The Dual of a Theorem relative to the Orthocenter of a Triangle

Professor Ion Patrascu, National College "Buzești Brothers" Craiova - Romania
Professor Florentin Smarandache, University of New Mexico, Gallup, USA

In [1] we introduced the notion of Bobillier transversal relative to a point O in the plane of a triangle ABC; we use this notion in what follows.

We transform by duality with respect to a circle C o, r the following theorem relative to the orthocenter of a triangle.

Theorem 1. If ABC is a nonisosceles triangle, H its orthocenter, and AA_1, BB_1, CC_1 are cevians of a triangle concurrent at point Q different from H, and M, N, P are the intersections of the perpendiculars taken from H on given cevians respectively, with BC, CA, AB, then the points M, N, P are collinear.

Proof. We note with $\alpha = m \triangleleft BAA_1$; $\beta = m \triangleleft CBB_1$; $\gamma = m \triangleleft ACC_1$, see Figure 1. According to Ceva’s theorem, trigonometric form, we have the relation:

$$\frac{\sin \alpha}{\sin A - \alpha} \cdot \frac{\sin \beta}{\sin B - \beta} \cdot \frac{\sin \gamma}{\sin C - \gamma} = 1. \quad (1)$$

We notice that:

$$\frac{MB}{MC} = \frac{\text{Arie } MHB}{\text{Arie}(MHC)} = \frac{MHB \cdot \sin sin MHB}{MH \cdot HC \cdot \sin MHC}.$$

Because: $\triangleleft MHB \equiv \triangleleft A_1AC$ as angles of perpendicular sides, it follows that

$$m \triangleleft MHB = m A - \alpha.$$
Therewith \(m \angle M H C = m \angle M H B + m \angle B H C = 180^\circ \alpha \).

We thus get that:

\[
\frac{MB}{MC} = \frac{\sin A - \alpha}{\sin \alpha} \cdot \frac{HB}{HC}.
\]

Analogously, we find that:

\[
\frac{NC}{NA} = \frac{\sin B - \beta}{\sin \beta} \cdot \frac{HC}{HA}.
\]

\[
\frac{PA}{PB} = \frac{\sin C - \gamma}{\sin \gamma} \cdot \frac{HA}{HB}.
\]

Applying the reciprocal of Menelaus' theorem, we find, in view of (1), that:

\[
\frac{MB}{MC} \cdot \frac{HC}{HA} \cdot \frac{PA}{PB} = 1.
\]

This shows that \(M, N, P \) are collinear.

Note. Theorem 1 is true even if \(ABC \) is an obtuse, nonisosceles triangle. The proof is adapted analogously.

Theorem 2 (The Dual of the Theorem 1). If \(ABC \) is a triangle, \(O \) a certain point in his plan, and \(A_1, B_1, C_1 \) Bobillier transversals relative to \(O \) of \(ABC \) triangle, as well as \(A_2 - B_2 - C_2 \) a certain transversal in \(ABC \), and the perpendiculars in \(O \), and on \(OA_2, OB_2, OC_2 \) respectively, intersect the Bobillier
transversals in the points A_3, B_3, C_3, then the cevians AA_3, BB_3, CC_3 are concurrent.

Proof. We convert by duality with respect to a circle $\mathcal{C} \circ o, r$ the figure indicated by the statement of this theorem, i.e. Figure 2. Let a, b, c be the polars of the points A, B, C with respect to the circle $\mathcal{C} \circ o, r$. To the lines BC, CA, AB will correspond their poles $A'4 = bnc; \ B'4 = cna; \ C'4 = anb$.

To the points A_1, B_1, C_1 will respectively correspond their polars a_1, b_1, c_1 concurrent in transversal’s pole $A_1 - B_1 - C_1$.

Since $OA_1 \perp OA$, it means that the polars a and a_1 are perpendicular, so $a_1 \perp B'C'$, but a_1 pass through A', which means that Q' contains the height from A' of $A'B'C'$ triangle and similarly b_1 contains the height from B' and c_1 contains the height from C' of $A'B'C'$ triangle. Consequently, the pole of $A_1 - B_1 - C_1$ transversal is the orthocenter H' of $A'B'C'$ triangle. In the same way, to the points A_2, B_2, C_2 will correspond the polars to a_2, b_2, c_2 which pass respectively through A', B', C' and are concurrent in a point Q', the pole of the line $A_2 - B_2 - C_2$ with respect to the circle $\mathcal{C} \circ o, r$. Given $OA_2 \perp OA_3$, it means that the polars a_2 and a_3 are perpendicular, a_2 correspond to the cevian $A'Q'$, also a_3 passes through the the pole of the transversal $A_1 - B_1 - C_1$, so through
H', in other words Q_3 is perpendicular taken from H' on $A'Q'$; similarly, $b_2 \perp b_3, c_2 \perp c_3$, so b_3 is perpendicular taken from H' on $C'Q'$. To the cevian AA_3 will correspond by duality considered to its pole, which is the intersection of the polars of A and A_3, i.e. the intersection of lines a and a_3, namely the intersection of $B'C'$ with the perpendicular taken from H' on $A'Q'$; we denote this point by M'. Analogously, we get the points N' and P'. Thereby, we got the configuration from Theorem 1 and Figure 1, written for triangle $A'B'C'$ of orthocenter H'. Since from Theorem 1 we know that M', N', P' are collinear, we get the the cevians AA_3, BB_3, CC_3 are concurrent in the pole of transversal $M' - N' - P'$ with respect to the circle C_0, r, and Theorem 2 is proved.

References

[1] Ion Patrascu, Florentin Smarandache: „The Dual Theorem concerning Aubert Line“.