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Abstract – In this paper we propose a new family of Belief Conditioning Rules (BCR) for belief revision.
These rules are not directly related with the fusion of several sources of evidence but with the revision of a belief
assignment available at a given time according to the new truth (i.e. conditioning constraint) one has about the
space of solutions of the problem.
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1 Introduction

In this paper we define several Belief Conditioning Rules (BCR) for use in information fusion and for belief
revision. Suppose we have a basic belief assignment (bba) m1(.) defined on hyper-power set DΘ, and we find out
that the truth is in a given element A ∈ DΘ. So far in literature devoted to belief functions and the mathematical
theory of evidence, there has been used Shafer’s Conditioning Rule (SCR) [2], which simply combines the mass
m1(.) with a specific bba focused on A, i.e. mS(A) = 1, and then uses Dempster’s rule to transfer the conflicting
mass to non-empty sets. But in our opinion this conditioning approach based on the combination of two bba’s
is subjective since in such procedure both sources are subjective. While conditioning a mass m1(.), knowing (or
assuming) that the truth is in A, means that we have an absolute (not subjective) information, i.e. the truth is
in A has occurred (or is assumed to have occurred), thus A was realized (or is assumed to be realized), hence it
is an absolute truth. ”Truth in A” must therefore be considered as an absolute truth when conditioning, while
mS(A) = 1 used in SCR does not refer to an absolute truth actually, but only to a subjective certainty in the
possible occurrence of A given by a second source of evidence. This is the main and fundamental distinction
between our approaches (BCRs) and Shafer’s (SCR). In our opinion, SCR does not do a conditioning, but only a
fusion of m1(.) with a particular bba mS(A) = 1. The main advantage of SCR is that it is simple and thus very
appealing, and in some cases it gives the same results with some BCRs, and it remains coherent with conditional
probability when m1(.) is a Bayesian belief assignment. In the sequel, we will present many (actually thirty one
BCR rules, denoted BCR1-BCR31) new alternative issues for belief conditioning. The sequel does not count:
a) if we first know the source m1(.) and then that the truth is in A (or is supposed to be in A), or b) if we first
know (or assume) the truth is in A, and then we find the source m1().The results of conditioning are the same.
In addition, we work on a hyper-power set, that is a generalization of the power set. The best among these
BCR1-31, that we recommend researchers to use, are: BCR17 for a pessimistic/prudent view on conditioning
problem and a more refined redistribution of conflicting masses, or BCR12 for a very pessimistic/prudent view
and less refined redistribution. After a short presentation of SCR rule, we present in the following sections all
new BCR rules we propose, many examples, and a very important and open challenging question about belief
fusion and conditioning.

http://lanl.arXiv.org/abs/cs/0607005v2
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2 Shafer’s conditioning rule (SCR)

Before going further in the development of new belief conditioning rules, it is important to recall the condition-
ing of beliefs proposed by Glenn Shafer in [2] (p.66–67) and reported below.

So, let’s suppose that the effect of a new evidence (say source 2) on the frame of discernment Θ is to
establish a particular subset B ⊂ Θ with certainty. Then Bel2 will give a degree of belief one to the proposition
corresponding to B and to every proposition implied by it:

Bel2(A) =

{

1, ifB ⊂ A;

0, otherwise.

Since the subset B is the only focal element of Bel2, its basic belief assignment is one, i.e. m2(B) = 1. Such
a function Bel2 is then combinable with the (prior) Bel1 as long as Bel1(B̄) < 1, and the Dempster’s rule of
combination (denoted ⊕) provides the conditional belief Bel1(.|B) = Bel1 ⊕ Bel2 (according to Theorem 3.6 in
[2]). More specifically, one gets for all A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)

where Pl(.) denotes the plausibility function.

3 Belief Conditioning Rules (BCR)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, and the hyper-power set1 DΘ. Let’s consider a basic belief assignment (bba)
m(.) : DΘ 7→ [0, 1] such that

∑

X∈DΘ m(X) = 1.

Suppose one finds out that the truth is in the set A ∈ DΘ \ {∅}. Let PD(A) = 2A ∩ DΘ \ {∅}, i.e. all
non-empty parts (subsets) of A which are included in DΘ. Let’s consider the normal cases when A 6= ∅ and
∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case when the truth is in A = ∅, we consider Smets’ open-world, which

means that there are other hypotheses Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′

\ {∅}.
If A = ∅ and we consider a close-world, then it means that the problem is impossible. For another degenerate
case, when

∑

Y ∈PD(A) m(Y ) = 0, i.e. when the source gave us a totally (100%) wrong information m(.), then,

we define: m(A|A) , 1 and, as a consequence, m(X |A) = 0 for any X 6= A.

Let s(A) = {θi1 , θi2 , . . . , θip}, 1 ≤ p ≤ n, be the singletons/atoms that compose A (For example, if A =
θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}.). We consider three subsets of DΘ \ ∅, generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set, except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by Θ \ s(A) under ∪ and ∩, without
the empty set.

• D3 = (DΘ \ {∅}) \ (D1 ∪D2); each set from D3 has in its formula singletons from both s(A) and Θ \ s(A)
in the case when Θ \ s(A) is different from empty set.

D1, D2 and D3 have no element in common two by two and their union is DΘ \ {∅}.

Examples of decomposition of DΘ \ {∅} = D1∪D2∪D3: Let’s consider Θ = {A, B, C} and the free DSm model.

1The below formulas can also be defined on the power set 2Θ and respectively super-power set SΘ in exactly the same way.
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• If one supposes the truth is in A, then D1 = {A, A ∩ B, A ∩ C, A ∩ B ∩ C} ≡ P(A) ∩ (DΘ \ ∅), i.e. D1

contains all the parts of A which are included in DΘ, except the empty set. D2 contains all elements
which do not contain the letter A, i.e. D2 = ({B, C},∪,∩) = D{B,C} = {B, C, B ∪ C, B ∩ C}. D3 =
{A ∪ B, A ∪ C, A ∪ B ∪ C, A ∪ (B ∩ C)}, i.e. In this case, sets whose formulas contain both the letters A
and at least a letter from {B, C} and are not included in D1.

• If one supposes the truth is in A∩B, then one has D1 = {A∩B, A∩B∩C}, D2 = {C}; i.e. D2 elements
do not contain the letters A, B; and D3 = {A, B, A ∪ B, A ∩ C, B ∩ C, . . .}, i.e. whats left from DΘ \ {∅}
after removing D1 and D2.

• If one supposes the truth is in A∪B, then one has D1 = {A, B, A∩B, A∪B}, and all other sets included
in these four ones, i.e. A∩C, B∩C, A∩B∩C, A∪(B∩C), B∪(A∩C), (A∩C)∪(B∩C), etc; D2 = {C},
i.e. D2 elements do not contain the letters A, B and D3 = {A ∪ C, B ∪ C, A ∪ B ∪ C, C ∪ (A ∩ B)}.

• If one supposes the truth is in A ∪ B ∪ C, then one has D1 = DΘ \ {∅}. D2 does not exist since
s(A∪B ∪C) = {A, B, C} and Θ \ {A, B, C} = ∅; i.e. D2 elements do not contain the letters A, B, C. D3

does not exist since (DΘ \ {∅}) \ D1 = ∅.

• If one supposes the truth is in A ∩ B ∩ C, then one has D1 = {A ∩ B ∩ C}; D2 does not exist; i.e.
D2 elements do not contain the letters A, B, C and D3 equals everything else, i.e. (DΘ \ {∅}) \ D1 =
{A, B, C, A ∩ B, A ∩ C, B ∩ C, A ∪ B, A ∪ C, B ∪ C, A ∪ B ∪ C, A ∪ (B ∩ C), . . .}; D3 has 19 − 1 − 1 = 17
elements.

We propose several Belief Conditioning Rules (BCR) for deriving a (posterior) conditioning belief assignment
m(.|A) from a (prior) bba m(.) and a conditioning set A ∈ DΘ \ {∅}. For all forthcoming BCR formulas, of
course we have:

m(X |A) = 0, if X /∈ D1 (1)

3.1 Belief Conditioning Rule no. 1 (BCR1)

The Belief Conditioning Rule no. 1, denoted BCR1 for short, is defined for X ∈ D1 by the formula

mBCR1(X |A) = m(X) +
m(X) ·

∑

Z∈D2∪D3
m(Z)

∑

Y ∈D1
m(Y )

=
m(X)

∑

Y ∈D1
m(Y )

(2)

This is the easiest transfer of masses of the elements from D2 and D3 to the non-empty elements from D1.
This transfer is done indiscriminately in a similar way to Dempster’s rule transfer, but this transfer is less exact.
Therefore the sum of masses of non-empty elements from D2 and D3 is transferred to the masses of non-empty
elements from D1 proportionally with respect to their corresponding non-null masses.

In a set of sets, such as D1, D2, D3, DΘ, we consider the inclusion of sets, ⊆, which is a partial ordering
relationship. The model of DΘ generates submodels for D1, D2 and D3 respectively.

Let W ∈ D3. We say X ∈ D1 is the k-largest, k ≥ 1, element from D1 that is included in W , if: ∄Y ∈ D1\{X}
with X ⊂ Y , and X ⊂ W . Depending on the model, there are k ≥ 1 such elements. Similarly, we say that
X ∈ D1 is the k-smallest, k ≥ 1, element from D1 that is included in W , if: ∄Y ∈ D1 \ {X} with Y ⊂ X , and
X ⊂ W . Since in many cases there are k ≥ 1 such elements, we call each of them a k-smallest element.

We recall that the DSm Cardinal, i.e. CardDSm(X) for X ∈ DΘ, is the number of distinct parts that
compose X in the Venn Diagram. It depends on the model and on the cardinal of Θ, see [3] for details.
We partially increasingly order the elements in D1 using the inclusion relationship and their DSm Cardinals.
Since there are elements X, Y ∈ D1 that are in no relationship with each other (i.e. X * Y , Y * X), but
having the same DSm Cardinal, we list them together in a same class. We, similarly as in statistics, say that X
is a k-median, k ≥ 1, element if X is in the middle of D1 in the case when cardinal of D1, Card(D1), is odd, or
if Card(D1) is even we take the left and right classes from the middle of D1 list. We also compute a k-average,
k ≥ 1, element of D1 by first computing

∑

X∈D1
CardDSm(X)/Card(D1). Then k-average elements are those

whose DSm Cardinal is close to the atomic average of D1. For each computation of k-largest, k-smallest, k-
median, or k-average we take the whole class of a such element. In a class as stated above, all elements have
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the same DSm Cardinal and none is included in another one.

Let’s see a few examples:

a) Let Θ = {A, B, C}, Shafer’s model, and the truth is in B ∪ C.

D1 = {B, C, B ∪ C} CardDSm(B) = CardDSm(C) = 1 CardDSm(B ∪ C) = 2

In D1, we have: the 1-largest element is B ∪ C; the k-smallest (herein 2-smallest) are B, C; the k-
median (herein 2-median) is the class of C, which is formed by the elements B, C; the k-average of D1 is
(CardDSm(B) + CardDSm(C) + CardDSm(B ∪ C))/Card(D1) = (1 + 1 + 2)/3 = 1.333333 ≈ 1 and the
k-averages are B, C.

b) Let Θ = {A, B, C}, free DSm model, and the truth is in B ∪ C. Then:

D1 = {B ∩ C ∩ A
︸ ︷︷ ︸

CardDSm=1

, B ∩ C, B ∩ A, C ∩ A
︸ ︷︷ ︸

CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)
︸ ︷︷ ︸

CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B, C
︸ ︷︷ ︸

CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)
︸ ︷︷ ︸

CardDSm=5

, B ∪ C
︸ ︷︷ ︸

CardDSm=6

}

Therefore Card(D1) = 13.

D2 = { A
︸︷︷︸

CardDSm=4

} and Card(D2) = 1.

D3 = {A ∪ (B ∩ C)
︸ ︷︷ ︸

CardDSm=5

, A ∪ B, A ∪ C
︸ ︷︷ ︸

CardDSm=6

, A ∪ B ∪ C
︸ ︷︷ ︸

CardDSm=7

} and Card(D3) = 4.

One verifies easily that:

Card(DΘ) = 19 = Card(D1) + Card(D2) + Card(D3) + 1 element (the empty set)

c) Let Θ = {A, B, C}, free DSm model, and the truth is in B.

D1 = {B ∩ C ∩ A
︸ ︷︷ ︸

class 1

, B ∩ A, B ∩ C
︸ ︷︷ ︸

class 2

, B
︸︷︷︸

class 3

}

CardDSm(class 1) = 1 CardDSm(class 2) = 2 CardDSm(class 3) = 3

The D1 list is increasingly by class DSm Cardinals. The 1-largest element is B; the 1-smallest is B∩C∩A;
the 2-median elements are B ∩A, B ∩C; the average of DSm Cardinals is [1 · (1) + 2 · (2) + 1 · (3)]/4 = 2.
The 2-average elements are B ∩ A, B ∩ C.

For the following BCR formulas, the k-largest, k-smallest, k-median, and k-average elements respectively
are calculated only for those elements from D1 that are included in a given W (where W ∈ D3), not for the
whole D1.

3.2 Belief Conditioning Rule no. 2 (BCR2)

In Belief Conditioning Rule no. 2, i.e. BCR2 for short, a better transfer is proposed. While the sum of masses
of elements from D2 is redistributed in a similar way to the non-empty elements from D1 proportionally with
respect to their corresponding non-null masses, the masses of elements from D3 are redistributed differently,
i.e. if W ∈ D3 then its whole mass, m(W ), is transferred to the k-largest (with respect to inclusion from D1)
set X ⊂ W ; this is considered a pessimistic/prudent way. The formula of BCR2 for X ∈ D1 is defined by:



5

mBCR2(X |A) = m(X) +
m(X) ·

∑

Z∈D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-largest

m(W )/k (3)

or equivalently

mBCR2(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-largest

m(W )/k (4)

where X is the k-largest (with respect to inclusion) set included in W . The previous formula is actually
equivalent in the Shafer’s model to the following formula:

mBCR2(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

W=X whenΘ\s(A)≡∅

m(W )/k (5)

3.3 Belief Conditioning Rule no. 3 (BCR3)

The Belief Conditioning Rule no. 3, i.e. BCR3 is a dual of BCR2, but the transfer of m(W ) is done to the
k-smallest, k ≥ 1, (with respect to inclusion) set X ⊂ W , i.e. in an optimistic way. The formula of BCR3 for
X ∈ D1 is defined by:

mBCR3(X |A) = m(X) +
m(X) ·

∑

Z∈D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-smallest

m(W )/k (6)

or equivalently

mBCR3(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-smallest

m(W )/k (7)

where X is the k-smallest, k ≥ 1, (with respect to inclusion) set included in W .

There are cases where BCR2 and BCR3 coincide, i.e. when there is only one, or none, X ⊂ W for each
W ∈ D3.

3.4 Belief Conditioning Rule no. 4 (BCR4)

In an average between pessimistic and optimistic ways, we can consider ”X k-median” in the previous formulas
in order to get the Belief Conditioning Rule no. 4 (BCR4), i.e. for any X ∈ D1,

mBCR4(X |A) = m(X) +
m(X) ·

∑

Z∈D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-median

m(W )/k (8)

or equivalently

mBCR4(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-median

m(W )/k (9)
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where X is a k-median element of all elements from D1 which are included in W . Here we do a medium (neither
pessimistic nor optimistic) transfer.

3.5 Belief Conditioning Rule no. 5 (BCR5)

We replace ”X is k-median” by ”X is k-average” in BCR4 formula in order to obtain the BCR5, i.e. for any
X ∈ D1,

mBCR5(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W,X is k-average

m(W )/k (10)

where X is a k-average element of all elements from D1 which are included in W . This transfer from D3 is also
medium and the result close to BCR4’s.

3.6 Belief Conditioning Rule no. 6 (BCR6)

BCR6 does a uniform redistribution of masses of each element W ∈ D3 to all elements from D1 which are
included in W , i.e. for any X ∈ D1,

mBCR6(X |A) =
m(X) ·

∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W

m(W )

Card{V ∈ D1|V ⊂ W}
(11)

where Card{V ∈ D1|V ⊂ W} is the cardinal (number) of D1 sets included in W .

3.7 Belief Conditioning Rule no. 7 (BCR7)

In our opinion, a better (prudent) transfer is done in the following Belief Conditioning Rule no. 7 (BCR7)
defined for any X ∈ D1 by:

mBCR7(X |A) = m(X) +
m(X) ·

∑

Z∈D2
m(Z)

∑

Y ∈D1
m(Y )

+ m(X) ·
∑

W∈D3

X⊂W,S(W ) 6=0

m(W )

S(W )
+

∑

W∈D3

X⊂W,X is k-largest

S(W )=0

m(W )/k

where S(W ) ,
∑

Y ∈D1,Y ⊂W

m(Y ).

Or, simplified we get:

mBCR7(X |A) = m(X) ·

[∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W, S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,X is k-largest

S(W )=0

m(W )/k (12)

The transfer is done in the following way:
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• the sum of masses of elements in D2 are redistributed to the non-empty elements from D1 proportionally
with respect to their corresponding non-null masses (similarly as in BCR1-BCR6 and BCR8-BCR11
defined in the sequel);

• for each element W ∈ D3, its mass m(W ) is distributed to all elements from D1 which are included in W
and whose masses are non-null proportionally with their corresponding masses (according to the second
term of the formula (12));

• but, if all elements from D1 which are included in W have null masses, then m(W ) is transferred to the
k-largest X from D1, which is included in W (according to the last term of the formula (12)); this is the
pessimistic/prudent way.

3.8 Belief Conditioning Rule no. 8 (BCR8)

A dual of BCR7 is the Belief Conditioning Rule no. 8 (BCR8), where we consider the optimistic/more specialized
way, i.e. ”X is k-largest” is replaced by ”X is k-smallest”, k ≥ 1 in (12). Therefore, BCR8 formula for any
X ∈ D1 is given by :

mBCR8(X |A) = m(X) ·

[∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W, S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,X is k-smallest

S(W )=0

m(W )/k (13)

where S(W ) ,
∑

Y ∈D1,Y ⊂W

m(Y ).

3.9 Belief Conditioning Rule no. 9 (BCR9)

In an average between pessimistic and optimistic ways, we can consider ”X k-median” in the previous formulas
(12) and (13) instead of ”k-largest” or ”k-smallest” in order to get the Belief Conditioning Rule no. 9 (BCR9).

3.10 Belief Conditioning Rule no. 10 (BCR10)

BCR10 is similar to BCR9 using an average transfer (neither pessimistic nor optimistic) from D3 to D1. We
only replace ”X k-median” by ”X k-average” in BCR9 formula.

3.11 Belief Conditioning Rule no. 11 (BCR11)

BCR11 does a uniform redistribution of masses of D3 to D1, as BCR6, but when S(W ) = 0 for W ∈ D3.
BCR11 formula for any X ∈ D1 is given by:
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mBCR11(X |A) = m(X) ·

[∑

Z∈D1∪D2
m(Z)

∑

Y ∈D1
m(Y )

+
∑

W∈D3

X⊂W, S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D3

X⊂W,

S(W )=0

m(W )

Card{V ∈ D1|V ⊂ W}
(14)

where Card{V ∈ D1|V ⊂ W} is the cardinal (number) of D1 sets included in W .

3.12 More Belief Conditioning Rules (BCR12-BCR21)

More versions of BCRs can be constructed that are distinguished through the way the masses of elements
from D2 ∪ D3 are redistributed to those in D1. So far, in BCR1-11, we have redistributed the masses of
D2 indiscriminately to D1, but for the free and some hybrid DSm models of DΘ we can do a more exact
redistribution.

There are elements in D2 that don’t include any element from D1; the mass of these elements will be
redistributed identically as in BCR1-. But other elements from D2 that include at least one element from D1

will be redistributed as we did before with D3. So we can improve the last ten BCRs for any X ∈ D1 as follows:

mBCR12(X |A) = m(X) +
[
m(X) ·

∑

Z∈D2

∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

Z∈D2

X⊂Z, X is k-largest

m(Z)/k +
∑

W∈D3

X⊂W, X is k-largest

m(W )/k (15)

or equivalently

mBCR12(X |A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W, X is k-largest

m(W )/k (16)

mBCR13(X |A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W, X is k-smallest

m(W )/k (17)
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mBCR14(X |A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-median

m(W )/k (18)

mBCR15(X |A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-average

m(W )/k (19)

mBCR16(X |A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W

m(W )

Card{V ∈ D1|V ⊂ W}
(20)

mBCR17(X |A) = m(X) ·

[

[ ∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W, X is k-largest
S(W )=0

m(W )/k (21)

mBCR18(X |A) = m(X) ·

[

[ ∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W, X is k-smallest
S(W )=0

m(W )/k (22)
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mBCR19(X |A) = m(X) ·

[

[ ∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-median
S(W )=0

m(W )/k (23)

mBCR20(X |A) = m(X) ·

[

[ ∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-average
S(W )=0

m(W )/k (24)

mBCR21(X |A) = m(X) ·

[

[ ∑

Z∈D1,

or Z∈D2 | ∄Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y ) +
∑

W∈D2∪D3

X⊂W

S(W ) 6=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W

S(W )=0

m(W )

Card{V ∈ D1|V ⊂ W}
(25)

Surely, other combinations of the ways of redistributions of masses from D2 and D3 to D1 can be done,
obtaining new BCR rules.

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A, B, C}, the free DSm model (no intersection is empty) and the following prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1
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and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A
︸ ︷︷ ︸

CardDSm=1

, B ∩ C, B ∩ A, C ∩ A
︸ ︷︷ ︸

CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)
︸ ︷︷ ︸

CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B, C
︸ ︷︷ ︸

CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)
︸ ︷︷ ︸

CardDSm=5

, B ∪ C
︸ ︷︷ ︸

CardDSm=6

}

Therefore Card(D1) = 13.

We recall that ∀X ∈ DΘ, the DSm Cardinal of X , CardDSm(X), is equal to the number of distinct
parts that compose X in the Venn Diagram (see below) according to the given model on DΘ. By definition,
CardDSm(∅) = 0 (see [3] for examples and details).

&%
'$

&%
'$

&%
'$@R

A
�	

B

@I
C

Figure 1: Venn Diagram for the 3D free DSm model

D2 = { A
︸︷︷︸

CardDSm=4

} and Card(D2) = 1.

D3 = {A ∪ (B ∩ C)
︸ ︷︷ ︸

CardDSm=5

, A ∪ B, A ∪ C
︸ ︷︷ ︸

CardDSm=6

, A ∪ B ∪ C
︸ ︷︷ ︸

CardDSm=7

} and Card(D3) = 4.

One verifies easily that:

Card(DΘ) = 19 = Card(D1) + Card(D2) + Card(D3) + 1 element (the empty set)

The masses of elements from D2 ∪D3 are transferred to the elements of D1. The ways these transfers are done
make the distinction between the BCRs.

a) In BCR1, the sum of masses of D2 and D3 are indiscriminately distributed to B, C, B ∪ C, A ∩ B,
proportionally to their corresponding masses 0.1, 0.2, 0.1, and respectively 0.1, i.e.

m(D2 ∪ D3) = m1(A) + m1(A ∪ B) + m1(A ∪ (B ∩ C)) + m1(A ∪ B ∪ C) = 0.5

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

wB∩A

0.1
=

0.5

0.5
= 1

whence xB = 0.1, yC = 0.2, zB∪C = 0.1 and wB∩A = 0.1 are added to the original masses of B, C, B ∪C
and B ∩ A respectively.

Finally, one gets with BCR1-based conditioning:

mBCR1(B|B ∪ C) = 0.2

mBCR1(C|B ∪ C) = 0.4

mBCR1(B ∪ C|B ∪ C) = 0.2

mBCR1(B ∩ A|B ∪ C) = 0.2
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b) In BCR2, m(D2) = m1(A) = 0.2 and is indiscriminately distributed to B, C, B∪C, A∩B, proportionally
to their corresponding masses, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

wB∩A

0.1
=

0.2

0.5
= 0.4

whence xB = 0.04, yC = 0.08, zB∪C = 0.04 and wB∩A = 0.04.

m(D3) is redistributed, element by element, to the k-largest D1 element in each case: m1(A∪B) = 0.1 to
B∪(C∩A), since B∪(C∩A) ∈ D1 and it is the 1-largest one from D1 included in A∪B; m1(A∪(B∩C)) =
0.1 to (B ∩ A) ∪ (C ∩ A) ∪ (B ∩C) for a similar reason; m1(A ∪B ∪C) = 0.1 to B ∪C. Finally, one gets
with BCR2-based conditioning:

mBCR2(B|B ∪ C) = 0.14

mBCR2(C|B ∪ C) = 0.28

mBCR2(B ∪ C|B ∪ C) = 0.24

mBCR2(B ∩ A|B ∪ C) = 0.14

mBCR2((B ∩ A) ∪ (C ∩ A) ∪ (B ∩ C)|B ∪ C) = 0.10

mBCR2(B ∪ (C ∩ A)|B ∪ C) = 0.10

c) In BCR3, instead of k-largest D1 elements, we consider k-smallest ones. m(D2) = m1(A) = 0.2 is exactly
distributed as in BCR2. But m(D3) is, in each case, redistributed to the k-smallest D1 element, which is
A ∩ B ∩ C (1-smallest herein). Hence:

mBCR3(B|B ∪ C) = 0.14

mBCR3(C|B ∪ C) = 0.28

mBCR3(B ∪ C|B ∪ C) = 0.14

mBCR3(B ∩ A|B ∪ C) = 0.14

mBCR3(A ∩ B ∩ C|B ∪ C) = 0.30

d) In BCR4, we use k-median.

• A ∪ B includes the following D1 elements:

A ∩ B ∩ C, B ∩ C, B ∩ A, C ∩ A, (B ∩ C) ∪ (B ∩ A), |
︸︷︷︸

median herein

(B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A), (B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B, B ∪ (A ∩ C)

Hence we take the whole class: (B∩C)∪(B∩A), (B∩C)∪(C ∩A), (B∩A)∪(C ∩A), i.e. 3-medians;
each one receiving 1/3 of 0.1 = m1(A ∪ B).

• A ∪ (B ∩ C) includes the following D1 elements:

A ∩ B ∩ C, B ∩ C, B ∩ A, C ∩ A, |
︸︷︷︸

median herein

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A), (B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A)

Hence we take the left and right (to the median) classes: B ∩ C, B ∩ A, C ∩ A, (B ∩ C) ∪ (B ∩ A),
(B∩C)∪(C ∩A), (B∩A)∪(C ∩A), i.e. 6-medians, each ones receiving 1/6 of 0.1 = m1(A∪(B∩C)).

• A ∪ B ∪ C includes all D1 elements, hence the 3-medians are (B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A)
and (B ∩ A) ∪ (C ∩ A); each one receiving 1/3 of 0.1 = m1(A ∪ B ∪ C)
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Totalizing, one finally gets:

mBCR4(B|B ∪ C) = 42/300

mBCR4(C|B ∪ C) = 84/300

mBCR4(B ∪ C|B ∪ C) = 42/300

mBCR4(B ∩ A|B ∪ C) = 47/300

mBCR4(B ∩ C|B ∪ C) = 5/300

mBCR4(C ∩ A|B ∪ C) = 5/300

mBCR4((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 25/300

mBCR4((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 25/300

mBCR4((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 25/300

e) In BCR5, we compute k-average, i.e. the k-average of DSm cardinals of the D1 elements included in eack
W ∈ D3.

• For A ∪ B, using the results got in BCR4 above:

∑

X∈D1,X⊂A∪B

CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 + 4 + 5 = 29

The average DSm cardinal per element is 29/10 = 2.9 ≈ 3. Hence (B∩C)∪(B∩A), (B∩C)∪(C∩A),
(B ∩ A) ∪ (C ∩ A), i.e. the 3-average elements, receive each 1/3 of 0.1 = m1(A ∪ B).

• For A ∪ (B ∩ C), one has

∑

X∈D1,X⊂A∪(B∩C)

CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 = 20

The average DSm cardinal per element is 20/8 = 2.5 ≈ 3. Hence again (B ∩C)∪ (B ∩A), (B ∩C)∪
(C ∩ A), (B ∩ A) ∪ (C ∩ A), i.e. the 3-average elements, receive each 1/3 of 0.1 = m1(A ∪ (B ∩ C)).

• For A ∪ B ∪ C, one has

∑

X∈D1,X⊂A∪B∪C

CardDSm(X) = 1 + 3 · (2) + 3 · (3) + 4 + 2 · (4) + 2 · (5) + 6 = 44

The average DSm cardinal per element is 44/13 = 3.38 ≈ 3. Hence (B∩C)∪(B∩A), (B∩C)∪(C∩A),
(B ∩ A) ∪ (C ∩ A), i.e. the 3-average elements, receive each 1/3 of 0.1 = m1(A ∪ B ∪ C).

Totalizing, one finally gets:

mBCR5(B|B ∪ C) = 42/300

mBCR5(C|B ∪ C) = 84/300

mBCR5(B ∪ C|B ∪ C) = 42/300

mBCR5(B ∩ A|B ∪ C) = 42/300

mBCR5((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 30/300

mBCR5((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 30/300

mBCR5((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 30/300

f) In BCR6, the k-average is replaced by uniform redistribution of D3 elements’ masses to all D1 elements
included in each W ∈ D3.

• The mass m1(A ∪B) = 0.1 is equally split among each D1 element included in A∪B (see the list of
them in BCR4 above), hence 1/10 of 0.1 to each.
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• Similarly, m1(A ∪ (B ∩ C)) = 0.1 is equally split among each D1 element included in A ∪ (B ∩ C),
hence 1/8 of 0.1 to each.

• And, in the same way, m1(A ∪ B ∪ C) = 0.1 is equally split among each D1 element included in
A ∪ B ∪ C, hence 1/13 of 0.1 to each.

Totalizing, one finally gets:

mBCR6(B|B ∪ C) = 820/5200

mBCR6(C|B ∪ C) = 1996/5200

mBCR6(B ∪ C|B ∪ C) = 768/5200

mBCR6(B ∩ A|B ∪ C) = 885/5200

mBCR6(A ∩ B ∩ C|B ∪ C) = 157/5200

mBCR6(B ∩ C|B ∪ C) = 157/5200

mBCR6(C ∩ A|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 157/5200

mBCR6((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 157/5200

mBCR6((B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A)|B ∪ C) = 157/5200

mBCR6(B ∪ (C ∩ A)|B ∪ C) = 92/5200

mBCR6(C ∪ (B ∩ A)|B ∪ C) = 40/5200

g) In BCR7, m(D2) is also indiscriminately redistributed, but m(D3) is redistributed in a different more
refined way.

• The mass m1(A ∪ B) = 0.1 is transferred to B and B ∩ A since these are the only D1 elements
included in A ∪ B whose masses are non-zero, proportionally to their corresponding masses, i.e.

xB

0.1
=

wB∩A

0.1
=

0.1

0.2
= 0.5

whence xB = 0.05 and wB∩A = 0.05.

• m1(A∪ (B ∩C)) = 0.1 is transferred to B ∩A only since no other D1 element with non-zero mass is
included in A ∪ (B ∩ C).

• m1(A ∪ B ∪ C) = 0.1 is similarly transferred to B, C, B ∩ A, B ∪ C, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

wB∩A

0.1
=

0.1

0.5
= 0.2

whence xB = 0.02, yC = 0.04, zB∪C = 0.02 and wB∩A = 0.02.

Totalizing, one finally gets:

mBCR7(B|B ∪ C) = 0.21

mBCR7(C|B ∪ C) = 0.32

mBCR7(B ∪ C|B ∪ C) = 0.16

mBCR7(B ∩ A|B ∪ C) = 0.31

h) In BCR8-11, since there is no W ∈ D3 such that the sum of masses of D1 elements included in W be zero,
i.e. s(W ) 6= 0, we can not deal with ”k-elements”, hence the results are identical to BCR7.
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i) In BCR12, m(D2) is redistributed differently. m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since this
is the 1-largest D1 element included in A. m(D3) is transferred exactly as in BCR2. Finally, one gets:

mBCR12(B|B ∪ C) = 0.1

mBCR12(C|B ∪ C) = 0.2

mBCR12(B ∪ C|B ∪ C) = 0.2

mBCR12(B ∩ A|B ∪ C) = 0.1

mBCR12((B ∩ A) ∪ (C ∩ A) ∪ (B ∩ C)|B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C)|B ∪ C) = 0.1

mBCR12(B ∪ (C ∩ A)|B ∪ C) = 0.1

j) In BCR13, m(D2) is redistributed to the 1-smallest, i.e. to A ∩ B ∩ C and m(D3) is redistributed as in
BCR3. Therefore one gets:

mBCR13(B|B ∪ C) = 0.1

mBCR13(C|B ∪ C) = 0.2

mBCR13(B ∪ C|B ∪ C) = 0.1

mBCR13(B ∩ A|B ∪ C) = 0.1

mBCR13(A ∩ B ∩ C|B ∪ C) = 0.5

k) In BCR14, m1(A) = 0.2, where A ∈ D2, is redistributed to the k-medians of A ∩ B ∩ C, B ∩ A, C ∩ A,
(B ∩ A) ∪ (C ∩ A) which are included in A and belong to D1. The 2-medians are B ∩ A, C ∩ A, hence
each receives 1/2 of 0.2. m(D3) is redistributed as in BCR4. Therefore one gets:

mBCR14(B|B ∪ C) = 30/300

mBCR14(C|B ∪ C) = 60/300

mBCR14(B ∪ C|B ∪ C) = 30/300

mBCR14(B ∩ A|B ∪ C) = 65/300

mBCR14(B ∩ C|B ∪ C) = 5/300

mBCR14(C ∩ A|B ∪ C) = 35/300

mBCR14((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 25/300

mBCR14((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 25/300

mBCR14((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 25/300

l) In BCR15, m1(A) = 0.2, where A ∈ D2, is redistributed to the k-averages.

1

4
· [CardDSm(A ∩ B ∩ C) + CardDSm(B ∩ C) + CardDSm(C ∩ A) + CardDSm((B ∩ A) ∪ (C ∩ A))]

=
1 + 2 + 2 + 3

4
= 2

Hence each of B ∩ C, C ∩ A receives 1/2 of 2; m(D3) is redistributed as in BCR5. Therefore one gets:

mBCR15(B|B ∪ C) = 3/30

mBCR15(C|B ∪ C) = 6/30

mBCR15(B ∪ C|B ∪ C) = 3/30

mBCR15(B ∩ A|B ∪ C) = 6/30

mBCR15(C ∩ A|B ∪ C) = 3/30

mBCR15((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 3/30

mBCR15((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 3/30

mBCR15((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 3/30
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m) In BCR16, m1(A) = 0.2, where A ∈ D2, is uniformly transferred to all D1 elements included in A, i.e. to
A ∩ B ∩ C, B ∩ A, C ∩ A, (B ∩ A) ∪ (C ∩ A), hence each one receives 1/4 of 0.2. m(D3) is redistributed
as in BCR6. Therefore one gets:

mBCR16(B|B ∪ C) = 612/5200

mBCR16(C|B ∪ C) = 1080/5200

mBCR16(B ∪ C|B ∪ C) = 560/5200

mBCR16(B ∩ A|B ∪ C) = 937/5200

mBCR16(A ∩ B ∩ C|B ∪ C) = 417/5200

mBCR16(B ∩ C|B ∪ C) = 157/5200

mBCR16(C ∩ A|B ∪ C) = 417/5200

mBCR16((B ∩ C) ∪ (B ∩ A)|B ∪ C) = 157/5200

mBCR16((B ∩ C) ∪ (C ∩ A)|B ∪ C) = 157/5200

mBCR16((B ∩ A) ∪ (C ∩ A)|B ∪ C) = 417/5200

mBCR16((B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A)|B ∪ C) = 157/5200

mBCR16(B ∪ (C ∩ A)|B ∪ C) = 92/5200

mBCR16(C ∪ (B ∩ A)|B ∪ C) = 40/5200

n) In BCR17, m1(A) = 0.2, where A ∈ D2, is transferred to B ∩ A since B ∩ A ⊂ A and m1(B ∩ A) > 0.
No other D1 element with non-zero mass is included in A. m(D3) is redistributed as in BCR7. Therefore
one gets:

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(B ∩ A|B ∪ C) = 0.47

o) BCR18-21 give the same result as BCR17 since no k-elements occur in these cases.

p) SCR does not work for free DSm models. But we can use the extended (from the power set 2Θ to the hyper-
power set DΘ) Dempster’s rule (see Daniel’s Chapter [1]) in order to combine m1(.) with m2(B ∪C) = 1,
because the truth is in B ∪ C, as in Shafer’s conditioning rule. But since we have a free DSm model, no
transfer is needed, hence Dempster’s rule is reduced to DSm Classic rule (DSmC), which is a generalization
of conjunctive rule. One gets:

mDSmC(B|B ∪ C) = 0.1

mDSmC(C|B ∪ C) = 0.2

mDSmC(B ∪ C|B ∪ C) = 0.2

mDSmC(B ∩ A|B ∪ C) = 0.1

mDSmC((A ∩ B) ∪ (A ∩ C)|B ∪ C) = 0.2

mDSmC(B ∪ (A ∩ C)|B ∪ C) = 0.1

mDSmC((A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A)|B ∪ C) = 0.1

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned with m2(A) = 1
using the classic DSm rule.

4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Let’s consider Θ = {A, B, C} with Shafer’s model and the following prior bba:

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2
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m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪ B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪ C. DΘ is decomposed into

D1 = {B, C, B ∪ C}

D2 = {A}

D3 = {A ∪ B, A ∪ C, A ∪ B ∪ C}

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 2 below.

&%
'$

&%
'$

&%
'$

@R
A

�	
B

� C

Figure 2: Venn Diagram for the 3D Shafer’s model

a) In BCR1, m(D2 ∪ D3) = m1(A) + m1(A ∪ B) + m1(A ∪ B ∪ C) = 0.6 is redistributed to B, C, B ∪ C,
proportionally to their corresponding masses 0.1, 0.2, 0.1 respectively, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.6

0.4
= 1.5

whence xB = 0.15, yC = 0.30, zB∪C = 0.15 are added to the original masses of B, C, B ∪ C respectively.
Finally, one gets with BCR1-based conditioning:

mBCR1(B|B ∪ C) = 0.25

mBCR1(C|B ∪ C) = 0.50

mBCR1(B ∪ C|B ∪ C) = 0.25

b) In BCR2, m(D2) = m1(A) = 0.2 and is indiscriminately distributed to B, C and B ∪C proportionally to
their corresponding masses, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.2

0.4
= 0.5

whence xB = 0.05, yC = 0.10, and zB∪C = 0.05.

For D3, m1(A ∪ B) = 0.1 is transferred to B (1-largest), m1(A ∪ B ∪ C) = 0.3 is transferred to A ∪ B.
Finally, one gets with BCR2-based conditioning:

mBCR2(B|B ∪ C) = 0.25

mBCR2(C|B ∪ C) = 0.30

mBCR2(B ∪ C|B ∪ C) = 0.45

c) In BCR3 for D3, m1(A ∪B) = 0.1 is transferred to B (1-smallest), m1(A ∪B ∪C) = 0.3 is transferred to
B, C (2-smallest). Finally, one gets with BCR3-based conditioning:

mBCR3(B|B ∪ C) = 0.40

mBCR3(C|B ∪ C) = 0.45

mBCR3(B ∪ C|B ∪ C) = 0.15
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d) In BCR4 for D3, m1(A ∪ B) = 0.1 is transferred to B (1-median), m1(A ∪ B ∪ C) = 0.3 is transferred to
B, C (2-medians). Finally, one gets same result as with BCR3, i.e.

mBCR4(B|B ∪ C) = 0.40

mBCR4(C|B ∪ C) = 0.45

mBCR4(B ∪ C|B ∪ C) = 0.15

e) In BCR5 for D3, m1(A ∪ B) = 0.1 is transferred to B. Let’s compute

1

3
· [CardDSm(B) + CardDSm(C) + CardDSm(B ∪ C)] =

1 + 1 + 2

3
≈ 1

Hence 2-averages are B and C. So with BCR5, one gets same result as with BCR3, i.e.

mBCR5(B|B ∪ C) = 0.40

mBCR5(C|B ∪ C) = 0.45

mBCR5(B ∪ C|B ∪ C) = 0.15

f) In BCR6 for D3, m1(A ∪ B) = 0.1 is transferred to B (the only D1 element included in A ∪ B), m1(A ∪
B ∪ C) = 0.3 is transferred to B, C, B ∪ C, each one receiving 1/3 of 0.3. Finally, one gets

mBCR6(B|B ∪ C) = 0.35

mBCR6(C|B ∪ C) = 0.40

mBCR6(B ∪ C|B ∪ C) = 0.25

g) In BCR7 for D3, m1(A∪B) = 0.1 is transferred to B since B ⊂ A∪B and m(B) > 0; m1(A∪B∪C) = 0.3
is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3

0.4
= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075. Finally, one gets

mBCR7(B|B ∪ C) = 0.325

mBCR7(C|B ∪ C) = 0.450

mBCR7(B ∪ C|B ∪ C) = 0.225

h) BCR8-11 give the same result as BCR7 in this example, since there is no case of k-elements.

i) In BCR12: For D2 for all BCR12-21, m1(A) = 0.2 is redistributed to B, C, B ∪C as in BCR2. m(D3) is
redistributed as in BCR2. The result is the same as in BCR2.

j) BCR13-15 give the same result as in BCR3.

k) BCR16 gives the same result as in BCR6.

l) BCR17-21: For D3, m1(A∪B) = 0.1 is transferred to B (no case of k-elements herein); m1(A∪B∪C) = 0.3
is transferred to B, C, B ∪ C proportionally to their corresponding masses as in BCR7. Therefore one
gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪ C|B ∪ C) = 0.225

m) BCR22, 23, 24, 25, 26 give the same results as BCR7, 8, 9, 10, 11 respectively since D2 is indiscriminately
redistributed to D1 elements.
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n) BCR27, 28, 29, 30, 31 give the same results as BCR2, 3, 4, 5, 6 respectively for the same reason as
previously.

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B ∪ C) = 1, because the
truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A, B, C, D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C ∪D. From formulas of BCRs conditioning rules one gets
the same result for all the BCRs in such example according to the following table

A B C D
m1(.) 0.4 0.1 0.2 0.3

mBCR1−31(.|C ∪ D) 0 0 0.40 0.60

Table 1: Conditioning results based on BCRs given the truth is in C ∪ D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.) with the belief
assignment focused only on C ∪D, say m2(C ∪D) = 1 using three main rules of combination (Dempster’s rule,
DSmH and PCR5). After elementary derivations, one gets final results given in Table 2. In the Bayesian case,
all BCRs and Shafer’s conditioning rule (with Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.

5 Classification of the BCRs

Let’s note:
Du

2 = Redistribution of the whole D2 is done undifferentiated to D1

Du
3 = Redistribution of the whole D3 is done undifferentiated to D1

Dp
2 = Redistribution of D2 is particularly done from each Z ∈ D2 to specific elements in D1

Dp
3 = Redistribution of D3 is particularly done from each W ∈ D3 to specific elements in D1

Ds
2 = D2 is split into two disjoint subsets: one whose elements have the property that s(W ) 6= 0, an another

one such that its elements have s(W ) = 0. Each subset is differently redistributed to D1

Ds
3 = D3 is similarly split into two disjoint subsets, that are redistributed as in Ds

2.

Thus, we can organize and classify the BCRs as in Table 3. Other belief conditioning rules could also be
defined according to Table 4. But in our opinions, the most detailed and exact transfer is done by BCR17.
So, we suggest to use preferentially BCR17 for a pessimistic/prudent view on conditioning problem and a more
refined redistribution of conflicting masses, or BCR12 for a very pessimistic/prudent view and less refined redis-
tribution. If the Shafer’s models holds for the frame under consideration, BCR12-21 will coincide with BCR2-11.
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Table 3: Classification of Belief Conditioning Rules

In summary, the best among these BCR1-31, that we recommend to use, are: BCR17 for a pessimistic/prudent
view on conditioning problem and a more refined redistribution of conflicting masses, or BCR12 for a very pes-
simistic/prudent view and less refined redistribution.

BCR17 does the most refined redistribution of all BCR1-31, i.e.
- the mass m(W ) of each element W in D2 ∪D3 is transferred to those X ∈ D1 elements which are included in
W if any proportionally with respect to their non-empty masses;
- if no such X exists, the mass m(W ) is transferred in a pessimistic/prudent way to the k-largest elements from
D1 which are included in W (in equal parts) if any;
- if neither this way is possible, then m(W ) is indiscriminately distributed to all X ∈ D1 proportionally with
respect to their nonzero masses.

BCR12 does the most pessimistic/prudent redistribution of all BCR1-31, i.e.:
- the mass m(W ) of each W in D2 ∪ D3 is transferred in a pessimistic/prudent way to the k-largest elements
X from D1 which are included in W (in equal parts) if any;
- if this way is not possible, then m(W ) is indiscriminately distributed to all X from D1 proportionally with
respect their nonzero masses.

BCR12 is simpler than BCR17. BCR12 can be regarded as a generalization of SCR from the power set to
the hyper-power set in the free DSm free model (all intersections non-empty). In this case the result of BCR12
is equal to that of m1(.) combined with m2(A) = 1, when the truth is in A, using the DSm Classic fusion rule.

6 Properties for all BCRs

1. For any X /∈ PD(A) = D1, one has mBCR(X |A) = 0 by definition.
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Ways of redistribution Belief Conditioning Rule Specific Elements
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Table 4: More Belief Conditioning Rules

2. One has: ∑

X∈PD(A)

mBCR(X |A) = 1

This can be proven from the fact that
∑

X∈DΘ m(X) = 1. and DΘ \ {∅} = D1 ∪ D2 ∪ D3, where D1, D2

and D3 have no element in common two by two. Since all masses of all elements from D2 and D3 are
transferred to the non-empty elements of D1using BCRs, no mass is lost neither gained, hence the total
sum of masses remains equal to 1.

3. Let Θ = {θ1, θ2, . . . , θn} and A = θ1∪θ2∪ . . .∪θn be the total ignorance. Then, mBCR1−31(X |A) = m(X)
for all X in DΘ, because DΘ \ {∅} coincides with D1. Hence there is no mass to be transferred from D2

or D3 to D1 since D2 and D3 do not exist (are empty).

4. This property reduces all BRCs to the Bayesian formula: mBCR(X |A) = m(X ∩ A)/m(A) for the trivial
Bayesian case when focal elements are only singletons (no unions, neither intersections) and the truth is
in one singleton only.

Proof: Let’s consider Θ = {θ1, θ2, ..., θn}, n ≥ 2, and all θi not empty, and DΘ ≡ Θ. Let’s have
a bba m(.) : DΘ 7→ [0, 1]. Without loss of generality, suppose the truth is in θ1 where m(θ1) > 0.
Then mBCR(θ1|θ1) = 1 and mBCR(X |θ1) = 0 for all X different from θ1. Then 1 = mBCR(θ1|θ1) =
m(θ1 ∩ θ1)/m(θ1) = 1, and for i 6= 1, we have 0 = mBCR(θi|θ1) = m(∅)/m(θ1) = 0.

5. In the Shafer’s model, and a Bayesian bba m(.), all BCR1-31 coincide with SCR. In this case the condi-
tioning with BCRs and fusioning with Dempster’s rule commute.

Proof: In a general case we can prove it as follows: Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, and without loss of
generality lets suppose the truth is in T = θ1∪θ2∪. . .∪θp, for 1 ≤ p ≤ n. Lets consider two Bayesian masses
m1(.) and m2(.). Then we can consider all other elements θp+1, . . . , θn as empty sets and in consequence
the sum of their masses as the mass of the empty set (as in Smets open world). BCRs work now exactly
as (or we can say it is reduced to) Dempster’s rule redistributing this empty set mass to the elements
in T proportionally with their nonzero corresponding mass. D1 = {θ1, θ2, . . . , θp}, D2 = {θp+1, . . . , θn},
D3 does not exist. And redistributing in m1(.|T ) this empty sets’ mass to non-empty sets θ1, θ2, . . . , θp

using BCRs is equivalent to combining m1(.) with mS(θ1 ∪ θ2 ∪ . . .∪ θp) = 1. Similarly for m2(.|T ). Since
Dempter’s fusion rule and Shafer’s conditioning rule commute and BCRs are reduced to Dempster’s rule
in a Shafer’s model and Bayesian case, then BCRs commute with Dempsters fusion rule in this case. QED

6. In the free DSm model, BCR12 can be regarded as a generalization of SCR from the power set to the
hyper-power set. The result of BCR12 conditioning of a mass m1(.), when the truth is in A, is equal to
that of fusioning m1(.) with m2(A) = 1, using the DSm Classic Rule.
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7 Open question on conditioning versus fusion

It is not to difficult too verify that fusion rules and conditioning rules do not commute in general, except
in Dempster-Shafer Theory because Shafer’s fusion and conditioning rules are based on the same operator2

(Dempster’s rule), which make derivation very simple and appealing.
We however think that things may be much more complex in reality than what has been proposed up to

now if we follow our interpretation of belief conditioning and do not see the belief conditioning as just a simple
fusion of the prior bba with a bba focused on the conditioning event where the truth is (subjectively) supposed
to be. From our belief conditioning interpretation, we make a strong difference between the fusion of several
sources of evidences (i.e. combination of bba’s) and the conditioning of a given belief assignment according
some extra knowledge (carrying some objective/absolute truth on a given subset) on the model itself. In our
opinion, the conditioning must be interpreted as a revision of bba according to new integrity constraint on the
truth of the space of the solutions. Based on this new idea on conditioning, we are face to a new and very
important open question which can be stated as follows3:

Let’s consider two prior bba’s m1(.) and m2(.) provided by two (cognitively) independent sources of evi-
dences defined on DΘ for a given model M (free, hybrid or Shafer’s model) and then let’s assume that the truth
is known to be later on in a subset A ∈ DΘ, how to compute the combined conditional belief?

There are basically two possible answers to this question depending on the order the fusion and the condi-
tioning are carried out. Let’s denote by ⊕ the generic symbol for fusion operator (PCR5, DSmH or whatever)
and by Cond(.) the generic symbol for conditioning operator (typically BCRs).

1. Answer 1 (Fusion followed by conditioning (FC)):

mFC(.|A) = Cond(m1(.) ⊕ m2(.)) (26)

2. Answer 2 (Conditioning followed by the fusion (CF)):

mCF (.|A) = Cond(m1(.))
︸ ︷︷ ︸

m1(.|A)

⊕Cond(m2(.))
︸ ︷︷ ︸

m2(.|A)

(27)

Since in general4 the conditioning and the fusion do not commute, mFC(.|A) 6= mCF (.|A), the fundamental
open question arises: How to justify the choice for one answer with respect to the other one (or maybe with
respect to some other answers if any) to compute the combined conditional bba from m1(.), m2(.) and any
conditioning subset A?

The only argumentation (maybe) for justifying the choice of mFC(.|A) or mCF (.|A) is only imposed by the
possible temporal/sequential processing of sources and extra knowledge one receives, i.e. if one gets first m1(.)
and m2(.) and later one knows that the truth is in A then mFC(.|A) seems intuitively suitable, but if one gets
first m1(.) and A, and later m2(.), then mCF (.|A) looks in better agreement with the chronology of information
one has received in that case. If we make abstraction of temporal processing, then this fundamental and very
difficult question remains unfortunately totally open.

7.1 Examples of non commutation of BCR with fusion

7.1.1 Example no. 1 (Shafer’s model and Bayesian bba’s)

Let’s consider Θ = {A, B, C} with Shafer’s model and the following prior Bayesian bba’s

m1(A) = 0.2 m1(B) = 0.6 m1(C) = 0.2

2Proof of commutation between the Shafers conditioning rule and Dempsters rule: Let m1(.) be a bba and mS(A) = 1. Then,
because Dempsters rule, denoted ⊕, is associative we have (m1 ⊕mS) ⊕ (m2 ⊕mS) = m1 ⊕ (mS ⊕m2) ⊕mS and because it is
commutative we get m1 ⊕ (m2 ⊕mS) ⊕mS and again because it is associative we have: (m1 ⊕m2) ⊕ (mS ⊕mS); hence, since
mS ⊕mS = mS , it is equal to: (m1 ⊕m2)⊕mS = m1 ⊕m2 ⊕mS , QED.

3The question can be extended for more than two sources actually.
4Because none of the new fusion and conditioning rules developed up to now satisfies the commutativity, but Dempster’s rule.
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m2(A) = 0.1 m2(B) = 0.4 m2(C) = 0.5

Let’s suppose one finds out the truth is in A∪B and let’s examine the results mCF (.|A∪B) and mFC(.|A∪B)
obtained from either the conditioning followed by the fusion, or the fusion followed by the conditioning.

• Case 1 : BCRs-based Conditioning followed by the PCR5-based Fusion

Using BCRs for conditioning, the mass m1(C) = 0.2 is redistributed to A and B proportionally to the
masses 0.2 and 0.6 respectively; thus x/0.2 = y/0.6 = 0.2/(0.2+0.6) = 1/4 and therefore x = 0.2 · (1/4) =
0.05 is added to m1(A), while y = 0.6 · (1/4) = 0.15 is added to m1(B). Hence, one finally gets

m1(A|A ∪ B) = 0.25 m1(B|A ∪ B) = 0.75 m1(C|A ∪ B) = 0

Similarly, the conditioning of m2(.) using the BCRs, will provide

m2(A|A ∪ B) = 0.2 m2(B|A ∪ B) = 0.8 m2(C|A ∪ B) = 0

If one combines m1(.|A ∪ B) and m2(.|A ∪ B) with PCR5 fusion rule, one gets5

mCBCRsFP CR5
(A|A ∪ B) = 0.129198 mCBCRsFP CR5

(B|A ∪ B) = 0.870802

• Case 2 : PCR5-based Fusion followed by the BCRs-based Conditioning

If one combines first m1(.) and m2(.) with PCR5 fusion rule, one gets

mPCR5(A) = 0.090476 mPCR5(B) = 0.561731 mPCR5(C) = 0.347793

and if one applies any of BCR rules for conditioning the combined prior mPCR5(.), one finally gets

mFP CR5CBCRs(A|A ∪ B) = 0.138723 mFPCR5CBCRs(B|A ∪ B) = 0.861277

From cases 1 and 2, one has proved that there exists at least one example for which PCR5 fusion and BCRs
conditioning do not commute since

mFP CR5CBCRs(.|A ∪ B) 6= mCBCRsFP CR5
(.|A ∪ B).

• Case 3 : BCRs-based Conditioning followed by Dempster’s rule-based Fusion

If we consider the same masses m1(.) and m2(.) and if we apply the BCRs to each of them, one gets

m1(A|A ∪ B) = 0.25 m1(B|A ∪ B) = 0.75 m1(C|A ∪ B) = 0

m2(A|A ∪ B) = 0.20 m2(B|A ∪ B) = 0.80 m2(C|A ∪ B) = 0

then if one combines them with Dempsters rule, one finally gets

mCBCRsFDS (A|A ∪ B) = 0.076923 mCBCRsFDS (B|A ∪ B) = 0.923077

• Case 4 : Dempster’s rule based Fusion followed by BCRs-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one gets

mDS(A) = 0.055555 mDS(B) = 0.666667 mDS(C) = 0.277778

and if one applies BCRs for conditioning the prior mDS(.), one finally gets

mFDSCBCRs(A|A ∪ B) = 0.076923 mFDSCBCRs(B|A ∪ B) = 0.923077

5We specify explicitly in notations mCF (.) and mF C(.) the type of the conditioning and fusion rules used for convenience, i.e
mCBCRsFPCR5

(.) means that the conditioning is based on BCRs and the fusion is based on PCR5.
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From cases 3 and 4, we see that all BCRs (i.e. BCR1-BCR31) commute with Dempsters fusion rule in a
Shafers model and Bayesian case since:

mFDSCBCRs(.|A ∪ B) = mCBCRsFDS (.|A ∪ B).

But this is a trivial result because in this specific case (Shafer’s model with Bayesian bba’s), we know
(cf Property 5 in Section 6) that BCRs coincide with SCR and already know that SCR commutes with
Dempter’s fusion rule.

7.1.2 Example no. 2 (Shafer’s model and non Bayesian bba’s)

Let’s consider Θ = {A, B, C} with Shafer’s model and the following prior non Bayesian bba’s

m1(A) = 0.3 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.3

m2(A) = 0.1 m2(B) = 0.2 m2(C) = 0.3 m2(A ∪ B) = 0.2 m2(B ∪ C) = 0.2

Let’s suppose one finds out the truth is in B∪C and let’s examine the results mCF (.|B∪C) and mFC(.|B∪C)
obtained from either the conditioning followed by the fusion, or the fusion followed by the conditioning. In this
second example we only provide results for BCR12 and BCR17 since we consider them as the most appealing
BCR rules. We decompose DΘ into D1 = {B, C, B ∪ C}, D2 = {A} and D3 = {A ∪ B}.

• Case 1 : BCR12/BCR17-based Conditioning followed by the PCR5-based Fusion

Using BCR12 or BCR17 for conditioning m1(.) and m2(.), one gets herein the same result with both BCRs
for each conditional bba, i.e.

m1(B|B ∪ C) = 0.25 m1(C|B ∪ C) = 0.30 m1(B ∪ C|B ∪ C) = 0.45

m2(B|B ∪ C) = 15/35 m2(C|B ∪ C) = 12/35 m2(B ∪ C|B ∪ C) = 8/35

If one combines m1(.|B ∪ C) and m2(.|B ∪ C) with PCR5 fusion rule, one gets

mCBCR17FP CR5
(.|B ∪ C) = mCBCR12FP CR5

(.|B ∪ C)

with

mCBCR12FP CR5
(B|B ∪ C) = 0.446229

mCBCR12FP CR5
(C|B ∪ C) = 0.450914

mCBCR12FP CR5
(B ∪ C|B ∪ C) = 0.102857

• Case 2 : PCR5-based Fusion followed by BCR12/BCR17-based Conditioning

If one combines first m1(.) and m2(.) with PCR5 fusion rule, one gets

mPCR5(A) = 0.236167 mPCR5(B) = 0.276500 mPCR5(C) = 0.333333

mPCR5(A ∪ B) = 0.047500 mPCR5(B ∪ C) = 0.141612

and if one applies any of BCR12 or BCR17 rules for conditioning the (combined) prior mPCR5(.), one
finally gets the same final result with BCR12 and BCR17, i.e.

mFPCR5CBCR17
(.|B ∪ C) = mFP CR5CBCR12

(.|B ∪ C)

with

mFP CR5CBCR12
(B|B ∪ C) = 0.415159

mFP CR5CBCR12
(C|B ∪ C) = 0.443229

mFP CR5CBCR12
(B ∪ C|B ∪ C) = 0.141612



25

From cases 1 and 2, one has proved that there exists at least one example for which PCR5 fusion and
BCR12/17 conditioning rules do not commute since

mFPCR5CBCR12/17
(.|B ∪ C) 6= mCBCR12/17FP CR5

(.|B ∪ C).

• Case 3 : BCR12/BCR17-based Conditioning followed by Dempster’s rule-based Fusion

If we consider the same masses m1(.) and m2(.) and if we apply the BCR12 or BCR17 to each of them,
one gets same result, i.e.

m1(B|B ∪ C) = 0.25 m1(C|B ∪ C) = 0.30 m1(B ∪ C|B ∪ C) = 0.45

m2(B|B ∪ C) = 15/35 m2(C|B ∪ C) = 12/35 m2(B ∪ C|B ∪ C) = 8/35

then if one combines them with Dempsters rule, one finally gets

mCBCR12FDS (B|B ∪ C) =
125

275

mCBCR12FDS (C|B ∪ C) =
114

275

mCBCR12FDS (C|B ∪ C) =
36

275

and same result for mCBCR17FDS (.).

• Case 4 : Dempster’s rule based Fusion followed by BCR12/BCR17-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one gets

mDS(A) = 10/59 mDS(B) = 22/59 mDS(C) = 19/59

mDS(A ∪ B) = 2/59 mDS(B ∪ C) = 6/59

and if one applies BCR12 (or BCR17) for conditioning the prior mDS(.), one finally gets (same result is
obtained with BCR17)

mFDSCBCR12
(B|B ∪ C) =

1348

2773

mFDSCBCR12
(C|B ∪ C) =

1083

2773

mFDSCBCR12
(B ∪ C|B ∪ C) =

342

2773

In BCR12, mDS(A) = 10/59 is distributed to B, C, B ∪ C proportionally to their masses, i.e.

xB

22/59
=

yC

19/59
=

zB∪C

6/59
=

10/59

47/59
=

10

47

whence xB = (22/59) · (10/47) = 220/2773, yC = (19/59) · (10/47) = 190/2773 and zB∪C = (6/59) ·
(10/47) = 60/2773, and mDS(A ∪ B) = 2/59 is distributed to B only, since B is the 1-largest.

In BCR17, mDS(A) = 10/59 is similarly distributed to B, C, B ∪ C and mDS(A ∪ B) is also distributed
to B only, since B ⊂ A and mDS(B) > 0 and B is the only element with such properties. Herein BCR12
and BCR17 give the same result.

Therefore from cases 3 and 4, we see that BCR12 (and BCR17) don’t commute with Demspter’s rule for
Shafer’s model and a non-Bayesian bba since

mCBCR12FDS (.|B ∪ C) 6= mFDSCBCR12
(.|B ∪ C).
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• Case 5 : SCR-based Conditioning followed by Dempster’s rule based Fusion

If we consider the masses m1(.) and m2(.) and if we apply the SCR to each of them for conditioning, one
gets

m1(B|B ∪ C) = 2/7 m1(C|B ∪ C) = 2/7 m1(B ∪ C|B ∪ C) = 3/7

m2(B|B ∪ C) = 4/9 m2(C|B ∪ C) = 3/9 m2(B ∪ C|B ∪ C) = 2/9

then if one combines them with Dempsters rule, one finally gets

mCSCRFDS (B|B ∪ C) =
24

49
mCSCRFDS (C|B ∪ C) =

19

49
mCSCRFDS (C|B ∪ C) =

6

49

• Case 6 : Dempster’s rule based Fusion followed by the SCR-based Conditioning

If we apply first the fusion of m1(.) with m2(.) with Dempster’s rule of combination, one gets

mDS(A) = 10/59 mDS(B) = 22/59 mDS(C) = 19/59

mDS(A ∪ B) = 2/59 mDS(B ∪ C) = 6/59

and if one applies SCR for conditioning the prior mDS(.), one finally gets

mFDSCSCR(B|B ∪ C) =
24

49
mFDSCBCRs(C|B ∪ C) =

19

49
mFDSCBCRs(B ∪ C|B ∪ C) =

6

49

From cases 5 and 6, we verify that SCR commutes with Demspter’s rule for Shafer’s model and non-Bayesian
bba6 because

mCSCRFDS (.|B ∪ C) = mFDSCSCR(.|B ∪ C).

8 Conclusion

We have proposed in this paper several new Belief Conditioning Rules (BCRs) in order to adjust a given prior
bba m(.) with respect to the new conditioning information that have come in. The BCRs depend on the model
of DΘ. Several examples were presented that compared these BCRs among themselves and as well with Shafers
Conditioning Rule (SCD). Except for SCD, in general the BCRs do not commute with the fusion rules, and the
sequence in which they should be combined depends on the chronology of information received.
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