NUMERICAL FUNCTIONS AND TRIPLETS

I. Bălăcenoiu, D. Bordea, V. Seleacu

We consider the functions: \(f_s, f_d, f_p, F : \mathbb{N}^* \to \mathbb{N} \), where
\(f_s(k) = n, f_d(k) = n, f_p(k) = n, F(k) = n \), \(n \) being, respectively, the least natural number such that \(k/n! - 1, k/n! + 1, k/n! \pm 1, k/n! \) or \(k/n! \pm 1 \).

This functions have the next properties:

1. Obviously, from definition of this function, it results:

\[F(k) = \min\{S(k), f_p(k)\} = \min\{S(k), f_s(k), f_d(k)\} \]

where \(S \) is the Smarandache function (see [3]).

2. \(F(k) \leq S(k), F(k) \leq f_s(k), F(k) \leq f_d(k), F(k) \leq f_p(k) \)

3. \(F(k) = S(k) \) if \(k \) is even, \(k \geq 4 \).

Proof. For any \(n \in \mathbb{N}, n \geq 2, n! \) is even, \(n! \pm 1 \) are odd. If \(k \) is even, then \(k \) cannot divide \(n! \pm 1 \). So \(F(k) = S(k) = n \geq 2 \) if \(k \) is even, \(k \geq 4 \).

4. If \(p > 3 \) is prime number, then \(F(p) \leq p - 2 \).

Proof. According to Wilson's theorem \((p - 1)! + 1 = M_p \). Because \((p - 2)! - 1 + (p - 1)! + 1 = (p - 2)!p \) results for \(p > 3 \), \((p - 2)! - 1 = M_p \) and so \(F(p) \leq p - 2 \).

5. \(F(m!) = F(m! \pm 1) = S(m!) = m \).

6. The equation \(F(k) = F(k + 1) \) has infinitely many solutions, because, according to the property 5), there is the solutions \(k = m! \), \(m \in \mathbb{N}^* \).
7. If \(F(k) = S(k) \) and \(n \) is the least natural number such that \(k/n! \), then
\(k \) not divide \(s! \pm 1 \) for \(s < n \).
Let \(k = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_r^{a_r} \). According to \(S(k) = \max \{ S_{p_i}(\alpha_i) \} \), it results
that \(S(k) \geq p_h \), where \(p_h = \min \{ p_1, p_2, \ldots, p_r \} \).
If \(k \) not divide \(s! \pm 1 \) for \(s \leq p_h \), then \(k \) not divide \(t! \pm 1 \) for \(t > p_h \).
Consequently, if \(k \) not divide \((n - 1)! \), \(k/n! \) and \(k \) not divide \(s! \pm 1 \) for
\(s \leq \min \{ n, p_h \} \), then \(F(k) = S(k) = n \).
Obviously, the numbers \(k = 3t \), \(t \) being odd, \(t \neq 1 \), have \(p_h = 3 \) and
they satisfy the condition \(3t \) not divide \(s! \pm 1 \) for \(s = 1, 2, 3 \).
Therefore, for \(k = 3t \), \(t \) odd, \(t \neq 1 \), \(F(3t) = S(3t) = n \), \(n \) being the
least natural number such that \(3t/n! \).

8. The partition “bai” of the odd numbers.

Let \(A = \{ k \in \mathbb{N} | k \) odd and \(F(k) = S(k) \} \)
\(B = \{ k \in \mathbb{N} | k \) odd and \(F(k) < S(k) \} \)

\((A, B)\) is the partition “bai” of the odd numbers.
Into \(A \) there are numbers \(k = 3t \), \(t \) odd, \(t \neq 1 \). Obviously, \(A \) has
infinitely many elements.
Into \(B \) there are numbers \(k = t! \pm 1 \) with \(t \geq 3 \), \(t \in \mathbb{N} \). Obviously, \(B \)
has infinitely many elements.

Definition 1 Let \(n \in \mathbb{N}^* \). We called triplet \(\hat{n} \), the set:
\(n - 1, n, n + 1 \).

Definition 2 Let \(k < n \). The triplets \(\hat{k}, \hat{n} \) are separated if
\(k + 1 < n - 1 \), i.e. \(n - k > 2 \).

Definition 3 The triplets \(\hat{k}, \hat{n} \) are \(l_* \)-relatively prime if
\((k - 1, n - 1) = 1 \), \((k + 1, n + 1) \neq 1 \).

For example: \(6 \) and \(72 \) are \(l_* \)-relatively prime.

Definition 4 The triplets \(\hat{k}, \hat{n} \) are \(l_4 \)-relatively prime if
\((k - 1, n - 1) \neq 1 \), \((k + 1, n + 1) = 1 \).

Definition 5 The triplets \(\hat{k}, \hat{n} \) are \(l \)-relatively prime if
\((k - 1, n - 1) = 1 \), \((k + 1, n + 1) = 1 \).
Definition 6 The triplets \hat{k}, \hat{n} are d-relatively prime if

$$(k - 1, n + 1) = 1, (k + 1, n - 1) = 1.$$

For example: $\hat{2}$ and $\hat{6}$ are d-relatively prime.

Definition 7 Let $k < n$. The triplets \hat{k}, \hat{n} are d_s-relatively prime if

$$(k - 1, n + 1) = 1, (k + 1, n - 1) \neq 1.$$

For example: $\hat{6}$ and $\hat{120}$ are d_s-relatively prime.

Definition 8 Let $k < n$. The triplets \hat{k}, \hat{n} are d_d-relatively prime if

$$(k - 1, n + 1) = 1, (k + 1, n - 1) = 1.$$

Example: $\hat{6}$ and $\hat{24}$ are d_d-relatively prime.

Definition 9 The triplets \hat{k}, \hat{n} are p-relatively prime if

$$(k - 1, n - 1) = 1, (k - 1, n + 1) = 1, (k + 1, n - 1) = 1, (k + 1, n + 1) = 1.$$

Obviously, if \hat{k}, \hat{n} are p-relatively prime, then they are l and d-relatively prime.

For example: $\hat{24}$ and $\hat{120}$ are p-relatively prime.

Definition 10 Let $k < n$. The triplets \hat{k}, \hat{n} are F-relatively prime if

$$(k - 1, n - 1) = 1, (k + 1, n - 1) = 1,$$

$$(k - 1, n) = 1, (k + 1, n) = 1,$$

$$(k - 1, n + 1) = 1, (k + 1, n + 1) = 1.$$

Definition 11 The triplets \hat{k}, \hat{n} are t-relatively prime if

$$(k - 1, n - 1) \cdot (k - 1, n) \cdot (k - 1, n + 1) \cdot (k, n - 1) \cdot (k, n) \cdot (k, n + 1) \cdot (k + 1, n - 1) \cdot (k + 1, n + 1) = 6.$$

For example: $\hat{2}$ and $\hat{4}$ and t-relatively prime.

Definition 12 Let $H \subset \mathbb{N}^*$. The triplet \hat{n}, $n \in H$ is, respectively, l_s, l_d, l, d, d_s, d_d, p, F, t-prime concerned at H, if $\forall s \in H$, $s < n$, the triplets \hat{s}, \hat{n} are, respectively, l_s, l_d, l, d, d_s, d_d, p, F, t-relatively prime.

Let $H = \{n!|n \in \mathbb{N}^*\}$. For the triplets \hat{m}, $m \in H$ there are particular properties.

Proposition 1 Let $k < n$. The triplets $\hat{(k!)}$, $\hat{(n!)}$ are separated if

$n > \max\{2, k\}$.

167
Proof. Obviously, \(n! - k! > 2 \) if \(n > 2 \) and \(k < n \), i.e. \(n > \max\{2, k\} \).

Proposition 2 Let \(n > \max\{2, k\} \) and \(M_{kn} = \{m \in \mathbb{N}|k!+1 < m < n!-1\} \). If \(k_1 < k_2 \) and \(n_1 > \max\{2, k_1\} \), \(n_2 > \max\{2, k_2\} \), then \(n_1 - k_1 \leq n_2 - k_2 \Rightarrow \text{card}M_{k_1n_1} < \text{card}M_{k_2n_2} \).

Proof. For \(n > k \geq 2 \) it is true that
\[
n! - (n - 1)! > k! - (k - 1)! \tag{1}
\]
Let \(n > k \geq 2, 1 \leq s \leq k \). Using (1) we can write:
\[
n! - (n - 1)! > k! - (k - 1)!
(n - 1)! - (n - 2)! > (k - 1)! - (k - 2)!
\]
By summing this inequalities, it results:
\[
n! - (n - s)! > k! - (k - s)! \tag{2}
\]
Let \(2 \leq k_1 < n_1, 2 \leq k_2 < n_2, k_1 < k_2, n_1 - k_1 \leq n_2 - k_2 \). Then \(n_2 - n_1 \geq k_2 - k_1 \geq 1 \) and there is \(n_3 \) such that \(n_2 > n_3 \geq n_1 \) and \(n_2 - n_3 = k_2 - k_1 \).
Using (2) we can write:
\[
n_2! - n_3! > k_2! - k_1!
\]
Since \(n_3! \geq n_1! \) we have:
\[
n_2! - n_1! > k_2! - k_1! \tag{3}
\]
According to \(\text{card}M_{k_1n_1} = n_1! - 1 - (k_1! + 1) \), \(\text{card}M_{k_2n_2} = n_2! - 1 - (k_2! + 1) \), it results that:
\[
\text{card}M_{k_2n_2} - \text{card}M_{k_1n_1} = n_2! - n_1! - (k_2! - k_1!)
\]
That is, taking into account (3), \(\text{card}M_{k_1n_1} < \text{card}M_{k_2n_2} \).

Definition 13 Let \(k < n \). The triplets \((k!)\), \((n!)\) are linked if \(k! - 1 = n \) or \(k! + 1 = n \).

Proposition 3 For \(k \in \mathbb{N}^* \) there is \(p \) prime number, such that for any \(s \geq p \) the triplets \((k!)\), \((s!)\) are not \(F \)-relatively prime.
Proof. Obviously, for \(k = 1 \) and \(k = 2 \), the proposition is true.

If \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r} \) divide \(k! - 1 \) or \(k! + 1 \), then \(p_j > k \geq 3 \), for \(j \in \{1, 2, \ldots, i\} \).

Let \(\bar{n} = p_1 \cdot p_2 \cdots p_l \) and \(p = \max\{p_j\} \).

Obviously, \(\bar{n} \geq 3 \) because \(p > k \geq 3 \), \(\bar{n}/k! - 1 \) or \(\bar{n}/k! + 1 \).

For any \(s \geq p \), \(\bar{n}/s! \) and so, the triplets \((k!),(\bar{n}) \) are not \(F \)-relatively prime.

Remark 1 i) Let \(k < n \). If \((k!), (\bar{n})\) are linked, then \(n - k = k! - k \pm 1 \).

If \(2 < k_1 < n_1 \), \((k_1!)(\bar{n}_1!\) are linked and \(k_2 < n_2 \), \((k_2!)(\bar{n}_2!\) are linked, then \(k_1 < k_2 \Rightarrow n_1 - k_1 < n_2 - k_2 \) and in view of the proposition 2, results \(\text{card}M_{n_1,n_1} < \text{card}M_{n_2,n_2} \).

ii) There are twin prime numbers with the triplet \((\bar{n})\). For example 5 with 7 are from \((3!)\).

Definition 14 Considering the canonical decomposition of natural numbers \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r} \), we define \(\bar{n} = \{p_1^{a_1}, p_2^{a_2}, \ldots, p_r^{a_r}\} \),

\(M = \{\bar{n}|n \in \mathbb{N}^*\} \).

Definition 15 On \(M \) we consider the relation of order \(\sqsubseteq \) defined by:

\[\{p_1^{a_1}, p_2^{a_2}, \ldots, p_r^{a_r}\} \sqsubseteq \{q_1^{b_1}, q_2^{b_2}, \ldots, q_t^{b_t}\} \]

if and only if \(\{p_1, p_2, \ldots, p_r\} \sqsubseteq \{q_1, q_2, \ldots, q_t\} \) and if \(p_i = q_j \), then \(\alpha_i \leq \beta_j \).

Remark 2 For any triplet \((\bar{n})\), \(n \in \mathbb{N}^* \), we consider the sets:

\(A_n = \{k \in \mathbb{N}^*|k \sqsubseteq \bar{n}\} \), \(A^*_n = \{k \in A_n|k \not\sqsubseteq A_h \text{ for } h < n\} \)

\(B_n = \{k \in \mathbb{N}^*|k \subseteq n! - 1\} \), \(B^*_n = \{k \in B_n|k \not\subseteq B_h \text{ for } h < n\} \)

\(C_n = \{k \in \mathbb{N}^*|k \subseteq n! + 1\} \), \(C^*_n = \{k \in C_n|k \not\subseteq C_h \text{ for } h < n\} \)

\(M_n = \{k \in \mathbb{N}^*|k \subseteq \bar{n}! \text{ or } k \subseteq n! - 1 \text{ or } k \subseteq n! + 1\} \)

\(M^*_n = \{k \in M_n|k \not\subseteq M_h \text{ for } h < n\} \).

It is obvious that:

\(A^*_n = S^{-1}(n) \), \(B^*_n = f_s^{-1}(n) \), \(C^*_n = f_d^{-1}(n) \), \(M^*_n = F^{-1}(n) \).

If \(k \in A^*_n \), it is said that \(k \) has a factorial signature which is equivalent with the factorial signature of \(n! \) (see [1])

Let \(k \in B^*_n \), \(k = t_1^{i_1} \cdot t_2^{i_2} \cdots t_i^{i_i} \). Then \(\{t_r\} \not\subseteq \bar{n}! \) for \(r = 1, i \) and for any \(h < n \), there are \(t_j^i \), \(1 \leq j \leq i \), such that \(\{t_j^i\} \not\subseteq h! - 1 \).

Similarly, for \(k \in C^*_n : \{t_r\} \not\subseteq \bar{n}! \) for \(r = 1, i \) and for any \(h < n \), there are \(t_j^i \), \(1 \leq j \leq i \), such that \(\{t_j^i\} \not\subseteq h! + 1 \).
References

Current address:
Department of Mathematics, University of Craiova
13, Al. I. Cuza st., Craiova 1100, Romania