SOME REMARKS CONCERNING THE DISTRIBUTION
OF THE SMARANDACHE FUNCTION

by
TOMIȚĂ TIBERIU FLORIN, STUDENT,
UNIVERSITY OF CRAIOVA

The Smarandache function is a numerical function \(S:N^* \rightarrow N^* \) \(S(k) \) representing the smallest natural number \(n \) such that \(n! \) is divisible by \(k \). From the definition it results that \(S(1)=1 \).

I will refer for the beginning the following problem:

"Let \(k \) be a rational number, \(0 < k \leq 1 \). Does the diophantine equation \(\frac{S(n)}{n} = k \) has always solutions? Find all \(k \) such that the equation has an infinite number of solutions in \(N^* \)" from "Smarandache Function Journal".

I intend to prove that equation hasn't always solutions and case that there are an infinite number of solutions is when \(k = \frac{1}{r} \), \(r \in N^* \), \(k \in Q \) and \(0 < k \leq 1 \) \(\Rightarrow \) there are two relatively prime non negative integers \(p \) and \(q \) such that \(k = \frac{p}{q} \), \(p,q \in N^* \), \(0 < q \leq p \). Let \(n \) be a solution of the equation \(\frac{S(n)}{n} = k \). Then \(\frac{S(n)}{n} = \frac{p}{q} \), (1). Let \(d \) be a highest common divisor of \(n \) and \(S(n) : d = (n, S(n)) \). The fact that \(p \) and \(q \) are relatively prime and (1) implies that \(S(n) = qd \), \(n = pd \Rightarrow S(pd) = qd \) (*).

This equality gives us the following result: \((qd)! \) is divisible by \(pd \Rightarrow [(qd - 1)!-q] \) is divisible by \(p \). But \(p \) and \(q \) are relatively prime integers, so \((qd-1)! \) is divisible by \(p \). Then \(S(p) \leq qd - 1 \).

I prove that \(S(p) \geq (q - 1)d \).

If we suppose against all reason that \(S(p) < (q - 1)d \), it means \([(q - 1)d - 1]! \) is divisible by \(p \). Then \((pd)! | [(q - 1)d]! \) because \(d | (q - 1)d \), so \(S(pd) \leq (q - 1)d \). This is contradiction with the fact that \(S(pd) = qd > (q - 1)d \). We have the following inequalities:

\[(q - 1)d \leq S(p) \leq qd - 1.\]

For \(q \geq 2 \) we have from the first inequality \(d \leq \frac{S(p)}{q-1} \) and from the second \(\frac{S(p+1)}{q} \leq d \), so

\[\frac{S(p+1)}{q} \leq d \leq \frac{S(p)}{q-1}.\]
For \(k = \frac{q}{p} \), \(q \geq 2 \), the equation has solutions if and only if there is a natural number between \(\frac{S(p-1)}{q} \) and \(\frac{S(p)}{q-1} \). If there isn’t such a number, then the equation hasn’t solutions. However, if there is a number \(d \) with \(\frac{S(p-1)}{q} \leq d \leq \frac{S(p)}{q-1} \), this doesn’t mean that the equation has solutions. This condition is necessary but not sufficient for the equation to have solutions.

For example:

a) \(k = \frac{4}{5} \), \(q = 4 \), \(p = 5 \) \(\Rightarrow \frac{S(p-1)}{q} = \frac{6}{4} = 1.5 \), \(\frac{S(p)}{q-1} = \frac{5}{3} \). In this case the equation hasn’t solutions.

b) \(k = \frac{3}{10} \), \(q = 3 \), \(p = 10 \); \(S(10) = 5 \), \(\frac{6}{3} = 2 \leq d \leq \frac{5}{2} \). If the equation has solutions, then we must have \(d = 2 \), \(n = dp = 20 \), \(S(n) = dq = 6 \). But \(S(20) = 5 \).

This is a contradiction. So there are no solutions for \(k = \frac{3}{10} \).

We can have more than natural numbers between \(\frac{S(p+1)}{q} \) and \(\frac{S(p)}{q-1} \). For example:

\[k = \frac{3}{29}, \ q = 3, \ p = 29, \ \frac{S(p+1)}{q} = 10, \ \frac{S(p)}{q-1} = 14.5. \]

We prove that the equation \(\frac{S(n)}{n} = k \) hasn’t always solutions.

If \(q \geq 2 \) then the number of solutions is equal with the number of values of \(d \) that verify relation (*). But \(d \) can be a nonnegative integer between \(\frac{S(p+1)}{q} \) and \(\frac{S(p)}{q-1} \), so \(d \) can take only a finite set of values. This means that the equation has no solutions or it has only a finite number of solutions.

We study now case \(k = \frac{1}{p}, \ p \in \mathbb{N^*} \). In this case the equation has an infinite number of solutions. Let \(p_0 \) be a prime number such that \(p < p_0 \) and \(n = pp_0 \). We have \(S(n) = S(pp_0) = p \), so \(S(n) = p_0 \), \(\frac{S(n)}{n} = \frac{p_0}{p p_0} = \frac{1}{p} \), so the equation has an infinite number of solutions.

I will refer now to another problem concerning the ratio \(\frac{S(n)}{n} \) "Is there an infinity of natural numbers such that \(0 < \left\{ \frac{x}{S(x)} \right\} \leq \left\{ \frac{S(x)}{x} \right\} \)" from the same journal.

I will prove that the only number \(x \) that verifies the inequalities is \(x = 9 \) : \(S(9) = 6, \)
\[
\frac{x}{S(x)} = \frac{9}{6} = \frac{3}{2}, \quad \left\{ \frac{x}{S(x)} \right\} = \left\{ \frac{9}{6} \right\} = \frac{1}{2} \quad \text{and} \quad 0 < \frac{1}{2} < \frac{2}{3}, \quad \text{so } x = 9 \text{ verifies } 0 < \left\{ \frac{x}{S(x)} \right\} < \left\{ \frac{S(x)}{x} \right\}. \]

Let \(x = p_1^{a_1} \ldots p_n^{a_n} \) be the standard form of \(x \).

\(S(x) = \max S(p_k^{a_k}) \). We put \(S(x) = S(p^a) \), where \(p^a \) is one of \(p_1^{a_1} \ldots p_n^{a_n} \) such that \(S(p^a) = \max_{1 \leq k \leq n} S(p_k^{a_k}) \).
\[\frac{x}{S(x)} \] can take one of the following values: \(\frac{1}{S(x)} \), \(\frac{2}{S(x)} \), ..., \(\frac{S(x)-1}{S(x)} \) because
\[
0 < \left(\frac{x}{S(x)} \right) < \frac{S(x)}{x} \quad (\text{We have } S(x) \leq x, \text{ so } \frac{S(x)}{x} \leq 1 \text{ and } \left(\frac{S(x)}{x} \right) \leq S(x) \text{). This means}
\]
\[
\frac{S(x)}{x} \geq \frac{1}{S(x)} \Rightarrow S(p^a)^2 > x \geq p^a. \quad (2)
\]

But \((ap)! = 1 \cdot 2 \cdot ... \cdot (p-1) ...(2p)...(ap) \) is divisible by \(p^a \), so \(ap \geq S(p^a) \). From this last inequality and (2) it follows that \(\alpha^2 p^2 > p^2 \). We have three cases:

I. \(\alpha = 1 \). In this case \(S(x) = S(p) = p \), \(x \) is divisible by \(p \), so \(\frac{x}{p} \in \mathbb{Z} \). This is a contradiction.

There are no solutions for \(\alpha = 1 \).

II. \(\alpha = 2 \). In this case \(S(x) = S(p^2) = 2p \), because \(p \) is a prime number and \((2p)! = 1 \cdot 2 \cdot ... \cdot (p-1) ...(2p) \), so \(S(p^2) = 2p \).

But \(\left\{ \frac{px}{2} \right\} = \left\{ \frac{1}{2} \right\} \). This means \(\left\{ \frac{px}{2} \right\} = \frac{1}{2} \Rightarrow \frac{2}{px} < \frac{2}{p} < 4 \); \(p \) is a prime number \(\Rightarrow p \in \{2,3\} \).

If \(p = 2 \) and \(px_1 < 4 \Rightarrow x_1 = 1 \), but \(x = 4 \) isn’t a solution of the equation: \(S(4) = 4 \) and \(\left\{ \frac{4}{4} \right\} = 0 \).

If \(p = 3 \) and \(px_1 < 4 \Rightarrow x_1 = 1 \), so \(x = p^2 = 9 \) is a solution of equation.

III. \(\alpha = 3 \). We have \(\alpha^2 p^2 > p^a \Rightarrow \alpha^2 > p^{a-1} \).

For \(\alpha \geq 8 \) we prove that we have \(p^{a-2} > p^2 \), \((\forall) p \in \mathbb{N}^*, p \geq 2 \).

We prove by induction that \(2^{n-1} > (n-1)^2 \).

\[
2^{n-1} = 2 \cdot 2^{n-2} > n^2 - 2 \cdot n + 1 = n^2 - 2n + n^2 - 8n + 8 = n^2 + 2n + 1 = (n-1)^2, \quad \text{because } n \geq 8.
\]

We proved that \(p^{a-2} \geq 2^{a-1} \geq 2^a \), for any \(\alpha \geq 8, p \in \mathbb{N}^*, \ p \geq 2 \).

We have to study the case \(\alpha \in \{3,4,5,6,7\} \).

a) \(\alpha = 3 \Rightarrow p \in \{2,3,5,7\} \), because \(p \) is a prime number.

If \(p = 2 \) then \(S(x) = S(2^3) = 4 \). But \(x \) is divisible by 8, so \(\left\{ \frac{x}{4} \right\} = \left\{ \frac{x}{S(x)} \right\} \), so \(x = 4 \) cannot be a solution of the inequation.

If \(p = 3 \Rightarrow S(x) = S(3^3) = 9 \). But \(x \) is divisible by 9, so \(\left\{ \frac{x}{9} \right\} = \left\{ \frac{x}{S(x)} \right\} \), so \(x = 9 \) cannot be a solution of the inequation.

If \(p = 5 \Rightarrow S(x) = S(5^3) = 15 \); \(\left\{ \frac{x}{S(x)} \right\} = \left\{ \frac{x}{5^3} \right\} = \left\{ \frac{x}{x} \right\} = 0 \), so \(x = 5^3 \cdot x_1 \), \(x_1 \in \mathbb{N}^* \), \((5,x_1) = 1 \).
We have $0 < \left\{ \frac{5^2 \cdot x}{3} \right\} < \left\{ \frac{3}{5^2 \cdot x} \right\}$. This first inequality implies $\left\{ \frac{5^2 \cdot x}{3} \right\} \notin \left\{ \frac{1}{3}, \frac{2}{3} \right\}$, so $\frac{1}{3} < \frac{3}{5^2 \cdot x_1}$, $\Rightarrow 5^2 \cdot x_1 < 9$, but this is impossible.

If $p=7 \Rightarrow S(x)=S(3^7)=21, x=7^3 \cdot x_1, (7,x_1)=1, x_1 \in N^*.$

We have $0 < \left\{ \frac{x}{S(x)} \right\} < \left\{ \frac{S(x)}{x} \right\} \Rightarrow 0 < \left\{ \frac{7^2 \cdot x}{3} \right\} < \frac{3}{7^2 \cdot x_1}$. But $0 < \left\{ \frac{7^2 \cdot x}{3} \right\}$ implies $\left\{ \frac{7^2 \cdot x}{3} \right\} \in \left\{ \frac{1}{3}, \frac{2}{3} \right\}$.

W have $\frac{1}{3} < \left\{ \frac{7^2 \cdot x}{3} \right\} \Rightarrow 7^2 \cdot x_1 < 9$, but is impossible.

b) $\alpha=4 : 16 \Rightarrow p \in \{2,3\}$.

If $p=2 \Rightarrow S(x)=S(x^2)=6, x=16 \cdot x_1, x_1 \in N^*, (2,x_1)=1, 0 < \left\{ \frac{x}{S(x)} \right\} < \frac{S(x)}{x} \Rightarrow 0 < \left\{ \frac{8x_1}{3} \right\} < \frac{3}{8x_1}$.

$0 < \left\{ \frac{8x_1}{3} \right\} \Rightarrow x_1=1 \Rightarrow x=16$.

But $\frac{S(x)}{x} = \frac{6}{16} = \frac{3}{8}; \left\{ \frac{x}{S(x)} \right\} = \left\{ \frac{16}{6} \right\} = \left\{ \frac{8}{3} \right\} = \left\{ \frac{2}{3} \right\} = \left\{ \frac{2}{3} \right\} > \frac{3}{8}$, so the inequality isn’t verified.

If $p=3 \Rightarrow S(x)=S(3^4)=9, x=3^4 \cdot x_1, (3,x_1)=1 \Rightarrow 9|x \Rightarrow \frac{x}{S(x)} = 0$, so the inequality isn’t verified.

For $\alpha=\{5,6,7\}$, the only natural number $p>1$ that verifies the inequality $\alpha^2 > p^{\alpha-2}$ is 2:

$\alpha=5 : 25 > p^3 \Rightarrow p=2$

$\alpha=6 : 36 > p^4 \Rightarrow p=2$

$\alpha=7 : 49 > p$

In every case $x=2^\alpha \cdot x_1, x_1 \in N^*, (x_1,2)=1, \text{ and } S(x_1) \leq S(2^\alpha)$.

But $S(2^5) = S(2^6) = S(2^7) 8$, so $S(x) = 8$ But x is divisible by 8, so $\left\{ \frac{x}{S(x)} \right\} = 0$ so the inequality isn’t verified because $0 < \left\{ \frac{x}{S(x)} \right\}$. We found that there is only $x=9$ to verify the inequality $0 < \left\{ \frac{x}{S(x)} \right\} < \left\{ \frac{S(x)}{x} \right\}$.

I try to study some diophantine equations proposed in "Smarandache Function Journal".

1) I study the equation $S(mx)=mS(x), m \geq 2$ and x is a natural number.
Let \(x \) be a solution of the equation.

We have \(S(x)! \) is divisible by \(x \). It is known that among \(m \) consecutive numbers, one is divisible by \(m \), so \((S(x)+1)(S(x)+2)\cdots(S(x)+m) \) is divisible by \((mx) \). We know that \(S(mx) \) is the smallest natural number such that \(S(mx)! \) is divisible by \((mx) \) and this implies \(S(mx) \leq S(x)+m \). But \(S(mx)=mS(x) \), so \(mS(x) \leq S(x)+m \Rightarrow mS(x)-S(x)-m-1 \leq (m-1)(S(x)-1) \leq 1 \). We have several cases:

If \(m=1 \) then the equation becomes \(S(X)=S(x) \), so any natural number is a solution of the equation.

If \(m=2 \), we have \(S(x) \in \{1,2\} \) implies \(x \in \{1,2\} \). We conclude that if \(m=1 \) then any natural number is a solution of the equation; if \(m=2 \) then \(x=1 \) and \(x=2 \) are only solution and if \(m \geq 3 \) the only solution of the equation is \(x=1 \).

2) Another equation is \(S(x^y)=y^x \), \(x, y \) are natural numbers.

Let \((x,y) \) be a solution of the equation.

\((xy)! = 1 \cdots x(x-1) \cdots (2x-1) \cdots (yx)! \) implies \(S(x^y) \leq yx \), so \(yx \leq yx \) because \(S(x^y)=y^x \).

But \(y \geq 1 \), so \(y^{x-1} \leq x \).

If \(x=1 \) then equation becomes \(S(1) = y \), so \(y=1 \), so \(x=y=1 \) is a solution of the equation.

If \(x \geq 2 \) then \(x \geq 2^{x-1} \). But the only natural numbers that verify this inequality are \(x=y=2 \):

\(x=y=2 \) verifies the equation, so \(x=y=2 \) is a solution of the equation.

For \(x \geq 3 \) we prove that \(x < 2^{x-1} \). We make the proof by induction.

If \(x=3 \) : \(3 < 2^{3-1} = 4 \).

We suppose that \(k < 2^{k-1} \) and we prove that \(k+1 < 2^k \). We have \(2^k = 2 \cdot 2^{k-1} > 2 \cdot k = k + k = k + 1 \), so the inequality is established and there are no other solutions then \(x=y=1 \) and \(x=y=2 \).

3) I will prove that for any \(m,n \) natural numbers, if \(m>1 \) then the equation \(S(x^n)=x^m \) has no solution or it has a finite number of solutions, and for \(m=1 \) the equation has an infinite number of solutions.

I prove that \(S(x^n) \leq nx \). But \(x^m = S(x^n) \), so \(x^m \leq nx \).

For \(m \geq 2 \) we have \(x^{m-1} \leq x \). If \(m=2 \) then \(x \leq n \), and if \(m \geq 3 \) then \(x \leq \sqrt[n]{n} \), so \(x \) can take only a finite number of values, so the equation can have only a finite number of solutions or it has no solutions.

We notice that \(x=1 \) is a solution of the equation for any \(m,n \) natural numbers.
If the equation has a solution different of 1, we must have \(x^{m} = S(x^n) \leq n \), so \(m \leq n \).

If \(m = n \), the equation becomes \(x^{m} = S(x^n) \), so \(x^n \) is a prime number or \(x^n = 4 \), so \(n = 1 \) and any prime number as well as \(x = 4 \) is a solution of the equation, or \(n = 2 \) and the only solutions are \(x = 1 \) and \(x = 2 \).

For \(m = 1 \) and \(n \geq 1 \), we prove that the equations \(S(x^m) = x \), \(x \in \mathbb{N}^* \) has an infinite number of solutions. Let be a prime number, \(p > n \). We prove that \((np) \) is a solution of the equation, that is \(S((np)^n) = np \).

\(n < p \) and \(p \) is a prime number, so \(n \) and \(p \) are relatively prime numbers.

\(n < p \) implies:

\[(np)! = 1 \cdot 2 \cdot \ldots \cdot n(n+1) \cdot \ldots \cdot (2n) \cdot \ldots \cdot (pn) \text{ is divisible by } n^n.\]

\[(np)! = 1 \cdot 2 \cdot \ldots \cdot p(p+1) \cdot \ldots \cdot (2p) \cdot \ldots \cdot (pn) \text{ is divisible by } p^n.\]

But \(p \) and \(n \) are relatively prime numbers, so \((np)! \) is divisible by \((np)^n \).

If we suppose that \(S((np)^n) < np \), then we find that \((np-1)! \) is a divisible by \((np)^n \), so \((np-1)! \) is divisible by \(p^n(3) \). But the exponent of \(p \) in the standard form of \(p \) in the standard form of \((np-1)! \) is:

\[E = \left[\frac{np-1}{p} \right] + \left[\frac{np-1}{p^2} \right] + \ldots\]

But \(p > n \), so \(p^2 > np > np-1 \). This implies:

\[\left[\frac{np-1}{p^k} \right] = 0 \text{, for any } k \geq 2.\]

We have:

\[E = \left[\frac{np-1}{p} \right] = n - 1.\]

This means \((np-1)! \) is divisible by \(p^{n-1} \), but isn’t divisible by \(p^n \), so this is a contradiction with (3). We proved that \(S((np)n) = np \), so the equation \(S(x^n) = x \) has an infinite number of solutions for any natural number \(n \).

REFERENCE

Current address: CALEA BUCUREȘTI ST., BL.M9, SC.B, AP.15, 1100 CRAIOVA, DOLJ, ROMANIA