THE 2-DIVISIBILITY OF EVEN ELEMENTS OF THE
SMARANDACHE DECONSTRUCTIVE SEQUENCE

Maohua Le

Abstract. In this paper we prove that if \(n > 5 \) and \(SDS(n) \) is even, then \(SDS(n) \) is exactly divisible by \(2^7 \).

Key words. Smarandache deconstructive sequence, 2-divisibility.

The Smarandache deconstructive sequence is constructed by sequentially repeating the digits 1, 2, \(\ldots \), 9 in the following way:

\[
1, 23, 456, 7891, \ldots
\]

which first appeared in [3]. For any positive integer \(n \), let \(SDS(n) \) denote the \(n \)-th element of the Smarandache deconstructive sequence. In [1], Ashbacher considered the values of the first thirty elements of this sequence. He showed that \(SDS(3) = 456 \) is divisible by \(2^3 \), \(SDS(5) = 23456 \) by \(2^5 \) and all others by \(2^7 \). Therefore, Ashbacher proposed the following question.

Question. If we form a sequence from the elements \(SDS(n) \) which the trailing digits are 6, do the powers of 2 that divide them form a monotonically increasing sequence?

In this paper we completely solve the mentioned question. We prove the following result.

Theorem. If \(n > 5 \) and \(SDS(n) \) is even, then \(SDS(n) \) is exactly divisible by \(2^7 \).

Proof. By the result of [2], if \(SDS(n) \) is even, then the trailing digit of it must be 6. Moreover, if \(n > 5 \),
then \(n \geq 12 \). Therefore, by (1), if \(n > 5 \) and \(SDS(n) \) is even, then we have

\[
S(n) = 89123456 + k \cdot 10^8,
\]

where \(k \) is a positive integer. Notice that \(2^8 \mid 10^8 \) and \(2^7 \mid 89123456 \). We see from (2) that \(2^7 \mid SDS(n) \). Thus, the theorem is proved.

References

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA