Generalization of a Remarkable Theorem

Professor Ion Pătraşcu - National College Frații Buzeşti, Craiova Florentin Smarandache, Ph. D. -University of New Mexico, U.S.A.

In [1] Professor Claudiu Coandă proved, using the barycentric coordinates, the following remarkable theorem:

Theorem (C. Coandă)
Let $A B C$ be a triangle, where $m(\Varangle A) \neq 90^{\circ}$ and Q_{1}, Q_{2}, Q_{3} are three points on the circumscribed circle of the triangle $A B C$. We'll note $B Q_{i} \cap A C=\left\{B_{i}\right\}, i=\overline{1,3}$. Then the lines $B_{1} C_{1}, B_{2} C_{2}, B_{3} C_{3}$ are concurrent.

We will generalize this theorem using some results from projective geometry relative to the pole and polar notions.

Theorem (Generalization of C. Coandă theorem)
Let $A B C$ be a triangle where $m(\Varangle A) \neq 90^{\circ}$ and $Q_{1}, Q_{2}, \ldots, Q_{n}$ points on its circumscribed circle $(n \in N, n \geq 3), i=\overline{1, n}$. Then the lines $B_{1} C_{1}, B_{2} C_{2}, \ldots, B_{n} C_{n}$ are concurrent in fixed point.

To prove this theorem we'll utilize the following lemmas:

Lemma 1

If $A B C D$ is an inscribed quadrilateral in a circle and $\{P\}=A B \cap C D$, then the polar of the point P in rapport with the circle is the line $E F$, where $\{E\}=A C \cap B D$ and $\{F\}=B C \cap A D$

Lemma 2

The pole of a line is the intersection of the corresponding polar to any two points of the line.

The pols of concurrent lines in rapport to a given circle are collinear points and the reciprocal is also true: the polar of collinear points, in rappoer with a given circle, are concurrent lines.

Lemma 3

If $A B C D$ is an inscribed quadrilateral in a circle and $\{P\}=A B \cap C D,\{E\}=A C \cap B D$ and $\{F\}=B C \cap A D$, then the polar of point E in rapport to the circle is the line $P F$.

The proof for the Lemmas 1-3 and other information regarding the notions of pole and polar in rapport to a circle can be found in [2] or [3].

Proof of the generalized theorem of C. Coandă

Let $Q_{1}, Q_{2}, \ldots, Q_{n}$ points on the circumscribed circle to the triangle $A B C$ (see the figure) We'll consider the inscribed quadrilaterals $A B C Q_{n}, \quad i=\overline{1, n}$ and we'll note $\left\{T_{i}\right\}=A Q_{i} \cap B C$.

In accordance to Lemma 1 and Lemma 3, the lines $B_{i} C_{i}$ are the respectively polar

(in rapport with the circumscribed circle to the triangle $A B C$) to the points T_{i}.
Because the points T_{i} are collinear (belonging to the line $B C$), from Lemma 2 we'll obtain that their polar, that is the lines $B_{i} C_{i}$, are concurrent in a point T.

Remark

The concurrency point T is the harmonic conjugate in rapport with the circle of the symmedian center K of the given triangle.

References

[1] Claudiu Coandă - Geometrie analitică în coordonate baricentrice - Editura Reprograph, Craiova, 2005.
[2] Ion Pătrașcu - O aplicație practică a unei teoreme de geometrie proiectivă Journal: Sfera matematică, m 1b (2/2009-2010). Editura Reprograph.
[3] Roger A. Johnson - Advanced Euclidean Geometry - Dover Publications, Inc. Mineola, New York, 2007.

