PROPOSED PROBLEM (3)

Let \(\eta(n) \) be Smarandache Function: the smallest integer \(m \) such that \(m! \) is divisible by \(n \). Calculate \(\eta(p^{p+1}) \), where \(p \) is an odd prime number.

Solution.

The answer is \(p^2 \), because:

\[p^2! = 1 \cdot 2 \cdot \ldots \cdot p \cdot \ldots \cdot (2p) \cdot \ldots \cdot ((p-1)p) \cdot \ldots \cdot (pp), \]

which is divisible by \(p^{p+1} \).

Any another number less than \(p^2 \) will have the property that its factorial is divisible by \(p^k \), with \(k < p + 1 \), but not divisible by \(p^{p+1} \).