THE AVERAGE VALUE OF THE SMARANDACHE FUNCTION

Steven R. Finch
MathSoft Inc.
101 Main Street
Cambridge, MA, USA 02142
sfinch@mathsoft.com

Given a positive integer \(n \), let \(P(n) \) denote the largest prime factor of \(n \) and \(S(n) \) denote the smallest integer \(m \) such that \(n \) divides \(m! \).

The function \(S(n) \) is known as the Smarandache function and has been intensively studied [1]. Its behavior is quite erratic [2] and thus all we can reasonably hope for is a statistical approximation of its growth, e.g., an average. It appears that the sample mean \(E(S) \) satisfies [3]

\[
E(S(N)) = \frac{1}{N} \sum_{n=1}^{N} S(n) = O \left(\frac{N}{\ln(N)} \right)
\]

as \(N \) approaches infinity, but I don't know of a rigorous proof. A natural question is if some other sense of average might be more amenable to analysis.

Erdős [4,5] pointed out that \(P(n) = S(n) \) for almost all \(n \), meaning

\[
\lim_{N \to \infty} \frac{\left| \{n \leq N: P(n) < S(n)\} \right|}{N} = 0 \quad \text{that is,} \quad \left| \{n \leq N: P(n) < S(n)\} \right| = o(N)
\]

as \(N \) approaches infinity. Kastanas [5] proved this to be true, hence the following argument is valid. On one hand,

\[
\lambda = \lim_{n \to \infty} \frac{\ln(P(n))}{\ln(n)} \leq \lim_{n \to \infty} \frac{\ln(S(n))}{\ln(n)} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\ln(S(n))}{\ln(n)}
\]

The above summation, on the other hand, breaks into two parts:

\[
\lim_{N \to \infty} \frac{1}{N} \left(\sum_{P(n)=S(n)} \frac{\ln(P(n))}{\ln(n)} + \sum_{P(n)<S(n)} \frac{\ln(S(n))}{\ln(n)} \right)
\]

The second part vanishes:
\[
\lim_{N \to \infty} \frac{1}{N} \left\{ \sum_{P(n) = S(n)} \ln(S(n)) \right\} \leq \lim_{N \to \infty} \frac{1}{N} \left\{ \sum_{P(n) < S(n)} \ln(n) \right\} = \lim_{N \to \infty} \frac{o(N)}{N} = 0
\]

while the first part is bounded from above:

\[
\lim_{N \to \infty} \frac{1}{N} \left(\sum_{P(n) = S(n)} \frac{\ln(P(n))}{\ln(n)} \right) \leq \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{n=1}^{N} \frac{\ln(P(n))}{\ln(n)} = \lim_{n \to \infty} E \left(\frac{\ln(P(n))}{\ln(n)} \right) = \lambda
\]

We deduce that

\[
\lim_{n \to \infty} E \left(\frac{\ln(S(n))}{\ln(n)} \right) = \lambda = 0.6243299885...
\]

where \(\lambda \) is the famous Golomb-Dickman constant [6-9]. Therefore \(\lambda \cdot n \) is the asymptotic average number of digits in the output of \(S \) at an \(n \)-digit input, that is, 62.43% of the original number of digits. As far as I know, this result about the Smarandache function has not been published before.

A closely related unsolved problem concerns estimating the variance of \(S \).

References