THE EQUATION \(a^2(k+2, S(n)) = a^2(k+1, S(n)) + a^2(k, S(n)) \)

Xigeng Chen

Abstract. For any positive integer \(a \), let \(S(a) \) be the Smarandache function of \(a \). For any positive integers \(r \) and \(b \), let \(a(r, b) \) be the first \(r \) digits of \(b \). In this paper we prove that the title equation has no positive integer solutions \((n, k) \).

Key words: Smarandache function, diophantine equation

Let \(N \) be the set of all positive integers. For any positive integer \(a \), let \(S(a) \) be the Smarandache function of \(a \). For any positive integer \(b \) with \(s \) digits, let \(a(r, b) \) be the first \(r \) digits of \(b \). Recently, Beneze [1] proposed the following problem:

Problem Determine all solutions \((n, k) \) of the equation

\(a^2(k + 2, S(n)) = a^2(k + 1, S(n)) + a^2(k, S(n)) \), \(n, k \in N \).

In this paper we completely solve the above-mentioned problem as follows.

Theorem The equation (3) has no solutions \((n, k) \).

Proof. Let \((n, k) \) be a solution of (3). It is a well known fact that \(S(n) \) is a positive integer (see [2]). Let \(b = S(n) \). We may assume that \(b \)
has \(s \) digits as (1). For any positive integer \(r \), by the definition (2) of \(a(r, b) \), we have

\[
\alpha(r + 1, b) = \begin{cases}
10\alpha(r, b) + t_{s-r+1}, & \text{if } r < s, \\
\alpha(r, b), & \text{if } r \geq s.
\end{cases}
\]

(4)

If \(k > s - 1 \), then from (4) we get \(a(k + 2, b) = a(k + 1, b) \). Hence, by (3), we obtain \(a(k, b) = 0 \), a contradiction.

If \(k < s - 1 \), then from (4) we get

\[
a(k + 2, b) \geq 10 \cdot a(k + 1, b).
\]

(5)

Hence, by (3) and (5), we get

\[
99 \cdot a^2(k + 1, b) \leq a^2(k, b).
\]

(6)

However, we see from (4) that \(a(k + 1, b) \geq a(k, b) \). Therefore, (6) is impossible. Thus, the equation (3) has no solutions \((n, k)\).

References

Department of Mathematics
Maoming College
Maoming Guangdong
P. R. CHINA

205