The general term of the prime number sequence and the Smarandache prime function.

Sebastián Martín Ruiz. Avda de Regla, 43 Chipiona 11550 Cádiz Spain.

Let's consider the function $d(i)$ = number of divisors of the positive integer number i. We have found the following expression for this function:

$$d(i) = \sum_{k=1}^{i} E\left(\frac{i}{k}\right) - E\left(\frac{i-1}{k}\right)$$

We proved this expression in the article “A functional recurrence to obtain the prime numbers using the Smarandache Prime Function”.

We deduce that the following function:

$$G(i) = -E\left[-\frac{d(i)-2}{2}\right]$$

This function is called the Smarandache Prime Function (Reference). It takes the next values:

$$G(i) = \begin{cases} 0 & \text{if } i \text{ is prime} \\ 1 & \text{if } i \text{ is compound} \end{cases}$$

Let is consider now $\pi(n)$ = number of prime numbers smaller or equal than n. It is simple to prove that:

$$\pi(n) = \sum_{i=2}^{n} (1 - G(i))$$

Let is have too:

If $1 \leq k \leq p_n - 1$ \Rightarrow $E\left(\frac{m(k)}{n}\right) = 0$

If $C \geq k \geq p_n$ \Rightarrow $E\left(\frac{m(k)}{n}\right) = 1$

We will see what conditions have to cany C_n.

Therefore we have the following expression for p_n n-th prime number:

$$p_n = 1 + \sum_{k=1}^{C_n} (1 - E\left(\frac{m(k)}{\pi}\right))$$

If we obtain C_n that only depends on n, this expression will be the general term of the prime numbers sequence, since π is in function with G and G does with $d(i)$ that is expressed in function with i too. Therefore the expression only depends on n.

$E[x]$=The highest integer equal or less than n
Let us consider \(C_n = 2(E(n \log n) + 1) \)

Since \(p_n \sim n \log n \) from of a certain \(n_0 \) it will be true that

\[
(1) \quad p_n \leq 2(E(n \log n) + 1)
\]

If \(n_0 \) it is not too big, we can prove that the inequality is true for smaller or equal values than \(n_0 \).

It is necessary to that:

\[
E\left[\frac{m(C_n)}{n} \right] = 1
\]

If we check the inequality:

\[
(2) \quad \pi(2(E(n \log n) + 1)) < 2n
\]

We will obtain that:

\[
\frac{m(C_n)}{n} < 2 \Rightarrow E\left[\frac{m(C_n)}{n} \right] \leq 1 \quad ; \quad C_n \geq p_n \Rightarrow E\left[\frac{m(C_n)}{n} \right] = 1
\]

We can experimentaly check this last inequality saying that it checks for a lot of values and the difference tends to increase, which makes to think that it is true for all \(n \).

Therefore if we prove that the next inequalities are true:

\[
(1) \quad p_n \leq 2(E(n \log n) + 1), \\
(2) \quad \pi(2(E(n \log n) + 1)) < 2n
\]

which seems to be very probable; we will have that the general term of the prime numbers sequence is:

\[
p_n = 1 + \sum_{\omega=1}^{2(E(n \log n) + 1)} \left[1 - E\left(\sum_{\mu=1}^{k} \sum_{j=2}^{\left(\frac{x(\mu)}{1-(-1)^{\mu}n} - \epsilon \right)} j \right) \right]
\]

60
If now we consider the general term defined in the same way but for all real number greater than zero the following graphic is obtained:

Let is observe that if $0 < x < 1 \ P(x) = 1$ si $x = 1 \ P(x) = 2$ and for $n - 1 < x \leq n \ P(x) = p_n$.

Reference:
Http://www.gallup.unm.edu/~Smarandache/primfnct.txt