In these paragraphs one presents three generalizations of the famous theorem of Ceva, which states:

“If in a triangle ABC one draws the concurrent straight lines AA_1, BB_1, CC_1, then $\frac{A_1A}{AA_1}, \frac{B_1B}{BB_1}, \frac{C_1C}{CC_1} = -1$.

Theorem 1: Let us have the polygon $A_1A_2...A_n$, a point M in its plane, and a circular permutation $p = \left(\begin{array}{cccc} 1 & 2 & ... & n-1 \\ 2 & 3 & ... & n \end{array} \right)$. One notes M_{ij} the intersections of the line A_iM with the lines $A_{i+s}A_{i+s+1}...A_{i+s+t-1}A_{i+s+t}$ (for all i and j, $j \in \{i+s,...,i+s+t-1\}$).

If $M_{ij} \neq A_i$ for all respective indices, and if $2s+t = n$, one has:

$\prod_{i=1}^{n} \prod_{j=1, i+s}^{i+s+t-1} \frac{M_{ij}A_j}{M_{ij}A_{p(j)} = (-1)^s \cdot s \text{ and } t \text{ are natural non-zero numbers).}$

Analytical demonstration: Let M be a point in the plain of the triangle ABC, such that it satisfies the conditions of the theorem. One chooses a Cartesian system of axes, such that the two parallels with the axes which pass through M do not pass by any point A_i (this is possible).

One considers $M(a,b)$, where a and b are real variables, and $A_i(X_i,Y_i)$ where X_i and Y_i are known, $i \in \{1,2,...,n\}$.

The former choices ensure us the following relations:

$X_i - a \neq 0$ and $Y_i - b \neq 0$ for all $i \in \{1,2,...,n\}$.

The equation of the line A_iM ($1 \leq i \leq n$) is:

$\frac{x - a}{X_i - a} = \frac{y - b}{Y_i - b}$. One notes that $d(x,y;X_i,Y_i) = 0$.

One has

$\frac{M_{ij}A_j}{M_{ij}A_{p(j)}} = \frac{\delta(A_{ij},A_i)A_i}{\delta(A_{p(j)},A_i)A_i} = \frac{d(X_i,Y_i;X_i,Y_i)}{d(X_{p(j)},Y_{p(j)};X_i,Y_i)} = \frac{D(j,i)}{D(p(j),i)}$.

1
where $\delta(A,ST)$ is the distance from A to the line ST, and where one notes with $D(a,b)$ for $d(X_a,Y_a;X_b,Y_b)$.

Let’s calculate the product, where we will use the following convention: $a+b$ will mean $p(p(...p(a)...))$, and $a-b$ will mean $p^{-1}(p^{-1}(...p^{-1}(a)...))$

$$\prod_{j=i+s}^{i+s+t-1} \frac{M_j A_j}{M_{j+1} A_{j+1}} = \prod_{j=i+s}^{i+s+t-1} \frac{D(j,i)}{D(j+1,i)} =$$

$$= \frac{D(i+s,i)}{D(i+s+1,i)} \frac{D(i+s+1,i)}{D(i+s+2,i)} \cdots \frac{D(i+s+t-1,i)}{D(i+s+t,i)} =$$

$$= \frac{D(i+s,i)}{D(i+s+t,i)} \frac{D(i+s,i)}{D(i-s,i)}$$

The initial product is equal to:

$$\prod_{i=1}^{n} \frac{D(i+s,i)}{D(i-i,s)} = \frac{D(1+s,1)}{D(1,1+s)} \frac{D(2+s,2)}{D(2,2+s)} \cdots \frac{D(2s,s)}{D(2s,2s)} \frac{D(2s+1,s+1)}{D(2s+1,s+1)} \frac{D(2s+t,s+t)}{D(2s+t,2s+t)} \cdots \frac{D(2s+t+s,s+t+s)}{D(2s+t+s,2s+t+s)} =$$

$$= \frac{D(1+s,1)}{D(1,1+s)} \frac{D(2+s,2)}{D(2,2+s)} \cdots \frac{D(2s+t,s+t)}{D(2s+t,2s+t)} \cdots \frac{D(s,s)}{D(s,2s)} \frac{D(s+1,s+1)}{D(s+1,2s+1)} \cdots \frac{D(n,s)}{D(n,2s)} =$$

$$= \prod_{i=1}^{n} \frac{D(i+s,i)}{D(i,i+s)} \prod_{i=1}^{n} \left(- \frac{P(i+s)}{P(i)} \right) = (-1)^n$$

because:

$$\frac{D(r,p)}{D(p,r)} = \frac{X_r - a}{X_p - a} \frac{Y_r - b}{Y_p - b} = - \frac{(X_r - a)(Y_r - b)}{(X_p - a)(Y_p - b)} = - \frac{P(r)}{P(p)}$$

The last equality resulting from what one notes: $(X_r - a)(Y_r - b) = P(t)$. From (1) it results that $P(t) \neq 0$ for all t from $\{1,2,...,n\}$. The proof is completed.

Comments regarding Theorem 1:
t represents the number of lines of a polygon which are intersected by a line A_0M; if one notes the sides A_1A_{i+1} of the polygon, by a_i, then $s+1$ represents the order of the first line intersected by the line A_iM (that is a_{s+1} the first line intersected by A_iM).

Example: If $s = 5$ and $t = 3$, the theorem says that:
- the line A_1M intersects the sides A_0A_7, A_7A_8, A_8A_9.
- the line A_2M intersects the sides $A_7A_8, A_8A_9, A_9A_{10}$.
- the line A_3M intersects the sides $A_8A_9, A_9A_{10}, A_{10}A_{11}$, etc.

Observation: The restrictive condition of the theorem is necessary for the existence of the ratios $\frac{M_iA_j}{M_jA_{p(j)}}$.

Consequence 1.1: Let's have a polygon $A_1A_2...A_{2k+1}$ and a point M in its plan. For all i from $\{1,2,...,2k+1\}$, one notes M_i the intersection of the line $A_iA_{p(i)}$ with the line which passes through M and by the vertex which is opposed to this line. If $M_i \not\in \{A_i,A_{p(i)}\}$ then one has: $\prod_{i=1}^{n} \frac{M_iA_j}{M_jA_{p(j)}} = -1$.

The demonstration results immediately from the theorem, since one has $s = k$ and $t = 1$, that is $n = 2k + 1$. The reciprocal of this consequence is not true. From where it results immediately that the reciprocal of the theorem is not true either.

Counterexample: Let us consider a polygon of 5 sides. One plots the lines A_1M_3, A_4M_4 and A_3M_5 which intersect in M.

Let us have $K = \frac{M_3A_3}{M_3A_4} \cdot \frac{M_4A_4}{M_4A_5} \cdot \frac{M_5A_5}{M_5A_1}$.

Then one plots the line A_4M_1 such that it does not pass through M and such that it forms the ratio:

(2) $\frac{M_4A_1}{M_1A_2} = 1/K$ or $2/K$. (One chooses one of these values, for which A_4M_1 does not pass through M.)

At the end one traces A_3M_2 which forms the ratio $\frac{M_5A_2}{M_2A_3} = -1$ or $-\frac{1}{2}$ in function of (2). Therefore the product:

$\prod_{i=1}^{5} \frac{M_iA_{j}}{M_jA_{p(j)}}$ without which the respective lines are concurrent.
Consequence 1.2: Under the conditions of the theorem, if for all \(i \) and
\(j, j \not\in \{i, p^{-1}(i)\} \), one notes \(M_y = A_i M \cap A_j A_{p(j)} \) and \(M_y \not\in \{A_j, A_{p(j)}\} \) then one has:
\[
\prod_{i,j=1}^{n} \frac{M_y A_j}{M_y A_{p(j)}} = (-1)^n.
\]

In effect one has \(s = 1 \), \(t = n - 2 \), and therefore \(2s + t = n \).

Consequence 1.3: For \(n = 3 \), it comes \(s = 1 \) and \(t = 1 \), therefore one obtains (as a particular case) the theorem of Ceva.

An Application of the Generalizations of Ceva’s Theorem is presented below.

Theorem 2: Let us consider a polygon \(A_1 A_2 \ldots A_n \) inserted in a circle. Let \(s \) and \(t \) be two non zero natural numbers such that \(2s + t = n \). By each vertex \(A_i \) passes a line \(d_i \) which intersects the lines \(A_i + s A_{i+s+1}, \ldots, A_{i+s+t-1} A_{i+s} \) at the points \(M_{i,s+1}, \ldots, M_{i+s+t-1} \) respectively and the circle at the point \(M_i' \). Then one has:
\[
\prod_{i=1}^{n} \prod_{j=i+s}^{i+s+t-1} \frac{M_y A_j}{M_y A_{j+1}} = \prod_{i=1}^{n} \frac{M_i' A_{i+s}}{M_i A_{i+s+1}}.
\]

Proof:
Let \(i \) be fixed.
1) The case where the point \(M_{i,s+1} \) is inside the circle.
There are the triangles \(A_i M_{i,s+1} A_{i+s} \) and \(M_i M_{i,s+1} A_{i+s+1} \) similar, since the angles \(M_{i,s+1} A_i A_{i+s} \) and \(M_{i,s+1} A_{i+s+1} M_i \) are equal. It results from it that:
\[
\frac{M_{i,s+1} A_i}{M_{i,s+1} A_{i+s+1}} = \frac{A_i A_{i+s}}{M_i A_{i+s+1}}.
\]
In a similar manner, one shows that the triangles $M_{i,i+s}A_iA_{i+s+1}$ and $M_{i,i+s}'A_{i+s}M_i'$ are similar, from which:

$$(2) \quad \frac{M_{i,i+s}'A_{i+s}}{M_{i,i+s}A_{i+s+1}} = \frac{A_iA_{i+s+1}}{M_iA_{i+s}}$$

Dividing (1) by (2) we obtain:

$$(3) \quad \frac{M_{i,i+s}'A_{i+s}}{M_{i,i+s}A_{i+s+1}} = \frac{M_{i}'A_{i+s}}{M_iA_{i+s+1}} \cdot \frac{A_iA_{i+s}}{A_iA_{i+s+1}}.$$

2) The case where $M_{i,i+s}$ is exterior to the circle is similar to the first, because the triangles (notations as in 1) are similar also in this new case. There are the same interpretations and the same ratios; therefore one has also the relation (3).

Let us calculate the product:
\[\prod_{j=i+s}^{i+t-1} \frac{M_{ij} A_j}{M_{ij} A_{j+1}} = \prod_{j=i+s}^{i+t-1} \left(\frac{M_{ij} A_{j+1}}{M_{ij} A_{j+1}} \cdot \frac{A A_j}{A A_{j+1}} \right) = \]
\[= \frac{M_{i+s}}{M_{i+s+1}} \cdot \frac{M_{i+s+1}}{M_{i+s+1}} \cdots \frac{M_{i+t-1}}{M_{i+t}} \cdot \frac{A A_i}{A A_{i+1}} \cdot \frac{A A_{i+1}}{A A_{i+2}} \cdots \frac{A A_{i+s-1}}{A A_{i+s}} = \frac{M_{i+s}}{M_{i+t}} \cdot \frac{A A_i}{A A_{i+s}} \]

Therefore the initial product is equal to:
\[\prod_{i=1}^{n} \left(\frac{M_{i+s}}{M_{i+s+1}} \cdot \frac{A A_i}{A A_{i+s}} \right) = \prod_{i=1}^{n} \frac{M_{i+s}}{M_{i+s+1}} \]
since:
\[\prod_{i=1}^{n} \frac{A A_i}{A A_{i+s}} = \frac{A A_{i+s}}{A A_{i+s+1}} \cdot \frac{A A_{i+s+1}}{A A_{i+s+2}} \cdots \frac{A A_{i+s}}{A A_{i+s+1}} = 1 \]

(by taking into account the fact that \(2s + t = n \)).

Consequence 2.1: If there is a polygon \(A_1 A_2 \ldots A_{2s-1} \) inscribed in a circle, and from each vertex \(A_i \) one traces a line \(d_i \) which intersects the opposite side \(A_{i+s-1} A_{i+s} \) in \(M_i \) and the circle in \(M_i' \) then:

\[\prod_{i=1}^{n} \frac{M_{i+s-1}}{M_{i+s}} = \prod_{i=1}^{n} \frac{M_{i+s-1}}{M_{i+s}} \]

In fact for \(t = 1 \), one has \(n \) odd and \(s = \frac{n+1}{2} \).

If one makes \(s = 1 \) in this consequence, one finds the mathematical note from [1], pages 35-37.

Application: If in the theorem, the lines \(d_i \) are concurrent, one obtains:
\[\prod_{i=1}^{n} \frac{M_{i+s}}{M_{i+s+1}} = (-1)^n \] (For this, see [2]).
References:
