A GENERALIZATION OF THE INEQUALITY OF MINKOWSKI

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

Theorem: If p is a real number ≥ 1 and $a_i^{(k)} \in \mathbb{R}^+$ with $i \in \{1, 2, ..., n\}$ and $k \in \{1, 2, ..., m\}$, then:

$$\left(\sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_{i}^{(k)}\right)^{p}\right)^{1/p} \leq \left(\sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{i}^{(k)}\right)^{p}\right)^{1/p}$$

Demonstration by recurrence on $m \in \mathbb{N}^*$. First of all one shows that:

$$\left(\sum_{i=1}^n \left(a_i^{(1)}\right)^p\right)^{1/p} \le \left(\sum_{i=1}^n \left(a_i^{(1)}\right)^p\right)^{1/p}$$
, which is obvious, and proves that the inequality

is true for m = 1.

(The case m = 2 precisely constitutes the inequality of Minkowski, which is naturally true!).

Let us suppose that the inequality is true for all the values less or equal to m

$$\left(\sum_{i=1}^{n} \left(\sum_{k=1}^{m+1} a_i^{(k)}\right)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} a_i^{(1)^p}\right)^{1/p} + \left(\sum_{i=1}^{n} \left(\sum_{k=2}^{m+1} a_i^{(k)}\right)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} \left(\sum_{k=2}^{m+1} a_i^{(k)}\right)^p\right)^{1/p}$$

$$\leq \left(\sum_{i=1}^{n} \left(a_{i}^{(1)}\right)^{p}\right)^{1/p} + \left(\sum_{k=2}^{m+1} \left(\sum_{i=1}^{n} a_{i}^{(k)}\right)^{p}\right)^{1/p}$$

and this last sum is $\left(\sum_{k=1}^{m+1} \left(\sum_{i=1}^{n} a_i^{(k)}\right)^p\right)^{1/p}$ therefore the inequality is true for the level m+1.