ON THE SUMATORY FUNCTION ASSOCIATED TO

THE SMARANDACHE FUNCTION

E. Radescu, N. Radescu, C. Dumitrescu

It is said that for every numerical function \(f \) it can be attached the sumatory function:

\[
F(n) = \sum_{d \mid n} f(d)
\]

The function \(f \) is expressed as:

\[
f(n) = \sum_{\mu(v) \cdot F(v)} \mu(u)
\]

Where \(\mu \) is the Möbius function \((\mu(1) = 1, \mu(n) = 0 \text{ if } n \text{ is divisible by the square of a prime number, } \mu(n) = (-1)^k \text{ if } n \text{ is the product of } k \text{ different prime numbers}) \)

If \(f \) is the Smarandache function and \(n = p^a \) then:

\[
F_s(p^a) = \sum_{j=1}^{a} S(p^j)
\]

In [2] it is proved that

\[
S(p^j) = p - 1 \cdot j - \alpha_{p_1}(j)
\]

where \(\alpha_{p_1}(j) \) is the sum of the digits of the integer \(j \), written in the generalised scale

\[
[p] = a_1(p), a_2(p), \ldots, a_\chi(p), \ldots
\]

with \(a_\chi(p) = (p^n - 1)/(p - 1) \)

So

\[
F_s(p^a) = \sum_{j=1}^{a} S(p^j) = (p - 1) \frac{a(a + 1)}{2} + \sum_{j=1}^{a} \alpha_{p_1}(j)
\]

Using the expression of \(\alpha \) given by (3) it results

\[
(a + 1)(S(p^a) - \alpha_{p_1}(a)) = 2(F_s(p^a) - \sum_{j=1}^{a} \alpha_{p_1}(j))
\]

17
In the following we give an algorithm to calculate the sum in the right hand of (4). For this, let \(a_{i} = k_{s} \cdot k_{s-1} \cdot \ldots \cdot k_{t} \) the expression of \(a \) in the scale \([p]\) and \(j_{i} = k_{s} \cdot k_{s-1} \cdot \ldots \cdot k_{t} \). We shall say that \(i \) are the digits of order \(i \), for \(j = 1, 2, \ldots, \alpha \).

To calculate the sum of all the digits of order \(i \), let \(\omega_{i} = \alpha - a_{i} + 1 \).

Now we consider two cases:

(i) if \(k_{i} \neq 0 \), let:

\[
z_{i}(a) = (k_{s} \cdot k_{s-1} \cdots k_{t})_{\alpha \cap (p)}; \text{ the equality } u = a_{i}(p) \text{ denoting that for the number written between parantheses, the classe of units is } a_{i}(p).
\]

Then \(z_{i}(a) \) is the number of all zeros of order \(i \) for the integers \(j \leq \alpha \) and \(\omega_{i} = \omega_{i}(a) - z_{i}(a) \) is the number of the non-null digits.

(ii) if \(k_{i} = 0 \), let \(\beta \) the greatest number, less than \(\alpha \), having a non-null digit of order \(i \). Then \(\beta \) is of the form:

\[
\beta_{(p)} = k_{s} \cdot k_{s-1} \cdots k_{t-1} \cdot (k_{t-1} - 1)p00 \ldots 0
\]

and of course \(s_{i}(\alpha) = s_{i}(\beta) \). It results that there exist \(a_{i}(\beta) \) non-null digits of order \(i \).

Let \(A_{i}, B_{i}, R_{i}, P_{i} \) given by equalities:

\[
A_{i} = a_{i}((p - 1)a_{i}(p) + 1) + R_{i} = a_{i}(a_{i}(p) - a_{i}(p)) + R_{i};
\]

\[
R_{i} = B_{i}a_{i}(p) + P_{i}.
\]

Then

\[
s_{i}(a) = A_{i}a_{i}(p) \frac{p(p - 1)}{z} - A_{i}p + a_{i}(p) \frac{p(p - 1)}{z} + P_{i}(B_{i} + 1)
\]

and

\[
\sum_{p, j = 1}^{\alpha} s_{i}(a) = \sum_{i = 1}^{\alpha} A_{i}a_{i}(p) + p \sum_{i = 1}^{\alpha} A_{i} + \frac{1}{z} \sum_{i = 1}^{\alpha} A_{i}a_{i}(p)B_{i}(B_{i} + 1) + \sum_{i = 1}^{\alpha} A_{i}(B_{i} + 1)
\]

For example if \(\alpha = 149 \) and \(p = 3 \) it results:

\[
[3] 1, 4, 13, 40, 121, \ldots
\]
\[x_{10} = 10202 \, , \, \nu_1(\alpha) = (1020)_{\alpha_1(3)} = 48 \, , \, \alpha_1 = \nu_1(\alpha) - x_1(\alpha) = 101 \]

For \(\beta_{10} = 10130 = 146 \) it results \(\nu_2(\beta) = 143 \), \(z_2(\beta) = \)
\((101)_{\alpha_2(3)} = u_3 + u = 3u_2 + 1 + u = 3(3u + 1) + 1 + u = 44 \)
\(x_2 = 99 \, , \, \nu_3(\alpha) = 137 \, , \, z_3(\alpha) = (10)_{\alpha_3(3)} = 40 \, , \, \alpha_3 = 97 \).

For \(\beta_{30} = 3000 = 120 \) it results \(\nu_3(\beta) = 81 \), \(z_4(\beta) = 0 \), \(\alpha_4 = 108 \).

\(\nu_3(\alpha) = 29 \), \(z_5(\alpha) = 0 \), \(\alpha_5 = 29 \), and

\[A_1 = \left[\frac{\alpha_1}{x_2 - 3} \right] = 33 \, , \, B_1 = \left[\frac{2}{\alpha_1} \right] \, , \, \beta_1 = 0 \, , \, s_1 = 201 \]

Analogously \(s_2 = 165 \, , \, s_3 = 145 \, , \, s_4 = 123 \) and \(s_5 = 129 \), so
\[\sum_{i=1}^{149} \alpha_1(i) = 633 \, , \, F_s(3^{149}) = 22983 \, . \]

Now let us consider \(n = P_1P_2 \ldots P_k \), with \(p_1 < P_2 < \ldots < P_k \) prime numbers. Of course, \(S(n) = p_k \) and from
\[F_s(1) = S(1) = 0 \]
\[F_s(P_1) = S(1) + S(P_1) = p_1 \]
\[F_s(P_1P_2) = P_1 + 2P_2 = F(P_1) + 2P_2 \]
\[F_s(P_1P_2P_3) = P_1 + 2P_2 + 2^2P_3 = F(P_1P_2) + 2^2P_3 \]

it results:
\[F_s(P_1P_2 \ldots P_k) = F(P_1P_2 \ldots P_{k-1}) + 2^{k-1}P_k \]

That is:
\[F(P_1P_2 \ldots P_k) = \sum_{i=1}^{k} 2^{i-1}P_i \]

The equality (2) becomes:
\[P_k = S(n) = \sum_{n \neq n} \mu(n) F_s(v) = \]
\[= F(n) - \sum_{i=1}^{k} F(\frac{n}{P_i}) + \sum_{i,j} F(\frac{n}{P_iP_j}) + \ldots + \sum_{i=1}^{k} F(P_i) \]

and became \(F(p_i) = p_i \), it results:

19
\[F(\frac{n}{p_i}) = F(p_i \cdot p_2 \cdots p_{i-1} \cdot p_{i+1} \cdots p_k) = \sum_{j=1}^{i-1} 2^{-j} p_j + \sum_{j=i+1}^{k} 2^{-j} p_j = F(p_i \cdot p_2 \cdots p_{i-1}) + 2^{-i} F(p_{i+1} \cdot p_{i+2} \cdots p_k).\]

Analogously,
\[F(\frac{n}{p_i \cdot p_j}) = F(p_i \cdot p_2 \cdots p_{i-1} \cdot p_{j+1} \cdots p_k) + 2^{-i} F(p_{i+1} \cdot p_{i+2} \cdots p_k).\]

Finally, we point out as an open problem that, by the Shapiro's theorem, if it exist a numerical function \(g : \mathbb{N} \rightarrow \mathbb{R} \) such that
\[g(n) = \sum_{d \mid n} p(n) S(\frac{n}{d}) \]
were \(p \) is a totally multiplicative function and \(p(1) = 1 \), then
\[S(n) = \sum_{d \mid n} \mu(d) P(d) g(\frac{n}{d}) \]

REFERENCES

Current address: University of Craiova, Department of Mathematics, Str. A. I. Cuza, Nr. 13, Craiova {1100}, Romania.