ON THE SMARANDACHE N-ARY SIEVE

Maohua Le

Department of Mathematics, Zhanjiang Normal College
Zhanjiang, Guangdong, P.R. China.

Abstract. Let n be a positive integer with $n > 1$. In this paper we prove that the remaining sequence of Smarandache n-ary sieve contains infinitely many composite numbers.

Let n be a positive integer with $n > 1$. Let S_n denote the sequence of Smarandache n-ary sieve (see [1, Notions 29-31]). For example:

$S_2 = \{1, 3, 5, 9, 11, 13, 17, 21, 25, 27, ... \}$,

$S_3 = \{1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, ... \}$

In [1], Dumitrescu and Seleacu conjectured that S_n contains infinitely many composite numbers. In this paper we verify the above conjecture as follows:

Theorem. For any positive integer n with $n > 1$,

S_n contains infinitely many composite numbers.

Proof. By the definition of Smarandache n-ary sieve
(see [1, Notions 29-31]), the sequence S_n contains the numbers $n^k + 1$ for any positive integer k. If k is an odd integer with $k > 1$, then we have

$$n^k + 1 = (n+1)(n^{k-1} - n^{k-2} + ... + 1).$$

We see from (1) that $(n + 1)| (n^k + 1)$ and $n^k + 1$ is a composite number. Notice that there exist infinitely many odd integers k with $k > 1$. Thus, S_n contains infinitely many composite numbers $n^k + 1$. The theorem is proved.

References.