A GENERALIZATION OF EULER’S THEOREM ON CONGRUENCIES

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In the paragraphs which follow we will prove a result which replaces the theorem of Euler:

“If \((a, m) = 1\), then \(a^{\varphi(m)} \equiv 1 \pmod{m}\),

for the case when \(a\) and \(m\) are not relatively primes.

A. Introductory concepts.

One supposes that \(m > 0\). This assumption will not affect the generalization, because Euler’s indicator satisfies the equality:

\[\varphi(m) = \varphi(-m) \text{ (see [1])}, \]

and that the congruencies verify the following property:

\[a \equiv b \pmod{m} \iff a \equiv b \pmod{-m} \] (see [1] pp 12-13).

In the case of congruence modulo 0, there is the relation of equality. One denotes \((a,b)\) the greatest common factor of the two integers \(a\) and \(b\), and one chooses \((a,b) > 0\).

B. Lemmas, theorem.

Lemma 1: Let be \(a\) an integer and \(m\) a natural number \(> 0\). There exist \(d_0, m_0\) from \(\mathbb{N}\) such that \(a = a_0d_0\), \(m = m_0d_0\) and \((a_0, m_0) = 1\).

Proof:

It is sufficient to choose \(d_0 = (a, m)\). In accordance with the definition of the greatest common factor (GCF), the quotients of \(a_0\) and \(m_0\) and of \(a\) and \(m\) by their GCF are relatively primes (see [3], pp. 25-26).

Lemma 2: With the notations of lemma 1, if \(d_0 \neq 1\) and if:

\[d_0 = d_0d_1, \ m_0 = m_0d_1, \ (d_0, m_1) = 1 \text{ and } d_1 \neq 1, \]

then \(d_0 > d_1\) and \(m_0 > m_1\), and if \(d_0 = d_1\), then after a limited number of steps \(i\) one has \(d_0 > d_{i+1} = (d_i, m_i)\).

Proof:

\[\begin{cases} a = a_0d_0; & (a_0, m_0) = 1 \\ m = m_0d_0; & d_0 \neq 1 \end{cases} \]
\[
\begin{cases}
d_0 = d_0 d_1 \quad ; \quad (d_0^i, m_i) = 1 \\
m_0 = m_0 d_1 \quad ; \quad d_i \neq 1
\end{cases}
\]

From (0) and from (1) it results that \(a = a_0 d_0 = a_0 d_0^i d_1 \) therefore \(d_0 = d_0^i d_1 \) thus \(d_0 > d_1 \) if \(d_0^i \neq 1 \).

From \(m_0 = m_0 d_1 \) we deduct that \(m_0 > m_1 \).

If \(d_0 = d_1 \) then \(m_0 = m_0 d_0 = k \cdot d_0^i \) (\(z \in \mathbb{N}^* \) and \(d_0 \not| k \)).

Therefore \(m_1 = k \cdot d_0^i \); \(d_2 = (d_1, m_1) = (d_0, k \cdot d_0^i) \). After \(i = z \) steps, it results \(d_{i+1} = (d_0, k) < d_0 \).

Lemma 3: For each integer \(a \) and for each natural number \(m > 0 \) one can build the following sequence of relations:

\[
\begin{cases}
a = a_0 d_0 \quad ; \quad (a_0, m_0) = 1 \\
m = m_0 d_0 \quad ; \quad d_0 \neq 1 \\
d_0 = d_0^i d_1 \quad ; \quad (d_0^i, m_1) = 1 \\
m_0 = m_0 d_1 \quad ; \quad d_1 \neq 1
\end{cases}
\]

\[
\begin{cases}
d_{s-2} = d_{s-2}^i d_{s-1} \quad ; \quad (d_{s-2}^i, m_{s-1}) = 1 \\
m_{s-2} = m_{s-2} d_{s-1} \quad ; \quad d_{s-1} \neq 1 \\
d_{s-1} = d_{s-1}^i d_s \quad ; \quad (d_{s-1}^i, m_s) = 1 \\
m_{s-1} = m_{s-1} d_s \quad ; \quad d_s \neq 1
\end{cases}
\]

Proof:

One can build this sequence by applying lemma 1. The sequence is limited, according to lemma 2, because after \(r_1 \) steps, one has \(d_0 > d_{r_1} \) and \(m_0 > m_{r_1} \), and after \(r_2 \) steps, one has \(d_{r_1} > d_{r_1 + r_2} \) and \(m_{r_1} > m_{r_1 + r_2} \), etc., and the \(m_i \) are natural numbers. One arrives at \(d_s = 1 \) because if \(d_s \neq 1 \) one will construct again a limited number of relations \((s+1), \ldots, (s+r)\) with \(d_{s+r} < d_s \).

Theorem: Let us have \(a, m \in \mathbb{Z} \) and \(m \neq 0 \). Then \(a^{\phi(m_s)} + s \equiv a^s \pmod{m} \) where \(s \) and \(m_s \) are the same ones as in the lemmas above.

Proof:
Similar with the method followed previously, one can suppose $m > 0$ without reducing the generality. From the sequence of relations from lemma 3, it results that:

$$a = a_d d_0 = a_d d_0 d_1 = a_d d_0 d_1 d_2 = ... = a_d d_0 d_1 \ldots d_{s-1} d_s$$

and

$$m = m_d d_0 = m_d d_1 d_0 = m_d d_2 d_1 d_0 = ... = m_d d_s d_{s-1} \ldots d_1 d_0$$

and

$$m_s d_s d_{s-1} \ldots d_1 d_0 = d_s d_{s-1} \ldots d_1 m_s.$$

From (0) it results that $d_0 = (a, m)$, and from (i) that $d_i = (d_{i-1}, m_{i-1})$, for all i from $\{1, 2, \ldots, s\}$.

$$d_0 = d_0^1 d_1^2 \ldots \ldots d_s^{i_{s-1}}$$

$$d_1 = d_1^1 d_2^2 \ldots \ldots d_s^{i_{s-1}}$$

$$\ldots \ldots$$

$$d_{s-1} = d_{s-1}^1 d_s$$

$$d_s = d_s$$

Therefore

$$d_0 d_1 d_2 \ldots \ldots d_{s-1} d_s = (d_0^1)^i (d_1^2)^i (d_2^3)^i \ldots (d_{s-1}^{i_{s-1}})^i (d_s^{i_{s-1}})^i = (d_0^1)^i (d_1^2)^i (d_2^3)^i \ldots (d_{s-1}^{i_{s-1}})^i$$

because $d_s = 1$.

Thus $m = (d_0^1)^i (d_1^2)^i (d_2^3)^i \ldots (d_{s-1}^{i_{s-1}})^i \cdot m_s$;

therefore $m_s \mid m$;

$$(s) \quad (s)$$

$$(d_s, m_s) = (1, m_s) \text{ and } (d_{s-1}^1, m_s) = 1$$

(s-1)

$$(s-1)$$

$$1 = (d_{s-2}^i, m_{s-1}) = (d_{s-2}^i, m_s d_s) \text{ therefore } (d_{s-2}^i, m_s) = 1$$

(s-2)

$$(s-2)$$

$$1 = (d_{s-3}^i, m_{s-2}) = (d_{s-3}^i, m_{s-1} d_{s-1}) = (d_{s-3}^i, m_s d_{s-1} d_{s-1}) \text{ therefore } (d_{s-3}^i, m_s) = 1$$

$$\ldots \ldots$$

(i+1)

$$1 = (d_{i+1}^i, m_{i+1}) = (d_{i+1}^i, m_{i+1} d_{i+2}) = (d_{i+1}^i, m_{i+2} d_{i+3} d_{i+2}) = \ldots = (d_{i+1}^i, m_s d_s d_{s-1} \ldots d_{i+2}) \text{ thus } (d_{i+1}^i, m_s) = 1, \text{ and this is for all } i \text{ from } \{0, 1, \ldots, s-2\}.$$

$$\ldots \ldots$$

(0)

$$1 = (a_0, m_0) = (a_0, d_1 \ldots d_{s-1} d_s) \text{ thus } (a_0, m_s) = 1.$$

From the Euler’s theorem results that:

$$(d_i^i)^{\phi(m_s)} \equiv 1 \pmod{m_s} \text{ for all } i \text{ from } \{0, 1, \ldots, s\},$$

$$a_0^{\phi(m_s)} \equiv 1 \pmod{m_s}.$$
but \(a_0^{\varphi(m_s)} = a_0^{\varphi(m_s)} (d_0^1)^{\varphi(m_s)} (d_1^2)^{\varphi(m_s)} \ldots (d_{s-1}^{d_{s-1}})^{\varphi(m_s)} \)

therefore \(a^{\varphi(m_s)} \equiv 1 \ldots \ldots 1 \pmod{m_s} \)

\[a^{\varphi(m_s)} \equiv 1 \pmod{m_s} \]

Multiplying by:

\((d_0^1)^{d_0^1} (d_1^2)^{d_1^2} \ldots (d_{s-1}^{d_{s-1}})^{d_{s-1}^{d_{s-1}}} \) we obtain:

\[a_0^s (d_0^1)^{s-1} (d_1^1)^{s-2} (d_2^1)^{s-3} \ldots (d_{s-1}^{d_{s-1}})^{1} \cdot a^{\varphi(m_s)} \equiv a_0^s (d_0^1)^{s-1} (d_1^1)^{s-2} (d_2^1)^{s-3} \ldots (d_{s-1}^{d_{s-1}})^{1} \cdot 1 \pmod{m_s} \]

Observations:

(1) If \((a,m) = 1\) then \(d = 1\). Thus \(s = 0\), and according to our theorem one has

\[a^{\varphi(m_s) + 0} \equiv a^0 (\pmod{m}) \text{ therefore } a^{\varphi(m_s) + 0} \equiv 1 (\pmod{m}) \]

But \(m = m_0 d_0 = m_0 \cdot 1 = m_0\). Thus:

\[a^{\varphi(m)} \equiv 1 (\pmod{m}), \text{ and one obtains Euler’s theorem.} \]

(2) Let us have \(a\) and \(m\) two integers, \(m \neq 0\) and \((a,m) = d_0 \neq 1\), and \(m = m_0 d_0\).

If \((d_0, m_0) = 1\), then \(a^{\varphi(m_0) + 1} \equiv a (\pmod{m})\).

Which, in fact, it results from our theorem with \(s = 1\) and \(m_1 = m_0\).

This relation has a similar form to Fermat’s theorem:

\[a^{\varphi(p) + 1} \equiv a (\pmod{p}) \]

C. AN ALGORITHM TO SOLVE CONGRUENCIES

One will construct an algorithm and will show the logic diagram allowing to calculate \(s\) and \(m_s\) of the theorem.

Given as input: two integers \(a\) and \(m\), \(m \neq 0\).

It results as output: \(s\) and \(m_s\) such that

\[a^{\varphi(m_s) + s} \equiv a^s (\pmod{m}) \]

Method:

(1) \(A := a\)

\(M := m\)

\(i := 0\)

(2) Calculate \(d := (A,M)\) and \(M' = M / d\).

(3) If \(d = 1\) take \(S := i\) and \(m_s = M'\) stop.

If \(d \neq 1\) take \(A := d\), \(M := M'\)

\(i := i + 1\), and go to (2).
Remark: the accuracy of the algorithm results from lemma 3 and from the theorem.
See the flow chart on the following page.
In this flow chart, the SUBROUTINE LCD calculates $D = (A, M)$ and chooses $D > 0$.

Application: In the resolution of the exercises one uses the theorem and the algorithm to calculate s and m_i.

Example: $6^{25604} \equiv ? \pmod{105765}$

One cannot apply Fermat or Euler because $(6,105765) = 3 \neq 1$. One thus applies the algorithm to calculate s and m_i and then the previous theorem:

$$d_0 = (6,105765) = 3 \quad m_0 = 105765 / 3 = 35255$$

$i = 0; 3 \neq 1$ thus $i = 0 + 1 = 1$, $d_1 = (3,35255) = 1$, $m_1 = 35255 / 1 = 35255$.

Therefore $6^{35255} \equiv 1 \pmod{105765}$ thus $6^{25604} \equiv 6^4 \pmod{105765}$.

Flow chart:

1. START
2. READ A1, M1
3. A := A1
4. M := M1
5. I := 0
6. SUBROUTINE LCD (A,M,D)
7. D = 1
8. I := I + 1
9. M := M/D
10. A := D
11. YES: S = I
12. YES: MS = M
13. WRITE S, MS
14. STOP
BIBLIOGRAPHY:
