SOME CONVERGENCE PROBLEMS INVOLVING
THE SMARANDACHE FUNCTION

by

E. Burton, I. Cojocaru, S. Cojocaru, C. Dumitrescu

Department of Mathematics, University of Craiova,
Craiova (1100), Romania

In this paper we consider some series attached to the Smarandache function (Dirichlet series and other (numerical) series). Asymptotic behaviour and convergence of these series is established.

1. INTRODUCTION. The Smarandache function \(S: \mathbb{N} \rightarrow \mathbb{N} \) is defined [3] such that \(S(n) \) is the smallest integer \(n \) with the property that \(n! \) is divisible by \(n \).

If

\[
n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},
\]

is the decomposition into primes of the positive integer \(n \), then

\[
S(n) = \max_{i} S(p_i^{\alpha_i})
\]

and more general if \(n_1 \lor n_2 \) is the smallest common multiple of \(n_1 \) and \(n_2 \), then

\[
S(n_1 \lor n_2) = \max(S(n_1), S(n_2)).
\]

Let us observe that on the set \(\mathbb{N} \) of non-negative integers, there are two lattice structures generated respectively by \(\lor = \max \), \(\land = \min \) and \(\triangledown = \text{the last common multiple} \), \(\triangledown = \text{the greatest common division} \). If we denote by \(s \) and \(s_e \) the induced orders in these lattices, it results

\[
S(n_1 \lor n_2) = S(n_1) \lor S(n_2)
\]

The calculus of \(S(p^\alpha) \) depends closely of two numerical scale, namely the standard scale

\[
(p) : 1, p, p^2, \ldots, p^n, \ldots
\]
and the generalised numerical scale \([p]\)

\[[p] : a_1(p), a_2(p), \ldots, a_\lambda(p), \ldots \]

where \(a_\lambda(p) = (p^{\lambda} - 1)/(p - 1)\). The dependence is in the sense that

\[S(p^\lambda) = p(a_\lambda(p)) \tag{1.3} \]

so, \(S(p^\lambda)\) is obtained multiplying \(p\) by the number obtained writing \(\alpha\) in the scale \([p]\) and "reading" it in the scale \((p)\).

Let us observe that if \(b_\alpha(p) = p^\alpha\) then the calculus in the scale \([p]\) is essentially different from the standard scale \((p)\), because:

\[b_{a_\lambda}(p) = pb_{\lambda}(p) \quad \text{but} \quad a_{a_\lambda}(p) = pa_\lambda(p) + 1 \]

(for more details see [2]).

We have also [1] that

\[S(p^\lambda) = (p - 1)a + \sigma(p)(a) \tag{1.4} \]

where \(\sigma(p)(a)\) is the sum of digits of the number \(a\) written in the scale \([p]\).

In [4] it is showed that if \(\phi\) is Euler's totient function and we note \(S_p(a) = S(p^a)\) then

\[S_p(p^a - 1) = \phi(p^a) + p \tag{1.5} \]

It results that \(\phi(p^a) = S(p^{a - 1}) - p\) so

\[\phi(n) = \prod_{i=1}^{\lambda} \left(S(p^{a_i - 1}) - p_i \right). \]

In the same paper [4] the function \(S\) is extended to the set \(Q\) of rational numbers.

2. GENERATING FUNCTIONS. It is known that we may attach to each numerical function \(f: \mathbb{N}^* \rightarrow \mathbb{C}\) the Dirichlet series:

\[D_f(z) = \sum_{n=1}^\infty \frac{f(n)}{n^z} \tag{2.1} \]

which for some \(z = x + iy\) may be convergent or not.

The simplest Dirichlet series is:

\[\zeta(z) = \sum_{n=1}^\infty \frac{1}{n^z} \tag{2.2} \]

called Riemann's function or zeta function where is convergent for \(\text{Re}(z) > 1\).

It is said for instance that if \(f\) is Möbius function \((\mu(1) = 1, \mu(p, p, \ldots, p) = (-1)^r\) and \(\mu(n) = 0\) if \(n\) is divisible by the square of a prime number \) then \(D_\mu(z) = 1/\zeta(z)\) for \(x > 1\). and if \(f\) is Euler's totient function \((\phi(n) = \text{the number of positive integers not greater than and prime to the positive integer} \ n)\) then \(D_\phi(z) = (z-1)/\zeta(z)\) for \(x > 2\).

We have also \(D_d(z) = \zeta(z)/d(z)\), for \(x > 1\), where \(d(n)\) is the number of divisors of \(n\) including \(1\) and \(n\), and \(D_\sigma_k(n) = \zeta(z)/(z-1)\) \((\text{for} \ x > 1, x < k + 1)\), where \(\sigma_k(n)\) is the sum of the \(k\)-th powers of the divisors of \(n\). We write \(\sigma(n)\) for \(\sigma_1(n)\).
In the sequel let we suppose that z is a real number, so $z = x$.

For the Smarandache function we have:

$$D_i(x) = \sum_{n=1}^{x} \mu(n)$$

If we note:

$$F^*_i(n) = \sum_{\mu(n) = i} \mu(n)$$

it is said that Möbius function make a connection between i and F^*_i by the inversion formula:

$$f(n) = \sum_{i=1}^{n} F^*_i(k) \mu(\frac{n}{i})$$

The functions F^*_i are also called generating functions.

In [4] the Smarandache functions is regarded as a generating function and is constructed the function s_i such that:

$$s_i(n) = \sum_{\mu(n) = i} s(k) \mu(\frac{n}{k})$$

2.1. PROPOSITION. For all $x > 2$ we have:

(i) $3(x) \leq D_s(x) \leq 3(x-1)$

(ii) $1 \leq D_w(x) \leq D_s(x)$

(iii) $3^*(x) \leq D_{s2}(x) \leq 3(x) \cdot 3(x-1)$

Proof: (i) The assertion results from the fact that $1 \leq S(n) \leq n$.

(ii) Using the multiplication of Dirichlet series we have:

$$\frac{1}{s(x)} \cdot D_s(x) = \left(\sum_{n=1}^{\infty} \mu(n) \right) \left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^x} \right) = \mu(1)S(1) + \frac{\mu(1)\mu(2)\mu(3)}{2^x} + \frac{\mu(1)\mu(3)\mu(4)\mu(5)}{3^x} + \frac{\mu(1)\mu(2)\mu(3)\mu(4)\mu(6)}{4^x} + \ldots = \sum_{n=1}^{\infty} \frac{s(n)}{n^x} = D_s(x)$$

and the assertion result using (i).

(iii) We have

$$3(x) \cdot D_s(x) = \left(\sum_{n=1}^{\infty} \frac{1}{n^x} \right) \left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^x} \right) = S(1) + \frac{\mu(1)\mu(2)\mu(3)}{2^x} + \frac{\mu(1)\mu(3)\mu(4)\mu(5)}{3^x} + \frac{\mu(1)\mu(2)\mu(3)\mu(4)\mu(6)}{4^x} + \ldots = D_{s2}(x)$$

so the inequalities holds using (i).

Let us observe that (iii) is equivalent to $D_s(x) \leq D_{s2} \leq D_s(x)$. These inequalities can be deduced also observing that from $1 \leq S(n) \leq n$ it result:

$$\sum_{n=1}^{\infty} \frac{1}{n^x} \leq \sum_{n=1}^{\infty} \frac{S(k)}{k^x} \leq \sum_{n=1}^{\infty} \frac{\sigma(n)}{n^x}$$

so,

$$d(n) \leq F_s(n) \leq \sigma(n)$$

But from the fact that $F_s < n + 4$ (proved in [5]) we deduce

$$d(n) \leq F_s(n) \leq n + 4$$

(2.5)
Until now it is not known a closed formula for the calculus of the functions \(D_\alpha(x) \), \(D_\beta(x) \) or \(D_\gamma(x) \), but we can deduce asymptotic behaviour of these functions using the following well known results:

2.2. THEOREM. (i) \(3(z) = \frac{1}{e^{-z}} + O(1) \)
 (ii) \(\ln 3(z) = \ln e^{-z} + O(z-1) \)
 (iii) \(3'(z) = -\frac{1}{(e^{-z})^2} + O(1) \)

for all complex number.

Then from the proposition 2.1 we can get inequalities as the followings:

(i) \(\frac{1}{e^{-z}} - O(1) \leq D_\alpha(x) \leq \frac{1}{e^{-z}} - O(1) \)

(ii) \(1 \leq D_\beta(x) \leq \frac{c}{e^{-z}} \quad \text{for some positive constant } A \)

(iii) \(\frac{1}{e^{-z}} + O(1) \leq D_\gamma(x) \leq \frac{1}{(e^{-z})^2} + O(1) \).

The Smarandache functions \(S \) may be extended to all the nonnegative integers defining \(S(-n) = S(n) \).

In [3] it is proved that the serie

\[
\sum_{n=1}^{\infty} \frac{1}{e^{nz}}
\]

is convergent and has the sum \(q \in (e^{-1}, 2) \).

We can consider the function

\[f(z) = \sum_{n=1}^{\infty} \frac{S(n)}{(z+n)!} \]

convergent for all \(z \in \mathbb{C} \) because

\[
\frac{S(n)}{e^n} = \frac{S(n)}{(n+2)(n+1)!} \leq \frac{1}{(n+2)(n+1)!} \leq \frac{1}{n!}
\]

and so \(\frac{S(n)}{e^n} \rightarrow 0 \)

2.3. PROPOSITION. The function \(f \) satisfies \(|f(z)| \leq qz \) an the unit disc

\(U(0,1) = \{ z \mid |z| < 1 \} \).

Proof. A lemma does to Schwartz assert that if the function \(f \) is holomorphic on the unit disc

\(U(0,1) = \{ z \mid |z| < 1 \} \) and satisfies \(f(0) = 0, |f(z)| \leq 1 \) for \(z \in U(0,1) \) then \(|f(z)| \leq |z| \) on

\(U(0,1) \) and \(|f'(0)| \leq 1 \).

For \(|z| < 1 \) we have \(|f(z)| < q \) so \((1/q) f(z) \) satisfies the conditions of Schwartz lemma.

3. SERIES INVOLVING THE SMARANDACHE FUNCTION. In this section we shall study the convergence of some series concerning the function \(S \).

Let \(b: \mathbb{N}^* \rightarrow \mathbb{N}^* \) be the function defined by: \(b(n) \) is the complement of \(n \) until the smallest factorial. From this definition it results that \(b(n) = (S(n)!)/n \) for all \(n \in \mathbb{N}^* \).
3.1. PROPOSITION. The sequences \((b(n))_{n=1}^\infty\) and also \((b(n)/n^k)_{n=1}^\infty\) for \(k \in \mathbb{R}\), are divergent.

Proof. (i) The assertion results from the fact that \(b(n!)=1\) and if \((p_n)_{n=1}^\infty\) is the sequence of prime members then
\[b(p_n) = \frac{\sum_{i=1}^{p_n-1} i}{p_n} = \frac{e_{p_n}}{p_n} = (p_n - 1)! \]

(ii) Let we note \(x_n = b(n)/n^k\). Then
\[x_n = \frac{x_n}{n^{k+1}} \]
and for \(k > 0\) it results
\[x_n! = \frac{x_n!}{(n!)^{k+1}} = \frac{n!}{(n!)^{k+1}} \to 0 \]
\[x_{p_n} = \frac{p_{n+1}}{p_{n+1}^{k+1}} = \frac{(p_n)!}{(p_n)^{k+1}} > \frac{p_n^{p_n-1} - p_n!}{p_n^{k+1}} \]

because it in said [6] that \(p_1, p_2, ..., p_{n+1} > p_n^{k+1}\) for \(n\) sufficiently large.

3.2. PROPOSITION. The sequence \(T(n) = 1 + \sum_{i=2}^{n} \frac{1}{b(i)} - \ln b(n)\) is divergent.

Proof. If we suppose \(\lim_{n \to \infty} T(n) = l < \infty\), then because \(\sum_{i=2}^{n} \frac{1}{b(i)} = \infty\) (see [3]) it results the contradiction \(\lim_{n \to \infty} \ln b(n) = \infty\).

If we suppose \(\lim_{n \to \infty} T(n) = -\infty\), from the equality \(\ln b(n) = 1 + \sum_{i=2}^{n} \frac{1}{b(i)} - T(n)\) it results
\[\lim_{n \to \infty} \ln b(n) = \infty. \]

We can't have \(\lim_{n \to \infty} T(n) = -\infty\) because \(T(n) < 0\). Indeed, from \(i \leq S(i)!\) for \(i \geq 2\) it results
\[i / S(i)! \leq 1 \text{ for all } i \geq 2 \]
so
\[T(p_n) = 1 + \frac{1}{S(2)!} + ... + \frac{p_n}{S(p_n)!} - \ln((p_n - 1)!) < 1 + (p_n - 1) - \ln((p_n - 1)!) = \]
\[= p_n - \ln((p_n - 1)!). \]

But for \(k\) sufficiently large we have \(e^k < (k-1)!\) that is there exists \(m \in \mathbb{N}\) so that \(p_n < \ln((p_n - 1)!)\) for \(n \geq m\). It results \(p_n - \ln((p_n - 1)!) < 0\) for \(n \geq m\), and so \(T(n) < 0\).

Let now be the function
\[H_b(x) = \sum_{2 \leq n \leq x} b(n). \]

3.3. PROPOSITION. The serie
\[\sum_{n \geq 2} H_b^{-1}(n) \quad (3.1) \]
is convergent.

Proof. the sequence \((b(2)+b(3)+...+b(n))_n\) is strictly increasing to \(\infty\) and

103
so we have

\[\sum_{n \geq 2} H^{-1}_b(n) = \frac{1}{2} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{11} - \frac{1}{13} + \ldots \]

\[< \frac{2}{5} + \frac{1}{7} + \frac{2}{11} + \frac{4}{3} + \frac{2}{5} + \ldots + \frac{p_{k+1}-p_k}{p_k} + \ldots \]

\[< 1 + \sum_{k \geq 2} \frac{p_{k+1}-p_k}{p_k} = 1 + \sum_{k \geq 2} \frac{p_{k+1}-p_k}{p_k} = 1 + \frac{1}{2} + \sum_{k \geq 2} \frac{p_{k+1}-p_k}{p_k} \]

But \((p_n-1) > p_1 p_2 \ldots p_n\) for \(n \geq 4\) and then

\[\sum_{n \geq 2} H^{-1}_b(n) < \frac{19}{12} = \sum_{k \geq 4} a_k \]

where \(a_k = \frac{p_{k+1}-p_k}{p_k} = \frac{p_{k+1}-p_k}{1+2+\ldots+(p_n-1)} < \frac{p_{k+1}-p_k}{p_k} < \frac{p_{k+1}}{p_k} \)

Because \(p_1, p_2, \ldots, p_k > p_{k+1}\) for \(k\) sufficiently large, it results

\[a_k < \frac{p_{k+1}}{p_{k+1}} = \frac{1}{p_{k+1}} \quad \text{for } k \geq k_0 \]

and the convergence of the series \(3.1\) follows from the convergence of the series \(\sum_{k \geq 2} \frac{1}{p_k} \).

In the followings we give an elementary proof of the convergence of the series \(\sum_{k \geq 2} \frac{1}{S(k)}\), \(\alpha \in \mathbb{R}, \alpha > 1\) provides information on the convergence behavior of the series \(\sum_{k \geq 2} \frac{1}{S(k)\alpha} \).

3.4. PROPOSITION. The series \(\sum_{k \geq 2} \frac{1}{S(k)\alpha^{1/S(k)}}\) converges if \(\alpha \in \mathbb{R}\) and \(\alpha > 1\).

Proof.

\[\sum_{k \geq 2} \frac{1}{S(k)\alpha^{1/S(k)}} = \frac{1}{2^{1/2}} + \frac{1}{3^{1/3}} + \frac{1}{4^{1/4}} + \frac{1}{5^{1/5}} + \frac{1}{6^{1/6}} + \frac{1}{7^{1/7}} + \frac{1}{8^{1/8}} + \ldots + \frac{1}{m_{ \left(\frac{m}{m} \right)^{1/m}} \ldots} \]

where \(m_i\) denotes the number of elements of the set \(M_i = \{ k \in \mathbb{N}, S(k)=t \} = \{ k \in \mathbb{N}^*, k \mid t \text{ and } k \mid (t-1) \} \).
It follows that \(M \{ k \in \mathbb{N}^* : k \mid t \} \) and therefore \(m < d(t!) \).
Hence \(m < 2 \sqrt[3]{t!} \) and consequently we have
\[
\frac{m}{\sum_{p=2}^{t} \frac{m}{p \sqrt[3]{p^t}}} < \frac{2}{\sum_{p=2}^{t} \frac{2 \sqrt[3]{p^t}}{p^t}} = 2 \sum_{p=2}^{t} \frac{1}{p^{t/3}}
\]
So, \(\sum_{p=2}^{t} \frac{m}{p \sqrt[3]{p^t}} \) converges.

3.5. PROPOSITION. \(r^a \sqrt[3]{t!} < t ! \) if \(a \in R, \alpha > 1 \) and \(t > t_0 = [e^{2a+1}], t \in \mathbb{N}^* \) (where \([x]\) means the integer part of \(x \)).

Proof. \(r^a \sqrt[3]{t!} < t ! \Leftrightarrow r^{2a} t ! < (t !)^2 \Leftrightarrow r^{2a} < t ! \) (2)

On the other hand \(r^{2a} < (\frac{1}{2})' < (e^{2a})' < (\frac{1}{2})' \Leftrightarrow e^{2a} < (\frac{1}{2})' \Leftrightarrow e^{2a} < (\frac{1}{2})' \) (3)

If \(r^{2a} = (\frac{1}{2})' \Leftrightarrow (\frac{1}{2})' r^{2a} = (e^{2a})' r^{2a} = (e^{2a})' r^{2a} \)

Applying the well-known result that \(e^x > 1 + x \) if \(x > 0 \) for \(x = 2a \) we have
\((e^{2a})' r^{2a} > (e^{2a})' r^{2a} = (e^{2a})' r^{2a} \)

So, if \(r > e^{2a+1} \) we have \(e^{2a} < (\frac{1}{2})' \) (4)

It is well known that \((\frac{1}{2})' < t ! \) if \(t \in \mathbb{N}^* \) (5)

Now, the proof of the proposition is obtained as follows:

If \(r > t_0 = [e^{2a+1}], t \in \mathbb{N}^* \) we have \(e^{2a} < (\frac{1}{2})' r^{2a} \Leftrightarrow r^{2a} < (\frac{1}{2})' t ! \). Hence \(r^{2a} < t ! \) if \(r > t_0 \) and this proves the proposition.

CONSEQUENCE. The series \(\sum_{p=1}^{t} \frac{1}{p \sqrt[3]{p^t}} \) converges.

Proof. \(\sum_{p=1}^{t} \frac{1}{p \sqrt[3]{p^t}} = \sum_{p=1}^{t} \frac{m}{p \sqrt[3]{p^t}} \) where \(m_0 \) is defined as above.

If \(r > t_0 \) we have \(r^{2a} \sqrt[3]{t!} < t ! \Leftrightarrow \frac{1}{r \sqrt[3]{t^t}} > \frac{1}{t !} \Leftrightarrow \frac{m_0}{r \sqrt[3]{t^t}} > \frac{m_0}{t !} \).

Since \(\sum_{p=2}^{t} \frac{m_0}{r ^{1/3} t !} \) converges it results that \(\sum_{p=2}^{t} \frac{m_0}{r ^{1/3} t !} \) also converges.

REMARQUE. From the definition of the Smarandache function it results that
\(\text{card} \{ k \in \mathbb{N}^* : S(k) = t \} = \text{card} \{ k \in \mathbb{N}^* : k \mid t \text{ and } k \mid (t-1)! \} = d(t!) - d((t-1)!) \)
so we get
\(\sum_{p=1}^{t} \text{car}(dS^{-1}(t)) = \sum_{p=2}^{t} (d(t!) - d((t-1)!)) = d(t!) - 1 \)

ACKNOWLEDGEMENT:
The authors wish to express their gratitude to S.S Kim, vice-president and Ion Castravete, executive manager to Daewoo S.A. from Craiova, for having agreed cover ours traveling expenses for the conference as well as a great deal of the local expenses in Thessaloniki.
REFERENCES

[5] P. Gronas: The Solution of the Euation \(\sigma_{sl}(n) \cdot n \) (Smarandache Function J., V.4-5, Nr.1, 1994), 14-16).

