SMARANDACHE FUNCTIONS OF THE SECOND KIND

by Ion Bălăcenoiu and Constantin Dumitrescu

Departament of Mathematics, University of Craiova Craiova (1100), Romania

The Smarandache functions of the second kind are defined in [1] thus:

$$S^k: \mathbb{N}^* \to \mathbb{N}^*, \quad S^k(n) = S_n(k) \text{ for } n \in \mathbb{N}^*,$$

where S_n are the Smarandache functions of the first kind (see [3]).

We remark that the function S^1 has been defined in [4] by F. Smarandache because $S^1 = S$.

Let, for example, the following table with the values of S^2 :

Obviously, these functions S^k aren't monotony, aren't periodical and they have fixed points.

1. Theorem. For $k, n \in \mathbb{N}^*$ is true $S^k(n) \leq n \cdot k$.

Proof Let
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$$
 and $S(n) = \max_{1 \le i \le t} \{ S_{p_i}(\alpha_i) \} = S(p_j^{\alpha_j}).$

Because $S^k(n) = S(n^k) = \max_{1 \le i \le l} \left\{ S_{p_i}(\alpha_i k) \right\} = S(p_r^{\alpha_r k}) \le kS(p_r^{\alpha_r}) \le kS(p_j^{\alpha_j}) = kS(n)$ and $S(n) \le n$, [see [3]], it results:

(1)
$$S^k(n) \le n \cdot k$$
 for every $n, k \in \mathbb{N}^*$.

2. Theorem. All prime numbers $p \ge 5$ are maximal points for S^k , and

$$S^{k}(p) = p[k - i_{p}(k)], \text{ where } 0 \le i_{p}(k) \le \left\lceil \frac{k-1}{p} \right\rceil$$

Proof. Let $p \ge 5$ be a prime number. Because $S_{p-1}(k) < S_p(k)$, $S_{p+1}(k) < S_p(k)$ [see [2]] it results that $S^k(p-1) < S^k(p)$ and $S^k(p+1) < S^k(p)$, so that $S^k(p)$ is a relative maximum value.

Obviously,

(2)
$$S^{k}(p) = S_{p}(k) = p[k - i_{p}(k)]$$
 with $0 \le i_{p}(k) \le \left[\frac{k-1}{p}\right]$

(3)
$$S^k(p) = pk \text{ for } p \ge k$$
.

3. Theorem. The numbers kp, for p prime and p > k are the fixed points of S^k .

Proof. Let p be a prime number, $m = p_1^{\alpha_1} \dots p_t^{\alpha_t}$ be the prime factorization of m and $p > \max\{m, k\}$. Then $p_i \alpha_i \le p_i^{\alpha_i} < p$ for $i \in \overline{1, t}$, therefore we have:

$$S^{k}(m \cdot p) = S[(mp)^{k}] = \max_{1 \le i \le k} \left\{ S_{p_{i}^{\alpha_{i}}}, S_{p}(k) \right\} = S_{p}(k) = kp.$$

For m=k we obtain:

 $S^k(kp) = kp$ so that kp is a fixed point.

4. Theorem. The functions S^k have the following properties:

$$S^k = 0 \ (n^{1+\varepsilon}), \text{ for } \varepsilon > 0$$

$$\lim_{n\to\infty}\sup\frac{S^k(n)}{n}=k.$$

Proof. Obviously,

$$0 \le \lim_{n \to \infty} \frac{S^{k}(n)}{n^{1+\varepsilon}} = \lim_{n \to \infty} \frac{S(n^{k})}{n^{1+\varepsilon}} \le \lim_{n \to \infty} \frac{kS(n)}{n^{1+\varepsilon}} = k \lim_{n \to \infty} \frac{S(n)}{n^{1+\varepsilon}} = 0 \quad \text{for}$$

$$S = 0 \ (n^{1+\varepsilon}), \quad [\sec[4]].$$

Therefore we have $S^k = 0$ (n^{1+s}) , and:

$$\lim_{n\to\infty}\sup\frac{S^k(n)}{n}=\lim_{n\to\infty}\sup\frac{S(n^k)}{n}=\lim_{\substack{p\to\infty\\p\to\infty}}\frac{S(p^k)}{p}=k$$

5. Theorem, [see[1]]. The Smarandache functions of the second kind standardise $(\mathbf{N}^{\bullet}, \cdot)$ in $(\mathbf{N}^{\bullet}, \leq, +)$ by:

$$\sum_{3} \max \{ S^{k}(a), S^{k}(b) \} \le S^{k}(ab) \le S^{k}(a) + S^{k}(b)$$

and (N^{\bullet}, \cdot) in $(N^{\bullet}, \leq, \cdot)$ by:

$$\sum_{k} \max \left\{ S^{k}(a), S^{k}(b) \right\} \leq S^{k}(ab) \leq S^{k}(a) \cdot S^{k}(b)$$
 for every $a, b \in \mathbb{N}^{*}$

6. Theorem. The functions S^k are, generally speaking, increasing. It means that:

$$\forall n \in \mathbb{N}^* \ \exists m_0 \in \mathbb{N}^* \ so \ that \ \forall m \ge m_0 \implies S^k(m) \ge S^k(n)$$

Proof. The Smarandache function is generally increasing, [see [4]], it means that :

$$\exists t \in \mathbf{N}^{\bullet} \quad \exists r_0(t) \in \mathbf{N}^{\bullet} \text{ so that } \forall r \ge r_0 \implies S(r) \ge S(t)$$

Let $t = n^k$ and $r_0 = r_0(t)$ so that $\forall r \geq r_0 \Rightarrow S(r) \geq S(n^k)$. Let $m_0 = \left[\sqrt[k]{r_0} \right] + 1$. Obviously $m_0 \geq \sqrt[k]{r_0} \Leftrightarrow m_0^k \geq r_0$ and $m \geq m_0 \Leftrightarrow m^k \geq m_0^k$. Because $m^k \geq m_0^k \geq r_0$ it results $S(m^k) \geq S(n^k)$ or $S^k(m) \geq S^k(n)$. Therefore

$$\forall n \in \mathbb{N}^* \quad \exists m_0 = \left[\sqrt[k]{r_0}\right] + 1 \quad \text{so that}$$

$$\forall m \ge m_0 \implies S^k(m) \ge S^k(n) \quad \text{where} \quad r_0 = r_0(n^k)$$

is given from (3).

7. Theorem. The function S^k has its relative minimum values for every n = p!, where p is a prime number and $p \ge \max\{3, k\}$.

Proof. Let $p! = p_1^{i_1} \cdot p_2^{i_2} \cdots p_m^{i_m} \cdot p$ be the canonical decomposition of p!, where $2 = p_1 < 3 = p_2 < \cdots < p_m < p$. Because p! is divisible by $p_j^{i_j}$ it results $S(p_j^{i_j}) \le p = S(p)$ for every $j \in \overline{1,m}$.

Obviously,

$$S^{k}(p!) = S[(p!)^{k}] = \max_{1 \le j \le m} \left\{ S(p_{j}^{k \cdot i_{j}}), S(p^{k}) \right\}$$

Because $S(p_j^{k,i_j}) \le kS(p_j^{i_j}) < kS(p) = kp = S(p^k)$ for $k \le p$, it results that we have

(4)
$$S^{k}(p!) = S(p^{k}) = kp$$
, for $k \le p$

Let $p!-1=q_1^{i_1}\cdot q_2^{i_2}\cdots q_t^{i_t}$ be the canonical decomposition for p!-1, then $q_i>p$ for $j\in\overline{1,t}$.

It follows $S(p!-1) = \max_{1 \le j \le t} \left\{ S(q_j^{i_j}) \right\} = S(q_m^{i_m})$ with $q_m > p$.

Because $S(q_m^{i_m}) > S(p) = S(p!)$ it results S(p!-1) > S(p!). Analogous it results S(p!+1) > S(p!). Obviously

(5)
$$S^{k}(p!-1) = S[(p!-1)^{k}] \ge S(q_{m}^{k+m}) \ge S(q_{m}^{k}) > S(p^{k}) = kp$$

(6)
$$S^{k}(p!+1) = S[(p!+1)^{k}] > k \cdot p$$

For $p \ge \max\{3, k\}$ out of (4), (5), (6) it results that p! are the relative minimum points of the functions S^k .

REFERENCES

- [1] L. Bălăcenoiu, Smarandache Numerical functions, Smarandache Function Journal, vol. 4-5, no.1, (1994), p.6-13.
- [2] L Bălăcenoiu, *The monotony of Smarandache functions of first kind.*, Smarandache Function Journal, vol.6, 1995.
- [3] L. Bălăcenoiu, V. Seleacu, Some properties of Smarandache functions of the type I, Smarandache Function Journal, vol.6, 1995.
- [4] F. Smarandache, A function in the Number Theory. An. Univ. Timișoara, seria st. mat. Vol. XVIII, fasc. 1, p.79-88, 1980.