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Abstract – The recent theory of plausible and paradoxical reasoning (DSmT) developed by the authors appears
to be a nice promising theoretical tools to solve many information fusion problems where the Shafer’s model
cannot be used due to the intrinsic paradoxical nature of the elements of the frame of discernment and where
a strong internal conflict between sources arises. The main idea of DSmT is to work on the hyper-powerset of
the frame of discernment of the problem under consideration. Although the definition of hyper-powerset is well
established, the major difficulty in practice is to generate such hyper-powersets in order to implement DSmT
fusion rule on computers. We present in this paper a simple algorithm for generating hyper-powersets and
discuss the limitations of our actual computers to generate such hyper-powersets when the dimension of the
problem increases.
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1 Introduction
The Dezert-Smarandache theory (DSmT for short) of plausible and paradoxical reasoning [8, 9, 22] is a

generalization of the classical Dempster-Shafer theory (DST) [18] which allows to formally combine any types of
sources of information (rational, uncertain or paradoxical). The DSmT is able to solve complex fusion problems
where the DST usually fails, specially when conflicts (paradoxes) between sources become large and when the
refinement of the frame of discernment Θ is inaccessible because of the vague, relative and imprecise nature of
elements of Θ (see [9] for justification and examples). The foundation of DSmT is based on the definition of
the hyper-powerset DΘ of a general frame of discernment Θ. Θ must be considered as a set {θ1, . . . , θn} of n
elements considered as exhaustive which cannot be precisely defined and separated so that no refinement of Θ
in a new larger set Θref of disjoint elementary hypotheses is possible in contrast with the classical Dempster-
Shafer Theory (DST). The DSmT deals directly with paradoxical/conflicting sources of information into this new
formalism and proposes a new and very simple (associative and commutative) rule of combination for conflicting
sources of informations (corpus/bodies of evidence). Some interesting results based on DSmT approach can be
found in [24, 4]. Before going deeper into the DSmT it is necessary to briefly present first the foundations of
the DST and DSmT for a better understanding of the important differences between these two theories.

2 Short presentation of the DST
Let Θ = {θ1, θ2, . . . , θn} be the frame of discernment of the problem under consideration having n exhaustive

and exclusive elementary hypothesis θi. This corresponds to the Shafer’s model of the problem. Such model
assumes that an ultime refinement of the problem is possible so that θi are well precisely defined/identified in
such a way that we are sure that they are exclusive and exhaustive. From this Shafer’s model, a basic belief
assignment (bba) m(.) : 2Θ → [0, 1] associated to a given body of evidence B (also called sometimes corpus of
evidence) is defined by

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1 (1)

http://lanl.arXiv.org/abs/math/0309431v1
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where 2Θ is called the powerset of Θ, i.e. the set of all subsets of Θ. From any bba, one defines the belief and
plausibility functions of A ⊆ Θ as

Bel(A) =
∑

B∈2Θ,B⊆A

m(B) (2)

Pl(A) =
∑

B∈2Θ,B∩A 6=∅

m(B) = 1 − Bel(Ā) (3)

Now let Bel1(.) and Bel2(.) be two belief functions over the same frame of discernment Θ and their corre-
sponding bba m1(.) and m2(.) provided by two distinct bodies of evidence B1 and B2. Then the combined global
belief function denoted Bel(.) = Bel1(.) ⊕ Bel2(.) is obtained by combining the information granules m1(.) and
m2(.) through the following Dempster’s rule of combination [m1 ⊕ m2](∅) = 0 and ∀B 6= ∅ ∈ 2Θ,

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(4)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The orthogonal sum

m(.) , [m1 ⊕ m2](.) is considered as a basic belief assignment if and only if the denominator in equation (4) is
non-zero. The term k12 ,

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2.
When k12 = 1, the orthogonal sum m(.) does not exist and the bodies of evidences B1 and B2 are said to be
in full contradiction. Such a case can arise when there exists A ⊂ Θ such that Bel1(A) = 1 and Bel2(Ā) = 1.
Same kind of trouble can occur also with the Optimal Bayesian Fusion Rule (OBFR) [6, 7].

The DST is attractive for the Data Fusion community because it gives a nice mathematical model for ig-
norance and it includes the Bayesian theory as a special case [18] (p. 4). Although very appealing, the DST
presents some weaknesses and limitations because of its model itself, the theoretical justification of the Demp-
ster’s rule of combination but also because of our confidence to trust the result of Dempster’s rule of combination
when the conflit becomes important between sources (k12 ր 1).

The Dempster’s rule of combination has however been a posteriori justified by the Smet’s axiomatic of the
Transferable Belief Model (TBM) in [23]. But we must also emphasize here that an infinite number of possible
rules of combinations can be built from the Shafer’s model following ideas initially proposed in [17] and corrected
here as follows:

• one first has to compute m(∅) by

m(∅) ,
∑

A∩B=∅

m1(A)m2(B)

• then one redistributes m(∅) on all (A 6= ∅) ⊆ Θ with some given coefficients wm(A) ∈ [0, 1] such that
∑

A⊆Θ wm(A) = 1 according to

{

wm(∅)m(∅) → m(∅)

m(A) + wm(A)m(∅) → m(A), ∀A 6= ∅
(5)

The particular choice of the set of coefficients wm(.) provides a particular rule of combination. Actually there
exists an infinite number of possible rules of combination. Some rules can be better justified than others
depending on their ability or not to preserve associativity and commutativity properties of the combination. It
can be easily shown in [17] that such general procedure provides all existing rules developed in the literature
from the Shafer’s model as alternative to the primeval Dempster’s rule of combination depending on the choice
of coefficients w(A). As example the Dempster’s rule of combination can be obtained from (5) by choosing
wm(∅) = 0 and wm(A) = m(A)/(1 − m(∅)) for all A 6= ∅. The Yager’s rule of combination is obtained by
choosing wm(Θ) = 1 while the ”Smets’ rule of combination” is obtained by choosing wm(∅) = 1 and thus
accepting the possibility to deal with bba such that m(∅) > 0.



3

3 Foundations of the DSmT
The development of the Dezert-Smarandache theory of plausible and paradoxical reasoning (called DSmT

for short) comes from the necessity to overcome the two following inherent limitations of the DST which are
closely related with the acceptance of the third middle excluded principle, i.e.

(C1) - the DST considers a discrete and finite frame of discernment Θ based on a set of exhaustive and exclusive
elementary elements θi.

(C2) - the bodies of evidence are assumed independent and provide their own belief function on the powerset
2Θ but with same interpretation for Θ.

The foundation of the DSmT is based on the refutation of the principle of the third excluded middle for
a wide class of fusion problems due to the nature of the elements of Θ. By accepting the third middle, we
can easily handle the possibility to deal directly with paradoxes (partial vague overlapping elements/concepts)
of the frame of discernment. This is the DSm model. In other words, we include the third exclude directly
into the formalism to develop the DSmT and relax the (C1) and (C2) constraints of the Shafer’s model. By
doing this, a wider class of fusion problem can be attacked by the DSmT. The relaxation of the constraint
(C1) can be justified since, in many problems (see example in [9]), the elements of Θ generally correspond only
to imprecise/vague notions and concepts so that no refinement of Θ satisfying the first constraint is actually
possible (specially if natural language is used to describe elements of Θ).

The DSmT refutes also the excessive requirement imposed by (C2) in the Shafer’s model, since it seems
clear to us that, the same frame Θ may be interpreted differently by the distinct bodies of evidence (experts).
Some subjectivity on the information provided by a source of information is almost unavoidable, otherwise this
would assume, as within the DST, that all bodies of evidence have an objective/universal (possibly uncertain)
interpretation or measure of the phenomena under consideration which unfortunately rarely occurs in reality,
but when bba are based on some objective probabilities transformations. But in this last case, probability theory
can handle properly the information; and the DST, as well as the DSmT, becomes useless. If we now get
out of the probabilistic background argumentation, we claim that in most of cases, the sources of evidence
provide their beliefs about some hypotheses only with respect to their own worlds of knowledge and experience
without reference to the (inaccessible) absolute truth of the space of possibilities. The DSmT includes the
possibility to deal with evidences arising from different sources of information which don’t have access to
absolute interpretation of the elements Θ under consideration. The DSmT can be interpreted as a general and
direct extension of Bayesian theory and the Dempster-Shafer theory in the following sense. Let Θ = {θ1, θ2} be
the simpliest frame of discernment involving only two elementary hypotheses (with no additional assumptions
on θ1 and θ2), then

• the probability theory deals with basic probability assignments (bpa) m(.) ∈ [0, 1] such that m(θ1) +
m(θ2) = 1

• the DST deals with bba m(.) ∈ [0, 1] such that m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

• the DSmT theory deals with generalized bba m(.) ∈ [0, 1] such that m(θ1)+m(θ2)+m(θ1∪θ2)+m(θ1∩θ2) =
1

3.1 Notion of hyper-powerset D
Θ

One of the cornerstones of the DSmT is the notion of hyper-powerset which is now presented. Let Θ =
{θ1, . . . , θn} be a set of n elements which cannot be precisely defined and separated so that no refinement of
Θ in a new larger set Θref of disjoint elementary hypotheses is possible (we abandon here the Shafer’s model).
The hyper-powerset DΘ is defined as the set of all composite propositions built from elements of Θ with ∪ and
∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.
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The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ which are
self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below. The cardinality
of DΘ is majored by 22n

when Card(Θ) = |Θ| = n. The generation of hyper-power set DΘ is closely related
with the famous Dedekind’s problem [5, 3] on enumerating the set of monotone Boolean functions as it will be
presented in the sequel with the generation of the elements of DΘ.

Example of the first hyper-powersets DΘ

In the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 , ∅} and |DΘ| = 1. When Θ = {θ1},
one has DΘ = {α0 , ∅, α1 , θ1} and |DΘ| = 2. When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and
|DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2, α2 , θ1, α3 , θ2 and α4 , θ1 ∪ θ2. When Θ = {θ1, θ2, θ3}, one has
DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 (see [9] for details) with

αi

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

α2 , θ1 ∩ θ2

α3 , θ1 ∩ θ3

α4 , θ2 ∩ θ3

α5 , (θ1 ∪ θ2) ∩ θ3

α6 , (θ1 ∪ θ3) ∩ θ2

α7 , (θ2 ∪ θ3) ∩ θ1

α8 , [(θ1 ∩ θ2) ∪ θ3] ∩ (θ1 ∪ θ2)

α9 , θ1

α10 , θ2

α11 , θ3

α12 , (θ1 ∩ θ2) ∪ θ3

α13 , (θ1 ∩ θ3) ∪ θ2

α14 , (θ2 ∩ θ3) ∪ θ1

α15 , (θ1 ∪ θ2)

α16 , (θ1 ∪ θ3)

α17 , (θ2 ∪ θ3)

α18 , (θ1 ∪ θ2 ∪ θ3)

Note that the classical complementary Ā of any proposition A (except for ∅ and Θ), is not involved within
DSmT because of the refutation of the third excluded middle. |DΘ| for n ≥ 1 follows the sequence of Dedekind’s
numbers1 1,2,5,19,167,7580,7828353,... [20].

From a general frame of discernment Θ, we define a map m(.) : DΘ → [0, 1] associated to a given body of
evidence B which can support paradoxical information, as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s generalized basic belief assignment (gbba) or the generalized basic belief mass
for A. The belief and plausibility functions are defined in almost the same manner as within the DST, i.e.

Bel(A) =
∑

B⊆A

B∈DΘ

m(B) and Pl(A) =
∑

B∩A6=∅

B∈DΘ

m(B)

These definitions are compatible with the DST definitions when the sources of information become uncertain
but rational (they do not support paradoxical information). We still have ∀A ∈ DΘ, Bel(A) ≤ Pl(A).

1Actually this sequence corresponds to the sequence of Dedekind minus one since we don’t count the last degenerate isotone
function f

22n
−1

(.) as element of DΘ (see section 4.2)
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3.2 The DSm rule of combination

The DSm rule of combination m(.) , [m1 ⊕ m2](.) of two distinct (but potentially paradoxical) sources of
evidences B1 and B2 over the same general frame of discernment Θ with belief functions Bel1(.) and Bel2(.)
associated with general information granules m1(.) and m2(.) is given by ∀C ∈ DΘ,

m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B) (6)

Since DΘ is closed under ∪ and ∩ operators, this new rule of combination guarantees that m(.) : DΘ → [0, 1] is
a proper general information granule. This rule of combination is commutative and associative and can always
be used for the fusion of paradoxical or rational sources of information (bodies of evidence). It is important to
note that any fusion of sources of information generates either uncertainties, paradoxes or more generally both.
This is intrinsic to the general fusion process itself. The theoretical justification of the DSm rule can be found
in [9].

This DSm rule of combination seems at the first glance very expensive in terms of computations and memory
size due to the huge number of elements in DΘ. This is only true if the cores (the set of focal elements of gbba)
K1(m1) and K2(m2) coincide with DΘ; in other words when m1(A) > 0 and m2(A) > 0 for all A 6= ∅ ∈ DΘ.
Fortunately, it is important to note here that in most of practical applications the sizes of K1(m1) and K2(m2)
are much smaller than |DΘ| because bodies of evidence generally allocate their basic belief assignments only
over a subset of hyper-powerset. This makes things easier for the implementation of the DSm rule (6). The
DSm rule is actually very easy to implement. It suffices for each focal element of K1(m1) to multiply it with
the focal elements of K2(m2) and then to pool all combinations which are logically equivalent under the algebra
of sets according to the following scheme

Figure 1: Representation of the DSm rule

The figure above represents the DSm network architecture of the DSm rule of combination. The first layer
of the network consists in all bba of focal elements Ai, i = 1, . . . , n of m1(.). The second layer of the network
consists in all bba of focal elements Bj , j = 1, . . . , k of m2(.). Each node of layer 2 is connected with each node
of layer 1. The output layer (on the right) consists in the combined basic belief assignments of all possible
intersections Ai∩Bj , i = 1, . . . , n and j = 1, . . . , k. The last step of DSm rule (not included on the figure due to
space limitation) consists in the compression of the output layer by regrouping (additioning) all the combined
belief assignments corresponding to the same focal elements (by example if X = A2 ∩ B3 = A4 ∩ B5, then
m(X) = m(A2 ∩B3)+m(A4 ∩B5)). If a third body of evidence provides a new bba m3(.), the one can combine
it by connecting the output layer with the layer associated to m3(.), and so on. Because of commutativity and
associativity properties of DSm rule, the DSm network can be designed with any order for the layers. The DSm
rule of combination can be used for the fusion of any kind of information, whereas the Dempster’s rule within
Shafer’s model can not be used in cases where paradoxist information occurs, or degree of conflict is 1, or when
elements of the frame of discernment are not refinable in exclusive finer atoms.
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4 The generation of D
Θ

4.1 Memory size requirements

Before going further on the generation of DΘ, it is important to estimate the memory size for storing the
elements of DΘ for |Θ| = n. Since each element of DΘ can be stored as a 2n − 1-binary string, the memory size
for DΘ is given by the right column of the following table (we do not count the size for ∅ which is 0 and the
minimum length is considered here as the byte (8 bits)):

|Θ| = n size/elem. # of elem. Size of DΘ

2 1 byte 4 4 bytes
3 1 byte 18 18 bytes
4 2 bytes 166 0.32 Kb
5 4 bytes 7579 30 Kb
6 8 bytes 7828352 59 Mb
7 16 bytes ≈ 2.4 · 1012 3.6 · 104 Gb
8 32 bytes ≈ 5.6 · 1022 1.7 · 1015 Gb

This table shows the extreme difficulties for our computers to store all the elements of DΘ when |Θ| > 6. This
complexity must be however relativized with respect to the number of all Boolean functions built from the
ultimate refinement (if accessible) 2Θref of same initial frame Θ for applying DST. The comparison of |DΘ|
with respect to |2Θref | is given in the following table

|Θ| = n |DΘ| |2Θref | = 22n−1

2 5 23 = 8
3 19 27 = 128
4 167 215 = 32768
5 7580 231 = 2147483648

4.2 Monotone Boolean functions

A simple Boolean function f(.) maps n-binary inputs (x1, . . . , xn) ∈ {0, 1}n , {0, 1}× . . .×{0, 1} to a single
binary output y = f(x1, . . . , xn) ∈ {0, 1}. Since there are 2n possible input states which can map to either 0 or
1 at the output y, the number of possible boolean functions is 22n

. Each of these functions can be realized by
the logic operations ∧ (and), ∨ (or) and ¬ (not) [3, 28]. As simple example, let consider only a 2-binary input

variable (x1, x2) ∈ {0, 1} × {0, 1} then all the 222

= 16 possible Boolean functions fi(x1, x2) built from (x1, x2)
are summarized in the following tables

(x1, x2) f0 f1 f2 f3 f4 f5 f6 f7

(0, 0) 0 0 0 0 0 0 0 0
(0, 1) 0 0 0 0 1 1 1 1
(1, 0) 0 0 1 1 0 0 1 1
(1, 1) 0 1 0 1 0 1 0 1

Notation False x1 ∧ x2 x1 ∧ x̄2 x1 x̄1 ∧ x2 x2 x1 ⊻ x2 x1 ∨ x2

(x1, x2) f8 f9 f10 f11 f12 f13 f14 f15

(0, 0) 1 1 1 1 1 1 1 1
(0, 1) 0 0 0 0 1 1 1 1
(1, 0) 0 0 1 1 0 0 1 1
(1, 1) 0 1 0 1 0 1 0 1

Notation x1∨̄x2 x1△x2 x̄2 x1 ∨ x̄2 x̄1 x̄1 ∨ x2 x1 ⊼ x2 True

with the notation x̄ , ¬x, x1⊻x2 , (x1∨x2)∧(x̄1∨x̄2) (xor), x1∨̄x2 , ¬(x1∨x2) (nor), x1△x2 , (x1∧x2)∨(x̄1∧
x̄2) (xnor) and x1⊼x2 , ¬(x1∧x2) (nand). We denote by Fn(∧,∨,¬) = {f0(x1, . . . , xn), . . . , f22n−1(x1, . . . , xn)}

the set of all possible Boolean functions built from n-binary inputs. Let x , (x1, . . . , xn) and x′ , (x′
1, . . . , x

′
n)

be two vectors in {0, 1}n. Then x precedes x′ and we denote x � x′ if and only if xi ≤ x′
i for 1 ≤ i ≤ n (≤ is

applied componentwise). If xi < x′
i for 1 ≤ i ≤ n then x strictly precedes x′ which will be denoted as x ≺ x′.
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A Boolean function f is said to be a non-decreasing monotone (or isotone) Boolean function (or just mono-
tone Boolean function for short) if and only if ∀x,x′ ∈ {0, 1}n such that x � x′, then f(x) � f(x′) [26].
Since any isotone Boolean function involves only ∧ and ∨ operators (no ¬ operations) [28] and there exists a
correspondance between (∨,∧) operators in logics with (+, ·) in algebra of numbers and (∪,∩) in algebra of
sets, the generation of all elements of DΘ built from Θ with ∪ and ∩ operator is equivalent to the problem
of generating isotone Boolean functions over the vertices of the unit n-cube. We denote by Mn(∧,∨) the set
of all possible monotone Boolean functions built from n-binary inputs. Mn(∧,∨) is a subset of Fn(∧,∨,¬).
In the previous example, f1(x1, x2), f3(x1, x2), f5(x1, x2), f7(x1, x2) are isotone Boolean functions but special
functions f0(x1, x2) and f22n−1(x1, . . . , xn) must also be considered as monotone functions too. All the other
functions belonging to F2(∧,∨,¬) do not belong to M2(∧,∨) because they require the ¬ operator in their ex-
pressions and we can check easily that the monotonicity property x � x′ ⇒ f(x) � f(x′) does not hold for these
functions. The Dedekind’s problem [5] is to determine the number d(n) of distinct monotone Boolean functions
of n-binary variables. Dedekind [5] computed d(0) = 2, d(1) = 3, d(2) = 6, d(3) = 20 and d(4) = 168. Church
[1] computed d(5) = 7581 in 1940. Ward [27] computed d(6) = 7828354 in 1946. Church [2] then computed
d(7) = 2414682040998 in 1965. Between sixties and eighties, important advances have been done to obtain upper
and lower bounds for d(n) [12, 14, 16]. In 1991, Wiedemann [29] computed d(8) = 56130437228687557907788
(200 hours of computing time with a Cray-2 processor) which has recently been validated by Fidytek and al. in
[11]. Until now the computation of d(n) for n > 8 is still a challenge for mathematicians even if the following
direct exact explicit formula for d(n) has been obtained by Kisielewicz and Tombak (see [13, 25] for proof) :

d(n) =
22

n

∑

k=1

2n−1∏

j=1

j−1
∏

i=0

(1 − bk
i (1 − bk

j )

l(i)
∏

m=0

(1 − bi
m(1 − bj

m)))

where l(0) = 0 and l(i) = [log2 i] for i > 0, bk
i , [k/2i] − 2[k/2i+1] and [x] denotes the floor function (i.e. the

nearest integer less or equal to x). The difficulty arises from the huge number of terms involved in the formula,
the memory size and the highspeed computation requirements. The last advances and state of art in counting
algorithms of Dedekind’s numbers can be found in [25, 11, 26].

4.3 Generation of MBF

Before describing the general algorithm for generating the monotone Boolean functions (MBF), let examine
deeper the example of section 4.1. From previous tables, one can easily find the set of (restricted) MBF
M⋆

2(∧,∨) = {f0(x1, x2) = False, f1(x1, x2) = x1 ∧ x2, f5(x1, x2) = x2, f7(x1, x2) = x1 ∨ x2} which is equivalent,
using algebra of sets, to hyper-powerset DX = {∅, x1 ∩ x2, x1, x2, x1 ∪x2} associated with frame of discernment
X = {x1, x2}. Since the tautology f15(x1, x2) is not involved within DSmT, we do not include it as a proper
element of DX and we consider only M⋆

2(∧,∨) , M2(∧,∨) \ {f15} rather than M2(∧,∨) itself. Let’s now
introduce the Smarandache’s codification for the enumeration of distinct parts of a Venn diagram X with n
partially overlapping elements xi,i = 1, 2, . . . , n. A such diagram has 2n − 1 disjoint parts. One notes with only
one digit (or symbol) those parts which belong to only one of the elements xi (one notes by < i > the part which
belongs to xi only, for 1 ≤ i ≤ n), with only two digits (or symbols) those parts which belong to exactly two
elements (one notes by < ij >, with i < j, the part which belongs to xi and xj only, for 1 ≤ i < j ≤ n), then
with only three digits (or symbols) those parts which belong to exactly three elements (one notes by < ijk >
concatenated numbers, with i < j < k, the part which belongs to xi, xj , and xk only, for 1 ≤ i < j < k ≤ n),
and so on up to < 12 . . . n > which represents the last part that belongs to all elements xi. For 1 ≤ n ≤ 9,
the Smarandache’s encoding works normally as in base 10. But, for n ≥ 10, because there occur two (or more)
digits/symbols in notation of the elements starting from 10 on, one considers this codification in base n + 1,
i.e. using one symbol to represent two (or more) digits, for example: A = 10, B = 11, C = 12, etc. For n = 1
one has only one part, coded < 1 >. For n = 2 one has three parts, coded < 1 >, < 2 >, < 12 >. Generally,
< ijk > does not represent xi ∩ xj ∩ xk but only a part of it, the only exception is for < 12 . . . n >. For n = 3
one has 23 − 1 = 7 disjoint parts, coded < 1 >, < 2 >, < 3 >, < 12 >, < 13 >, < 23 >, < 123 >. < 23 >
means the part which belongs to x2 and x3 only, but < 23 > 6= x2 ∩ x3 because x2 ∩ x3 = {< 23 >, < 123 >} in
the Venn diagram of 3 elements x1, x2, and x3.The generalization for n > 3 is straightforward. Smarandache’s
codification can be organized in a numerical increasing order, in lexicographic order or any other orders. An
useful order for organizing the Smarandache’s codification for the generation of DΘ is the Dezert-Smarandache
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order un = [u1, . . . , u2n−1]
′ based on a recursive construction starting with u1 , [< 1 >]. Having constructed

un−1, then we can construct un for n > 1 recursively as follows:

• include all elements of un−1 into un;

• afterwards, include element < n > as well in un;

• then at the end of each element of un−1 concatenate the element < n > and get a new set u′
n−1 which

then is also included in un.

This is un, which has (2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1 components. For n = 3, as example, one gets
u3 , [< 1 > < 2 > < 12 > < 3 > < 13 > < 23 > < 123 >]′. Because all elements in un are disjoint, we are
able to write each element di of DX in a unique way as a linear combination of un elements, i.e.

dn = [d1, . . . , d2n−1]
′ = Dn · un (7)

Thus un constitutes a basis for generating the elements of DX . Each row in the matrix Dn represents the
coefficients of an element of DX with respect to the basis un. The rows of Dn may also be regarded as binary
numbers in an increasing order. As example, for n = 2, one has:







d1 = x1 ∩ x2

d2 = x2

d3 = x1

d4 = x1 ∪ x2







︸ ︷︷ ︸

d2

=







0 0 1
0 1 1
1 0 1
1 1 1







︸ ︷︷ ︸

D2

·





< 1 >
< 2 >
< 12 >





︸ ︷︷ ︸

u2

(8)

where the ”matrix product” is done after identifying (+, ·) with (∪,∩), 0· < x > with ∅ and 1· < x > with
< x >. The generation of DX is then strictly equivalent to generate un and matrix Dn which can be easily
obtained by the following recursive procedure:

• start with Dc
0 = [0 1]′ corresponding to all Boolean functions with no input variable (n = 0).

• build the Dc
1 matrix from each row ri of Dc

0 by adjoining it to any other row rj of Dc
0 such that ri∪rj = rj .

This is equivalent here to add either 0 or 1 in front (i.e. left side) of r1 ≡ 0 but only 1 in front of r2 ≡ 1.
Since the tautology is not involved in hyper-powerset, then one has to remove the first column and the
last line of

Dc
1 =





0 0
0 1
1 1



 to obtain finally D1 =

[
0
1

]

• build Dc
2 from Dc

1 by adjoining to each row ri of Dc
1, any row rj of Dc

1 such that ri ∪ rj = rj and then
remove the first column and the last line of Dc

2 to get D2 as in (8).

• build Dc
3 from Dc

2 by adjoining to each row ri of Dc
2 any row rj of Dc

2 such that ri ∪ rj = rj and then
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remove the first column and the last line of Dc
3 to get D3 given by

D3 =





































0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 0 0 1 1
0 0 1 0 1 0 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 1 0 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 1 0 1 0 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1





































• Likewise, Dc
n is built from Dc

n−1 by adjoining to each row ri of Dc
n−1 any row rj of Dc

n−1 such that
ri ∪ rj = rj . Then Dn is obtained by removing the first column and the last line of Dc

n.

For convenience, we provide here the source code in Matlab language to generate DΘ. This code includes the
identification of elements of DΘ corresponding to each monotone Boolean function according to the Smaran-
dache’s codification.

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% Copyright ( c ) 2003 J . Dezert and F. Smarandache
%
% Purpose : Generation of DˆTheta for the DSmT for
% Theta={the ta 1 , . . , Theta n } . Due to the huge
% # of elements of DˆTheta only cases up to n<7
% are usua l l y t r a c t a b l e on computers .
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
n=input ( ’ Enter c a r d i n a l i t y f o r Theta (0<n<6) ? ’ ) ;
% Generation of the Smarandache c od i f i c a t i on
% Note : t h i s should be implemented using
% character s t r i n g s for n>9
u n = [1 ] ;
for nn=2:n
u n=[u n nn ( u n∗10+nn∗ones (1 , s ize ( u n ∗ 1 0 , 2 ) ) ) ] ;
end

% Generation of D n ( isotone boolean funct ions )
D n1 = [ 0 ; 1 ] ;
for nn=1:n , D n = [ ] ;

for i =1: s ize (D n1 , 1 ) , Li=D n1 ( i , : ) ;
for j=i : s ize (D n1 , 1 )
Lj=D n1 ( j , : ) ; L i i n t e r L j=and ( Li , Lj ) ;
L i un i on L j=or ( Li , Lj ) ;
i f ( ( L i i n t e r L j==Li )&( L i un i on L j==Lj ) )

D n=[D n ; Li Lj ] ;
end

end

end

D n1=D n ;
end

DD=D n ;DD( : , 1 )= [ ] ;DD( s ize (DD, 1 ) , : ) = [ ] ; D n=DD;
% Result d i sp l ay
disp ( [ ’ | Theta |=n=’ ,num2str(n ) ] )
disp ( [ ’ |DˆTheta |= ’ ,num2str( s ize (D n , 1 ) ) ] )
disp ( ’Elem . o f DˆTheta are obtained by D n∗u n ’ )
disp ( [ ’ with u n=[ ’ ,num2str( u n ) , ’ ] ’ ’ and ’ ] )
D n=D n

Matlab2 source code for generating DΘ

2Matlab is a trademark of The MathWorks, Inc.
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5 Conclusion
The DSmT proposes a new solution to combine conflicting sources of information in some problems where

the frame of discernment Θ = {θ1, . . . , θn} cannot be considered as an exhaustive and exclusive finite set of
hypotheses. The DSmT deals with elements θi which have possibly (but not necessarily) continuous and/or
relative interpretation to the corpus of evidences (like the notions of smallness/tallness, beauty/ugliness, plea-
sure/pain, heat/coldness, even the notion of colors - due to the continuous spectrum of the light, . . .); the
interpretation of θi through the bba mechanism given by each source being, in general, built only from its own
limited knowledge/experience and senses. This DSm model can be considered as the opposite of the Shafer’s
model on which is based the DST. The DSmT, based on the notion of hyper-powerset DΘ over Θ and the
refutation of the third middle excluded, requires in theory to manipulate the basic beliefs assigned of every
element of DΘ. A powerful method and a source code to generate recursively all the elements of DΘ has been
presented in this paper to help the reader to solve a wide class of fusion problems with the DSmT.
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Canada, Aug. 8-11, 2001.

[7] Dezert J., Combination of paradoxical sources of information within the Neutrosophic framework, in [22]
pp. 22–46.

[8] Dezert J., Foundations for a new theory of plausible and paradoxical reasoning, Inform. & Secur. J., Se-
merdjiev Ed., Bulg. Acad. of Sci., Vol. 9, 2002.
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