) or \(\frac{n(n+3)}{2} \)
depending upon whether \(n \) is even or odd.
Hence for all \(n \in \mathbb{N} \); \(\frac{n(n+2)}{2} \leq K(n) \leq \frac{n(n+3)}{2} \)

(iv) For all \(n \in \mathbb{N} \); \(K(n) > n \).

As \(K(n) \geq \frac{n(n+2)}{2} = n + \frac{n^2}{2} > n \)
Hence \(K(n) > n \) for all \(n \in \mathbb{N} \).

(v) \(K \) is strictly monotonic increasing function of \(n \).

Let \(m < n \implies m + 1 \leq n \) i.e. \(m + (3 - 2) \leq n \)
Or \(m + 3 \leq n + 2 \). So \(m < n \) and \(m + 3 \leq n + 2 \)
\[\implies m(m+3) < n(n+2) \]
Or \(m(m+3)/2 < n(n+2)/2 \)
\[\implies K(m) < K(n) \]
Hence \(K(n) \) is strictly monotonic increasing function of \(n \).

(vi) \(K(m+n) \neq K(m) + K(n) \)
and \(K(m,n) \neq K(m) \cdot K(n) \)

We know \(K(2) = 4, K(3) = 9, K(5) = 20, \) & \(K(6) = 24 \)
So \(K(2) + K(3) = 4 + 9 = 13 \) & \(K(2+3) = K(5) = 20 \)
Hence \(K(2+3) \neq K(2) + K(3) \)
Also \(K(2).K(3) = 4.9 = 36 \) & \(K(2.3) = K(6) = 24 \)
Hence \(K(2.3) \neq K(2).K(3) \)
2.2 (i) $K(2n + 1) - K(2n) = 3n + 2$

$K(2n + 1) = (2n + 1)(2n + 4)/2 = 2n^2 + 5n + 2$

$K(2n) = 2n(2n + 2)/2 = 2n^2 + 2n$

Hence $K(2n + 1) - K(2n) = 3n + 2$

(ii) $K(2n) - K(2m) = 2(n - m)(n + m + 1)$

$K(2n) = 2n(2n + 2)/2 = 2n^2 + 2n$

$\therefore K(2n) - K(2m) = 2(n^2 - m^2) + 2(n - m)$

Hence $K(2n) - K(2m) = 2(n - m)(n + m + 1)$

(iii) $K(2n + 1) - K(2n - 1) = 4n + 3$

$K(2n + 1) = (2n + 1)(2n + 4)/2 = 2n^2 + 5n + 2$

$K(2n - 1) = (2n - 1)(2n + 2)/2 = 2n^2 + n - 1$

Hence $K(2n + 1) - K(2n - 1) = 4n + 3$

(iv) $K(n) - K(m) = \frac{n - m}{n + m} K(n + m)$ where m, n are even and $n > m$.

$K(n) - K(m) = \frac{n}{2} (n + 2) - \frac{m}{2} (m + 2)$

$= \frac{1}{2} (n^2 + 2n - m^2 - 2m)$

$= \frac{1}{2} \{(n^2 - m^2) + 2(n - m)\}$

$= \left(\frac{n - m}{2}\right) (n + m + 2)$

$= (n - m) \frac{1}{n + m} \frac{n + m}{2} (n + m + 2)$

$= \frac{n - m}{n + m} K(n + m)$
(v) Let $K(n) = m$ and

(a) Let n be even then $n \cdot m$ is a perfect square iff $(n + 2)/2$ is a perfect square.

(b) Let n be odd then $n \cdot m$ is a perfect square iff $(n + 3)/2$ is a perfect square.

(c) $n \cdot m$ is a perfect cube iff $n = 2$ or 3.

(a) If n is even then $K(n) = m = n(n + 2)/2$

$\therefore n \cdot m = n^2(n + 2)/2$ Hence if n is even then $n \cdot m$ is a perfect square iff $(n + 2)/2$ is a perfect square.

(b) If n is odd then $K(n) = m = n(n + 3)/2$

$\therefore n \cdot m = n^2(n + 3)/2$ Hence if n is odd then $n \cdot m$ is a perfect square iff $(n + 3)/2$ is a perfect square.

(c) Let n be even and let $n = 2p$

Then $m = K(n) = K(2p) = 2p/2(2p + 2)$

$\therefore n \cdot m = (2p) \cdot p \cdot 2(p + 1) = (2p) \cdot (2p) \cdot (p + 1)$

$\therefore n \cdot m$ is a perfect cube iff $p + 1 = 2p$

i.e. iff $p = 1$ i.e. iff $n = 2$

Let n be odd and let $n = 2p - 1$

Then $m = K(n) = K(2p - 1) = (2p - 1)(2p - 1 + 3)/2$

$= (2p - 1)(p + 1)$

$\therefore n \cdot m = (2p - 1) \cdot (2p - 1) \cdot (p + 1)$

$\therefore n \cdot m$ is a perfect cube iff $p + 1 = 2p - 1$

i.e. iff $p = 2$ i.e. iff $n = 3$

$\therefore n = 2$ and $n = 3$ are the only two cases where $n \cdot m$ is a perfect cube.

Verification :- $K(2) = 4 \& 2 \cdot 4 = 8 = 2^3$

$K(3) = 9 \& 3 \cdot 9 = 27 = 3^3$
2.3 Ratios

(i) \[\frac{K(n)}{K(n+1)} = \frac{n}{n+1} \]
if \(n \) is odd.

As \(n \) is odd \(\because n + 1 \) is even. Hence \(K(n) = \frac{n(n + 3)}{2} \)

and \(K(n + 1) = \frac{(n + 1)(n + 1 + 2)}{2} = \frac{(n + 1)(n + 3)}{2} \)

Hence \(\frac{K(n)}{K(n+1)} = \frac{n}{n+1} \) if \(n \) is odd.

(ii) \[\frac{K(n)}{K(n+1)} = \frac{n(n+2)}{(n+1)(n+4)} \]
if \(n \) is even.

As \(n \) is even \(\because n + 1 \) is odd. Also \(K(n) = \frac{n(n + 2)}{2} \) and

\[K(n + 1) = \frac{(n + 1)(n + 1 + 3)}{2} = \frac{(n + 1)(n + 4)}{2} \]

Hence \(\frac{K(n)}{K(n+1)} = \frac{n(n+2)}{(n+1)(n+4)} \) if \(n \) is even.

(iii) \[\frac{K(2n)}{K(2n+2)} = \frac{n}{n+2} \]

\[K(2n) = 2n(2n + 2)/2 = 2n(n + 1) \]

\[K(2n + 2) = (2n + 2)(2n + 4)/2 = 2(n + 1)(n + 2) \]

Hence \(\frac{K(2n)}{K(2n+2)} = \frac{n}{n+2} \)

2.4 Equations

(i) \(\) Equation \(K(n) = n \) has no solution.

We know \(K(n) = \frac{n(n + 2)}{2} \) OR \(n(n + 3)/2 \)

\(\therefore K(n) = n \) iff \(n(n + 2)/2 = n \) OR \(n(n + 3)/2 = n \)

i.e. iff \(n = 0 \) OR \(n = -1 \) which is not possible as \(n \in \mathbb{N} \).

Hence Equation \(K(n) = n \) has no solution.

(ii) \(\) Equation \(K(n) = K(n + 1) \) has no solution.

If \(n \) is even (or odd) then \(n + 1 \) is odd (or even)

Hence \(K(n) = K(n + 1) \)

iff \(n(n + 2)/2 = (n + 1)(n + 4)/2 \)
OR \[n(n+3)/2 = (n+1)(n+3)/2 \]
i.e. iff \[n(n+2) = (n+1)(n+4) \]

OR \[n(n+3) = (n+1)(n+3) \]
i.e. iff \[n^2 + 2n = n^2 + 5n + 4 \] OR \[n^2 + 3n = n^2 + 4n + 3 \]
i.e iff \[3n + 4 = 0 \] OR \[n + 3 = 0 \]
i.e iff \[n = -4/3 \] OR \[n = -3 \] which is not possible as \(n \in N \).

Hence Equation \(K(n) = K(n+1) \) has no solution.

(iii) \(Equation \ K(n) = K(n+2) \) has no solution.

If \(n \) is even (or odd) then \(n+2 \) is even (or odd).

Hence \(K(n) = K(n+2) \)
iff \[n(n+2)/2 = (n+2)(n+4)/2 \]
OR \[n(n+3)/2 = (n+2)(n+5)/2 \]
i.e. iff \[n(n+2) = (n+2)(n+4) \]

OR \[n(n+3) = (n+2)(n+5) \]
i.e. iff \[n^2 + 2n = n^2 + 6n + 8 \] OR \[n^2 + 3n = n^2 + 7n + 10 \]
i.e iff \[4n + 8 = 0 \] OR \[4n + 10 = 0 \]
i.e iff \[n = -2 \] OR \[n = -5/2 \] which is not possible as \(n \in N \).

Hence \(Equation \ K(n) = K(n+2) \) has no solution.

(iv) To find \(n \) for which \(K(n) = n^2 \)

(a) Let \(n \) be even.
Then \(K(n) = n^2 \) iff \[n(n+2)/2 = n^2 \]
i.e. iff \[n^2 + 2n = 2n^2 \] Or \(n(n-2) = 0 \)
i.e. iff \(n = 0 \) or \(n = 2 \). Hence \(n = 2 \) is the only even value of \(n \) for which \(K(n) = n^2 \)

(b) Let \(n \) be odd.
Then \(K(n) = n^2 \) iff \[n(n+3)/2 = n^2 \]
i.e. iff \[n^2 + 3n = 2n^2 \] Or \(n(n-3) = 0 \)
i.e. iff \(n = 0 \) or \(n = 3 \). Hence \(n = 3 \) is the only odd value of \(n \) for which \(K(n) = n^2 \)

So 2 and 3 are the only solutions of \(K(n) = n^2 \)

48
2.5 Summation and product

(i) For \(n \) odd \(\Sigma K(2n) - \Sigma K(2n-1) = K(n) \)

\[
\Sigma K(2n) = \Sigma n(2n+2) = 2\Sigma n(n+1) = 2\Sigma (n^2 + n)
\]

\[
\Sigma K(2n-1) = \Sigma (2n-1)(2n+2)/2n
\]

\[
= \Sigma (2n-1)(n+1) = \Sigma (2n^2 + n - 1)
\]

\[
\therefore \Sigma K(2n) - \Sigma K(2n-1) = \Sigma(n+1) = n(n+1)/2 + n
\]

\[
= n(n+3)/2 = K(n)
\]

Hence for \(n \) odd \(\Sigma K(2n) - \Sigma K(2n-1) = K(n) \)

(ii) \[\sum_{m=1}^{m=n} K(a^m) = K(a) + K(a^2) + K(a^3) + \ldots + K(a^n) \]

\[
= \frac{a(a^n-1)}{2(a^2-1)}(a^{n+1} + 3a + 2) \text{ if } a \text{ is even}
\]

\[
= \frac{a(a^n-1)}{2(a^2-1)}(a^{n+1} + 4a + 3) \text{ if } a \text{ is odd}
\]

(a) Let \(a \) be even. Then

\[
\sum_{m=1}^{m=n} K(a^m) = K(a) + K(a^2) + K(a^3) + \ldots + K(a^n)
\]

\[
= a(a+2)/2 + a^2(a^2+2)/2 + a^3(a^3+2)/2 + \ldots + a^n(a^n+2)/2
\]

\[
= \left(a^2/2 + a \right) + \left(a^4/2 + a^2 \right) + \ldots + \left(a^n/2 + a^n \right)
\]

\[
= (1/2) \left\{ a^2 + a^4 + a^6 + \ldots + a^{2n} \right\}
\]

\[
+ \left\{ a + a^2 + a^3 + \ldots + a^n \right\}
\]

\[
= (1/2) \left\{ a^2 + (a^2)^2 + (a^2)^3 + \ldots + (a^2)^n \right\}
\]

\[
+ \left\{ a + a^2 + a^3 + \ldots + a^n \right\}
\]

\[
= \frac{1}{2} a^2 \left(\frac{a^{2n}-1}{a^2-1} \right) + \frac{a(a^n-1)}{a-1}
\]

\[
= \frac{a^2}{2} \left(\frac{a^n-1}{a-1} (a+1) \right) + \frac{a(a^n-1)}{a-1}
\]

\[
= \frac{a(a^n-1)}{2(a-1)} \left\{ \frac{a(a^n+1)}{(a+1)} + 2 \right\}
\]

\[
= \frac{a(a^n-1)}{2(a-1)} \left\{ \frac{a^{n+1} + a + 2a + 2}{(a+1)} \right\}
\]
\[\begin{align*}
\text{Hence } K(a) + K(a^2) + K(a^3) + \ldots + K(a^n) & = \frac{a(a^n-1)}{2(a^2-1)} (a^{n+1} + 3a + 2) \text{ if } a \text{ is even} \\
\end{align*}\]

(b) Let \(a\) is odd. Then

\[\begin{align*}
\sum_{m=1}^{n} K(a^m) & = K(a) + K(a^2) + K(a^3) + \ldots + K(a^n) \\
& = a(a+3)/2 + a^2(a^2+3)/2 + a^3(a^3+3)/2 \\
& \quad + \ldots + a^n(a^n+3)/2 \\
& = (1/2) \left\{ a^2 + 3a + a^4 + 3a^2 + a^6 \\
& \quad + 3a^3 + \ldots + a^{2n} + 3a^n \right\} \\
& = (1/2) \left\{ a^2 + a^4 + a^6 + \ldots + a^{2n} \right\} \\
& \quad + \left\{ a + a^2 + a^3 + \ldots + a^n \right\} \\
& = (1/2) \left\{ (a^2 + (a^2)^2 + \ldots + (a^2)^n \right\} \\
& \quad + 3 \left\{ (a + a^2 + a^3 + \ldots + a^n) \right\} \\
& = \frac{1}{2} \left\{ a^2 \frac{(a^n-1)}{a-1} + 3a \frac{(a^n-1)}{a-1} \right\} \\
& = a(a^n-1) \left\{ \frac{a(a^n+1)}{(a+1)} + 3 \right\} \\
& = a(a^n-1) \left\{ \frac{a^{n+1}+a+3a+3}{(a+1)} \right\} \\
& = a(a^n-1) \left(\frac{a^{n+1}+4a+3}{2(a^2-1)} \right) \text{ if } a \text{ is odd} \\
\end{align*}\]

(iii) \(\Pi K(2n) = 2^n \cdot n! \cdot (n+1)!\)

\[\begin{align*}
\Pi K(2n) & = \Pi 2n(2n+2)/2 = \Pi 2n(n+1) \\
& = \Pi 2 \cdot \Pi n \cdot \Pi (n+1) \\
& = 2n \cdot n! \cdot (n+1)! \\
\end{align*}\]

Hence \(\Pi K(2n) = 2^n \cdot n! \cdot (n+1)!\)
(iv) \[\Pi K(2n-1) = \left(\frac{1}{2^n} \right) \cdot 2n! \cdot n! \cdot (n+1) \]

\[\Pi K(2n-1) = \Pi (2n-1) (2n+2)/2 \]
\[= \Pi (2n-1) (n+1) \]
\[= \Pi (2n-1) \Pi (n+1) \]
\[= (2n-1)! \cdot (n+1)! \]
\[= (1/2n) \cdot 2n! \cdot n! \cdot (n+1) \]

2.6 Inequalities

(i) (a) For even numbers \(a \) and \(b > 4 \); \(K(a, b) > K(a) \cdot K(b) \)

Assume that \(K(a, b) \leq K(a) \cdot K(b) \)

i.e. \(ab \cdot (ab + 2)/2 \leq a(a + 2)/2 \cdot b(b + 2)/2 \)

\[\therefore ab + 2 \leq (a + 2) \cdot (b + 2)/2 \]

i.e. \(ab \leq 2(a + b) \) (A)

Now as \(a \) and \(b > 4 \) so let \(a = 4 + h, b = 4 + k \) for some \(h, k \in N \).

\[(A) \Rightarrow (4 + h)(4 + k) \leq (8 + 2h) + (8 + 2k) \]

i.e. \(16 + 4h + 4k + hk \leq 16 + 2h + 2k \)

i.e. \(2h + 2k + hk \leq 0 \) (I)

But as \(h, k \in N \), hence \(2h + 2k + hk > 0 \)

This contradicts (I). Hence if both \(a \) and \(b \) are even and \(a, b > 4 \) then \(K(a, b) > K(a) \cdot K(b) \)

(b) For odd numbers \(a, b \geq 7 \); \(K(a, b) > K(a) \cdot K(b) \)

Let \(K(a, b) \leq K(a) \cdot K(b) \)

i.e. \(ab \cdot (ab + 3)/2 \leq a(a + 3)/2 \cdot b(b + 3)/2 \)

\[\therefore ab + 3 \leq (a + 3) \cdot (b + 3)/2 \]

i.e. \(2ab + 6 \leq ab + 3a + 3b + 9 \)

or \(ab \leq 3a + 3b + 3 \) (B)

Now as \(a, b \geq 7 \) so let \(a = 7 + h, b = 7 + k \) for some \(h, k \in W \)

\[(B) \Rightarrow (7 + h)(7 + k) \leq 3(7 + h) + 3(7 + k) + 3 \]

i.e. \(49 + 7h + 7k + hk \leq 45 + 3h + 3k \)

i.e. \(4 + 4h + 4k + hk \leq 0 \) (II)
But $h, k \in W$ hence $4 + 4h + 4k + hk > 0$

This contradicts (II) Hence $K(a, b) > K(a) \cdot K(b)$

(c) For a odd, b even and $a, b > 5$; $K(a, b) > K(a) \cdot K(b)$

Let $K(a, b) \leq K(a) \cdot K(b)$

i.e. $ab(a + b + 2)/2 \leq a(a + 3)/2 \cdot b(b + 2)/2$

$\therefore ab + 2 \leq (a + 3) \cdot (b + 2)/2$

i.e. $ab \leq 2a + 3b + 2$ (C)

Now $a, b > 5$ so let $a = 6 + h$ and $b = 6 + k$

for some $h, k \in W$

$\therefore (C) \Rightarrow (6 + h)(6 + k) \leq 2(6 + h) + 3(6 + k) + 2$

i.e. $36 + 6h + 6k + hk \leq 12 + 2h + 18 + 3k + 2$

i.e. $4h + 3k + hk + 4 \leq 0$ (III)

But $h, k \in W$ $4h + 3k + hk + 4 > 0$

This contradicts (III) Hence $K(a, b) > K(a) \cdot K(b)$

Note :- It follows from (xii) (a), (b) and (c) that in general if $a, b > 5$ then $K(a, b) > K(a) \cdot K(b)$

(ii) If $a > 5$ then for all $n \in N$; $K(a^n) > n K(a)$

As $a > 5$ $K(a^n) = K(a, a, a, \ldots, n \text{ times})$

$> K(a) \cdot K(a) \cdot K(a) \text{ up to } n \text{ times}$

$> \{K(a)\}^n \geq n K(a)$

Hence if $a > 5$ then for all $n \in N; K(a^n) > n K(a)$

2.7 Summation of reciprocals.

(i) $\sum_{n=1}^{\infty} \frac{1}{K(2n)}$ is convergent.

$K(2n) = 2n(2n+2)/2 = 2n(n+1)$

$\therefore \frac{1}{K(2n)} = \frac{1}{2n(n+1)} = \frac{1}{2n^2(1+1/n)} \leq \frac{1}{n^2}$

So series is dominated by convergent series and hence it is convergent.
(ii) \[\sum_{n=1}^{\infty} \frac{1}{K(2n-1)} \text{ is convergent.} \]

\[K(2n-1) = (2n-1)(2n+2)/2 = (2n-1)(n+1) \]

\[\therefore \frac{1}{K(2n-1)} = \frac{1}{(2n-1)(n+1)} = \frac{1}{n^2 \left(2 - \frac{1}{n} \right) \left(1 + \frac{1}{n} \right)} \leq 1/n^2 \]

Hence by comparison test series is convergent.

(iii) \[\sum_{n=1}^{\infty} \frac{1}{K(n)} \text{ is convergent.} \]

\[K(n) \geq n(n+2)/2 \]

\[\therefore \frac{1}{K(n)} \leq \frac{2}{n^2 \left(1 + 2/n \right)} \leq 1/n^2 \]

Hence series is convergent.

(iv) \[\sum_{n=1}^{\infty} \frac{K(n)}{n} \text{ is divergent.} \]

\[\frac{K(n)}{n} \geq \frac{n+2}{2} \geq \frac{n}{2} \]

Hence series is divergent.

2.8 \textbf{Limits.}

(i) \[\lim_{n \to \infty} \frac{K(2n)}{\sum 2n} = 2 \]

\[K(2n) = 2n(2n+2)/2 = 2n(n+1) \]

\[\Sigma 2n = 2 \Sigma n = n(n+1) \]

\[\frac{K(2n)}{\sum 2n} = \frac{2n(n+1)}{n(n+1)} = 2 \]

\[\therefore \lim_{n \to \infty} \frac{K(2n)}{\sum 2n} = 2 \]
\[(ii) \quad \lim_{n \to \infty} \frac{K(2n-1)}{\sum (2n-1)} = 2\]

\[K(2n-1) = (2n-1)(2n-1+3)/2 = (2n-1)(2n+2)/2 = (2n-1)(n+1)\]

\[\Sigma 2n-1 = 2n(n+1)/2 - n = n^2\]

\[\therefore \quad \frac{K(2n-1)}{\sum (2n-1)} = \frac{(2n-1)(n+1)}{n^2} = (2 - \frac{1}{n})(1 + \frac{1}{n})\]

\[\therefore \quad \lim_{n \to \infty} \frac{K(2n-1)}{\sum (2n-1)} = 2\]

\[(iii) \quad \lim_{n \to \infty} \frac{K(2n+1)}{K(2n-1)} = 1\]

\[K(2n+1) = (2n+1)(2n+1+3)/2 = (2n+1)(n+2)\]

\[K(2n-1) = (2n-1)(2n-1+3)/2 = (2n-1)(2n+2)/2 = (2n-1)(n+1)\]

\[\therefore \quad \frac{K(2n+1)}{K(2n-1)} = \frac{(2n+1)(n+2)}{(2n-1)(n+1)}\]

\[\text{OR} \quad \frac{K(2n+1)}{K(2n-1)} = \frac{(2 + \frac{1}{n})(1 + \frac{2}{n})}{(2 - \frac{1}{n})(1 + \frac{1}{n})}\]

\[\therefore \quad \lim_{n \to \infty} \frac{K(2n+1)}{K(2n-1)} = 1\]

\[(iv) \quad \lim_{n \to \infty} \frac{K(2n+2)}{K(2n)} = 1\]

\[K(2n+2) = (2n+2)(2n+2+2)/2 = 2(n+1)(n+2)\]

\[K(2n) = 2n(2n+2)/2 = 2n(n+1)\]

\[\therefore \quad \frac{K(2n+2)}{K(2n)} = \frac{2(n+1)(n+2)}{2n(n+1)}\]

\[\text{OR} \quad \frac{K(2n+2)}{K(2n)} = (1 + \frac{2}{n})\]

\[\therefore \quad \lim_{n \to \infty} \frac{K(2n+2)}{K(2n)} = 1\]
2.9 Additional Properties.

(i) Let C be the continued fraction of the sequence \{\(K(n)\)\}

\[
C = K(1) + \frac{K(2)}{K(3) + \frac{K(4)}{K(5) + \frac{K(6)}{K(7) + \ldots}}}
\]

\[
= K(1) + \frac{K(2)}{K(3) + \frac{K(4)}{K(5) + \frac{K(6)}{K(7) + \ldots}}}\]

The \(n\)th term \(T_n = \frac{K(2n)}{K(2n+1)} = \frac{2n^2 + 2n}{2n^2 + 5n + 2}\)

Hence \(T_n < 1\) for all \(n\) and \(\therefore\) with respect to [3], \(C\) is convergent and \(2 < C < 3\).

(ii) \(K(2^n - 1) + 1\) is a triangular number.

Let \(x = 2n\) then

\[
K(2n-1) + 1 = K(x-1) + 1
\]

\[
= \left\{ (x-1) \frac{(x+2)}{2} \right\} + 1
\]

\[
= \left\{ \frac{x^2 + x}{2} \right\}
\]

\[
= \frac{x(x+1)}{2}\quad \text{which is a triangular number.}
\]

(iii) Fibonacci sequence does not exist in the sequence \{\(K(n)\)\}

(a) If possible then let \(K(n) + K(n+1) = K(n+2)\) for some \(n\) where \(n\) is even.

\[
\therefore n(n+2)/2 + (n+1)(n+4)/2 = (n+2)(n+4)/2
\]

\[
\therefore (n^2 + 2n) + (n^2 + 5n + 4) = n^2 + 6n + 8
\]

\[
\therefore n^2 + n - 4 = 0\quad \text{OR}\quad n = \frac{-1 \pm \sqrt{17}}{2}\quad \text{which is not possible as}\quad n \in \mathbb{N}\]

(b) Let \(K(n) + K(n+1) = K(n+2)\) for some \(n\) where \(n\) is odd.

\[
\therefore n(n+3)/2 + (n+1)(n+3)/2 = (n+2)(n+5)/2
\]

\[
\therefore (n+3)(2n+1) = n^2 + 7n + 10
\]

\[
\therefore n^2 = 7\quad \text{OR}\quad n = \sqrt{7}\quad \text{which is not possible as}\quad n \in \mathbb{N}.
\]

Hence there is no Fibonacci sequence in \{\(K(n)\)\}

Similarly there is no Lucas sequence in \{\(K(n)\)\}
(iv) \(K(n) > \max \{ K(d) \} \): Where \(d \) is a proper divisor of \(n \) and \(n \) is composite.

As \(d \) is a proper divisor of \(n \) \(\therefore d < n \) and as function \(K \) is strictly monotonic increasing hence \(K(d) < K(n) \).

So for each proper divisor \(d \) we have \(K(n) > K(d) \) and hence \(K(n) > \max \{ K(n) \} \)

(v) Palindromes in \(\{ K(n) \} \)

\[K(11) = 77, \quad K(21) = 252, \quad K(29) = 464, \]
\[K(43) = 989, \quad K(64) = 212 \]

are only Palindromes for \(n \leq 100 \).

(vi) Pythagorean Triplet

We know that \((5, 12, 13)\) is a Pythagorean Triplet.

Similarly \((K(5), K(12), K(13))\) is a Linear Triplet because \(K(5) + K(12) = K(13)\).

(vii) \(K(2^n) = 2^n (2^n + 2) / 2 = 2^{2^n - 1} + 2^n \)

\(\therefore K(2^3) = 2^3 + 2^3 = 32 + 8 = 40 \) and \(40 + 1 = 41\) is prime.

Similarly \(K(2^4) = 2^7 + 2^4 = 128 + 16 = 144 \) and \(140 + 1 = 139\) is prime.

Hence it is conjectured that \(K(2^n) - 1 \) or \(K(2^n) + 1 \) is prime.

3.1 To find \(K^{-1} \) when \(n \) is odd

\(\therefore K(n) = n(n + 3) / 2 = t \) (say)

\(\therefore n = K^{-1}(t) \) Also as \(n(n + 3) / 2 = t \)

\(\therefore n = \frac{-3 + \sqrt{9 + 8t}}{2} \) \(\text{OR } K^{-1}(t) = n = \frac{-3 + \sqrt{9 + 8t}}{2} \)

\(\text{OR } K^{-1}(t_r) = \frac{-3 + \sqrt{9 + 8t}}{2} = n_r \)
Note:

(I) In the above expression plus sign is taken to ensure that

\[K^{-1}(t_r) \in N. \]

(II) Also \(K^{-1}(t_r) \in N \) \text{ iff } \sqrt{9 + 8t_r} \text{ is an odd integer.}

and for this \(9 + 8t_r \) should be a perfect square.

From above two observations we get possible values of \(t_r \) as \(2, 9, 20, 35 \) etc...

3.2 Following are some examples of \(K^{-1}(t_r) \)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(t_r)</th>
<th>(K^{-1}(t_r) = n_r)</th>
<th>(q_r = t_r / n_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>104</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

3.3 Following results are obvious.

(i) \(K^{-1}(t_r) = n_r = 2r - 1 \)

(ii) \(t_r = t_{r-1} + (4r - 1) \)

(iii) \(t_r = n_r q_r = (2r - 1) q_r \)

(iv) \(n_r = q_r + (r - 2) \)

(v) \(\Sigma t_r = \Sigma t_{r-1} + r \cdot n_r \)

(vi) Every \(t_{r+1} \) is a triangular number.

(vii) As \(t_r - t_{r-1} = 4r - 1 \)

\(\therefore \) Second difference \(D^2(t_r) = 4r - 1 - [4(r-1) - 1] = 4 \)
3.4 To find K^{-1} when n is even

\[K(n) = \frac{n(n + 2)}{2} = t \quad \text{(say)} \]

\[n = K^{-1}(t) \quad \text{Also as} \quad n(n + 2) / 2 = t \]

\[n = \frac{-2 + \sqrt{4 + 8t}}{2} \quad \text{OR} \quad K^{-1}(t) = n = -1 + \sqrt{1 + 2t} \]

\[\text{OR} \quad K^{-1}(t_r) = -1 + \sqrt{1 + 2t_r} = n_r \]

Note:

(I) In the above expression plus sign is taken to ensure that $K^{-1}(t_r) \in \mathbb{N}$.

(II) Also $K^{-1}(t_r) \in \mathbb{N}$ iff $\sqrt{1 + 2t_r}$ is an odd integer.

And for this first of all $1 + 2t_r$ should be a perfect square of some odd integer.

From above two observations we get possible values of t_r as 4, 12, 24, 40 etc...

3.5 Following are some examples of $K^{-1}(t_r)$.

<table>
<thead>
<tr>
<th>r</th>
<th>t_r</th>
<th>$K^{-1}(t_r) = n_r$</th>
<th>$q_r = t_r / n_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>112</td>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>

3.6 Following results are obvious.

(i) $K^1(t_r) = n_r = 2r$

(ii) $t_r = t_{r-1} + 4r$

(iii) $t_r = n_r q_r = 2r \cdot q_r$

(iv) $n_r = q_r + (r - 1)$

(v) $\Sigma t_r = \Sigma t_{r-1} + (r + 1) \cdot n_r$

(vi) $t_r = n_r [n_r - r + 1]$

(vi) Every t_r is a multiple of 4

(vii) $t_r = 4p$ where p is a triangular number.

(viii) For $r = 8$, $t_r = 144$, $n_r = 16$ and $q_r = 9$. So for $r = 8$; t_r, n_r, and q_r
are all perfect square.

(ix) As \(t_r - t_{r-1} = 4r \)

\[: \text{Second difference } D^2 (t_r) = 4r - [4(r-1)] = 4 \]

3.7 Monoid

Let \(M = \{ K^l(2), K^l(4), K^l(9), K^l(12) \ldots \} \) be the collection of images of \(K^l \) including both even and odd \(n \).

Let \(\cdot \) stands for multiplication. Then \((M, \cdot)\) is a Monoid.

For it satisfies (I) Closure (II) Associativity (III) Identity

Here identity is \(K^{-l}(2) \).

In fact \((M, \cdot)\) is a Commutative Monoid.

As inverse of an element does not exist in \(M \) hence it is not a group.

Coincidently, \(M \) happens to be a cyclic monoid with operation +.

Because \(K^l(9) = [K^l(2)]^3 \)

References :-

 (Journal of Recreational Mathematics 1996, P. 249)

 (Smarandache Notion Journal Vol. 12, 2000, P. 140)

 (Smarandache Notion Journal Vol. 9, 1998, P. 40)
Appendix – [A]

Values of $K(\ n\)$ for $n = 1$ To 100

<table>
<thead>
<tr>
<th>n</th>
<th>Σn</th>
<th>k</th>
<th>$K(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>66</td>
<td>11</td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>78</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>91</td>
<td>13</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>105</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>15</td>
<td>120</td>
<td>15</td>
<td>135</td>
</tr>
<tr>
<td>16</td>
<td>136</td>
<td>8</td>
<td>144</td>
</tr>
<tr>
<td>17</td>
<td>153</td>
<td>17</td>
<td>170</td>
</tr>
<tr>
<td>18</td>
<td>171</td>
<td>9</td>
<td>180</td>
</tr>
<tr>
<td>19</td>
<td>190</td>
<td>19</td>
<td>209</td>
</tr>
<tr>
<td>20</td>
<td>210</td>
<td>10</td>
<td>220</td>
</tr>
<tr>
<td>21</td>
<td>231</td>
<td>21</td>
<td>252</td>
</tr>
<tr>
<td>22</td>
<td>253</td>
<td>11</td>
<td>264</td>
</tr>
<tr>
<td>23</td>
<td>276</td>
<td>23</td>
<td>299</td>
</tr>
<tr>
<td>24</td>
<td>300</td>
<td>12</td>
<td>312</td>
</tr>
<tr>
<td>25</td>
<td>325</td>
<td>25</td>
<td>350</td>
</tr>
<tr>
<td>26</td>
<td>351</td>
<td>13</td>
<td>364</td>
</tr>
<tr>
<td>27</td>
<td>378</td>
<td>27</td>
<td>405</td>
</tr>
<tr>
<td>28</td>
<td>406</td>
<td>14</td>
<td>420</td>
</tr>
<tr>
<td>29</td>
<td>435</td>
<td>29</td>
<td>464</td>
</tr>
<tr>
<td>30</td>
<td>465</td>
<td>15</td>
<td>480</td>
</tr>
<tr>
<td>31</td>
<td>496</td>
<td>31</td>
<td>527</td>
</tr>
<tr>
<td>32</td>
<td>528</td>
<td>16</td>
<td>544</td>
</tr>
<tr>
<td>33</td>
<td>561</td>
<td>33</td>
<td>594</td>
</tr>
<tr>
<td>34</td>
<td>595</td>
<td>17</td>
<td>612</td>
</tr>
<tr>
<td>35</td>
<td>630</td>
<td>35</td>
<td>665</td>
</tr>
<tr>
<td>36</td>
<td>666</td>
<td>18</td>
<td>684</td>
</tr>
<tr>
<td>37</td>
<td>703</td>
<td>37</td>
<td>740</td>
</tr>
<tr>
<td>38</td>
<td>741</td>
<td>19</td>
<td>760</td>
</tr>
<tr>
<td>39</td>
<td>780</td>
<td>39</td>
<td>819</td>
</tr>
<tr>
<td>40</td>
<td>820</td>
<td>20</td>
<td>840</td>
</tr>
<tr>
<td>41</td>
<td>861</td>
<td>41</td>
<td>902</td>
</tr>
<tr>
<td>42</td>
<td>903</td>
<td>21</td>
<td>924</td>
</tr>
<tr>
<td>43</td>
<td>946</td>
<td>43</td>
<td>989</td>
</tr>
<tr>
<td>44</td>
<td>990</td>
<td>22</td>
<td>1012</td>
</tr>
<tr>
<td>45</td>
<td>1035</td>
<td>45</td>
<td>1080</td>
</tr>
<tr>
<td>46</td>
<td>1081</td>
<td>23</td>
<td>1104</td>
</tr>
<tr>
<td>47</td>
<td>1128</td>
<td>47</td>
<td>1175</td>
</tr>
<tr>
<td>48</td>
<td>1176</td>
<td>24</td>
<td>1200</td>
</tr>
<tr>
<td>49</td>
<td>1225</td>
<td>49</td>
<td>1274</td>
</tr>
<tr>
<td>50</td>
<td>1275</td>
<td>25</td>
<td>1300</td>
</tr>
<tr>
<td>n</td>
<td>Σn</td>
<td>k</td>
<td>$K(n)$</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>1326</td>
<td>51</td>
<td>1377</td>
</tr>
<tr>
<td>52</td>
<td>1378</td>
<td>26</td>
<td>1404</td>
</tr>
<tr>
<td>53</td>
<td>1431</td>
<td>53</td>
<td>1484</td>
</tr>
<tr>
<td>54</td>
<td>1485</td>
<td>27</td>
<td>1512</td>
</tr>
<tr>
<td>55</td>
<td>1540</td>
<td>55</td>
<td>1595</td>
</tr>
<tr>
<td>56</td>
<td>1596</td>
<td>28</td>
<td>1624</td>
</tr>
<tr>
<td>57</td>
<td>1653</td>
<td>57</td>
<td>1710</td>
</tr>
<tr>
<td>58</td>
<td>1711</td>
<td>29</td>
<td>1740</td>
</tr>
<tr>
<td>59</td>
<td>1770</td>
<td>59</td>
<td>1829</td>
</tr>
<tr>
<td>60</td>
<td>1830</td>
<td>30</td>
<td>1860</td>
</tr>
<tr>
<td>61</td>
<td>1891</td>
<td>61</td>
<td>1952</td>
</tr>
<tr>
<td>62</td>
<td>1953</td>
<td>31</td>
<td>1984</td>
</tr>
<tr>
<td>63</td>
<td>2016</td>
<td>63</td>
<td>2079</td>
</tr>
<tr>
<td>64</td>
<td>2080</td>
<td>32</td>
<td>2112</td>
</tr>
<tr>
<td>65</td>
<td>2145</td>
<td>65</td>
<td>2210</td>
</tr>
<tr>
<td>66</td>
<td>2211</td>
<td>33</td>
<td>2244</td>
</tr>
<tr>
<td>67</td>
<td>2278</td>
<td>67</td>
<td>2345</td>
</tr>
<tr>
<td>68</td>
<td>2346</td>
<td>34</td>
<td>2380</td>
</tr>
<tr>
<td>69</td>
<td>2415</td>
<td>69</td>
<td>2484</td>
</tr>
<tr>
<td>70</td>
<td>2485</td>
<td>35</td>
<td>2520</td>
</tr>
<tr>
<td>71</td>
<td>2556</td>
<td>71</td>
<td>2627</td>
</tr>
<tr>
<td>72</td>
<td>2628</td>
<td>36</td>
<td>2664</td>
</tr>
<tr>
<td>73</td>
<td>2701</td>
<td>73</td>
<td>2774</td>
</tr>
<tr>
<td>74</td>
<td>2775</td>
<td>37</td>
<td>2812</td>
</tr>
<tr>
<td>75</td>
<td>2850</td>
<td>75</td>
<td>2925</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>Σn</th>
<th>k</th>
<th>$K(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>2926</td>
<td>38</td>
<td>2964</td>
</tr>
<tr>
<td>77</td>
<td>3003</td>
<td>77</td>
<td>3080</td>
</tr>
<tr>
<td>78</td>
<td>3081</td>
<td>39</td>
<td>3120</td>
</tr>
<tr>
<td>79</td>
<td>3160</td>
<td>79</td>
<td>3239</td>
</tr>
<tr>
<td>80</td>
<td>3240</td>
<td>40</td>
<td>3280</td>
</tr>
<tr>
<td>81</td>
<td>3321</td>
<td>81</td>
<td>3402</td>
</tr>
<tr>
<td>82</td>
<td>3403</td>
<td>41</td>
<td>3444</td>
</tr>
<tr>
<td>83</td>
<td>3486</td>
<td>83</td>
<td>3569</td>
</tr>
<tr>
<td>84</td>
<td>3570</td>
<td>42</td>
<td>3612</td>
</tr>
<tr>
<td>85</td>
<td>3655</td>
<td>85</td>
<td>3740</td>
</tr>
<tr>
<td>86</td>
<td>3741</td>
<td>43</td>
<td>3784</td>
</tr>
<tr>
<td>87</td>
<td>3828</td>
<td>87</td>
<td>3915</td>
</tr>
<tr>
<td>88</td>
<td>3916</td>
<td>44</td>
<td>3960</td>
</tr>
<tr>
<td>89</td>
<td>4005</td>
<td>89</td>
<td>4094</td>
</tr>
<tr>
<td>90</td>
<td>4095</td>
<td>45</td>
<td>4140</td>
</tr>
<tr>
<td>91</td>
<td>4186</td>
<td>91</td>
<td>4277</td>
</tr>
<tr>
<td>92</td>
<td>4278</td>
<td>46</td>
<td>4324</td>
</tr>
<tr>
<td>93</td>
<td>4371</td>
<td>93</td>
<td>4464</td>
</tr>
<tr>
<td>94</td>
<td>4465</td>
<td>47</td>
<td>4512</td>
</tr>
<tr>
<td>95</td>
<td>4560</td>
<td>95</td>
<td>4655</td>
</tr>
<tr>
<td>96</td>
<td>4656</td>
<td>48</td>
<td>4704</td>
</tr>
<tr>
<td>97</td>
<td>4753</td>
<td>97</td>
<td>4850</td>
</tr>
<tr>
<td>98</td>
<td>4851</td>
<td>49</td>
<td>4900</td>
</tr>
<tr>
<td>99</td>
<td>4950</td>
<td>99</td>
<td>5049</td>
</tr>
<tr>
<td>100</td>
<td>5050</td>
<td>50</td>
<td>5100</td>
</tr>
</tbody>
</table>