On a problem concerning the Smarandache friendly prime pairs

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract

In this paper a question posed in [1] and concerning the Smarandache friendly prime pairs is analysed.

Introduction

In [1] the Smarandache friendly prime pairs are defined as those prime pairs (p,q) such that:

\[\sum_{x=p}^{q} x = p \cdot q \] \hspace{1cm} (1)

where x denote the primes between p and q. In other words the Smarandache friendly prime pairs are the pairs (p,q) such that the sum of the primes between p and q is equal to the product of p and q.

As example let's consider the pair (2,5). In this case 2 + 3 + 5 = 2 \cdot 5 and then 2 and 5 are friendly primes. The other three pairs given in the mentioned paper are: (3,13), (5,31) and (7,53). Then the following open questions have been posed:

Are there infinitely many friendly prime pairs?

Is there for every prime p a prime q such that (p,q) is a Smarandache friendly prime pair?

In this paper we analyse the last question and a shortcut to explore the first conjecture is reported.
Results

First of all let's analyse the case \(p=11 \). Let's indicate:

\[
f(11, q) = \sum_{x=11}^{q} x \quad \text{and} \quad g(11, q) = 11 \cdot q
\]

where \(x \) denotes always the primes between 11 and \(q \).

A computer program with Ubasic software package has been written to calculate the difference between \(g(11, q) \) and \(f(11, q) \) for the 164 primes \(q \) subsequent to 11. Here below the trend of that difference.

![Graph 1](image1)

![Graph 2](image2)
As we can see the difference starts to increase, arrives to a maximum and then starts to decrease and once pass the x axis decrease in average linearly. The same thing is true for all the other primes p.

So for every prime p the search of its friend q can be performed up to:

\[g(p, q) - f(p, q) \leq -M \]

where M is a positive constant.

For the first 1000 primes M has been choosen equal to \(10^5\).

No further friendly prime pair besides those reported in [1] has been found. According to those experimental results we are enough confident to pose the following conjecture:

Not all the primes have a friend, that is there are prime p such that there isn't a prime q such that the (1) is true.

Moreover a furter check of friendly prime pairs for all primes larger than 1000 and smaller than 10000 has been performed selecting M=1000000.

No further friendly prime pair has been found. Those results seem to point out that the number of friendly prime pairs is finite.

Question:

Are (2,5), (3,13), (5,31) and (7,53) the only Smarandache friendly prime pairs?

References.