THE DUAL OF THE ORTHOPOLE THEOREM

Prof. Ion Pătrașcu
Frații Buzești College, Craiova, Romania
Translated by Prof. Florentin Smarandache University of New Mexico, Gallup, NM 87301, USA

Abstract

In this article we prove the theorems of the orthopole and we obtain, through duality, its dual, and then some interesting specific examples of the dual of the theorem of the orthopole.

The transformation through duality was introduced in 1822 by the French mathematician Victor Poncelet. By the duality in rapport with a given circle to the points correspond lines (their polars), and to the straight lines correspond points (their poles).

Given a figure F formed of lines, points and, eventually, a circle, by applying to it the transformation through duality in rapport with the circle, we obtain a new figure F, which is formed of lines that are the polars of the figure's F points in rapport with the circle and from points that are the poles of the figure's F lines in rapport with the circle. Also, through duality to a given theorem corresponds a new theorem called its dual. After this introduction, we'll obtain the dual of the orthopole theorem.

The Orthopole Theorem (Soons - 1886).

If $A B C$ is a triangle, d a line in its plane and $A^{\prime}, B^{\prime}, C^{\prime}$ the vertexes' projections of A, B, C on d, then the perpendiculars from $A^{\prime}, B^{\prime}, C^{\prime}$ on the sides $B C, C A, A B$ are concurrent (the concurrence point is called the triangle's orthopole, in rapport to the line d).

In order to proof the orthopole's theorem will be using the following:

Theorem (L. Carnot - 1803)

The necessary and sufficient condition that the perpendiculars drawn on the sides $B C, C A, A B$ of the triangle $\triangle A B C$, through the points A_{1}, B_{1}, C_{1} that belong to these sides, to be concurrent is:

$$
A_{1} B^{2}-A_{1} C^{2}+B_{1} C^{2}-B_{1} A^{2}+C_{1} A^{2}-C_{1} B^{2}=0
$$

Proof:

The condition is necessary: Let M be the concurrent point of the perpendiculars drawn in

Fig. 1
A_{1}, B_{1}, C_{1} on the sides of the triangle $\triangle A B C$ (see Fig. 1).

We have

$$
\begin{aligned}
& A_{1} B^{2}-A_{1} C^{2}=M B^{2}-M A_{1}^{2}-M C^{2}+M A_{1}^{2}=M B^{2}-M C^{2} \\
& B_{1} C^{2}-B_{1} A^{2}=M C^{2}-M B_{1}^{2}-M B_{1}^{2}-M A^{2}=M C^{2}-M A^{2} \\
& C_{1} A^{2}-C_{1} B^{2}=M A^{2}-M C_{1}^{2}+M C_{1}^{2}-M B^{2}=M A^{2}-M B^{2}
\end{aligned}
$$

Adding member by member these three relations it is obtained the relation from the above theorem.

The condition is sufficient: Let M be the intersection of the perpendiculars in A_{1} on $B C$ and in B_{1} on $A C$, şi C_{1}^{\prime} the projection of M on $A B$.

We have:

$$
A_{1} B^{2}-A_{1} C^{2}+B_{1} C^{2}-B_{1} A^{2}+C_{1}^{\prime} A^{2}-C_{1}^{\prime} B^{2}=0,
$$

and from hypothesis:

$$
A_{1} B^{2}-A_{1} C^{2}+B_{1} C^{2}-B_{1} A^{2}+C_{1} A^{2}-C_{1} B^{2}=0 .
$$

We obtain:

$$
C_{1}^{\prime} A^{2}-C_{1}^{\prime} B^{2}=C_{1} A^{2}-C_{1} B^{2}
$$

from which we find: $C_{1}^{\prime}=C_{1}$, and therefore, the perpendiculars drawn in A_{1}, B_{1}, C_{1} on the triangle's sides are concurrent.

The proof of the Orthopole Theorem

Let's note A_{1}, B_{1}, C_{1} the projections of the points $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}$ on $B C, C A, A B$ (see Fig. 2).

We have:

$$
\begin{equation*}
A_{1} B^{2}-A_{1} C^{2}=A^{\prime} B^{2}-A^{\prime} C^{2}=B B^{\prime 2}+A^{\prime} B^{\prime 2}-C C^{\prime 2}-A^{\prime} C^{\prime 2} \tag{1}
\end{equation*}
$$

Similarly, we obtain:

$$
\begin{align*}
& B_{1} C^{2}-B_{1} A^{2}=B^{\prime} C^{2}-B^{\prime} A^{2}=B^{\prime} C^{\prime 2}+C C^{\prime 2}-A^{\prime} B^{\prime 2}-A A^{\prime 2} \tag{2}\\
& C_{1} A^{2}-C_{1} B^{2}=C^{\prime} A^{2}-C^{\prime} B^{2}=A A^{\prime 2}+A^{\prime} C^{\prime 2}-B^{\prime} C^{\prime 2}-B B^{\prime 2} \tag{3}
\end{align*}
$$

From the relations (1), (2) and (3), we obtain:

$$
A_{1} B^{2}-A_{1} C^{2}+B_{1} C^{2}-B_{1} A^{2}+C_{1} A^{2}-C_{1} B^{2}=0,
$$

relation that in conformity to the Carnot's Theorem implies the concurrency of the lines $A^{\prime} A_{1}, B^{\prime} B_{1}, C^{\prime} C_{1}$.

We denote with O the orthopole of the line d in rapport to the triangle $\triangle A B C$.
We'll apply now a duality in rapport to the circle $C(O, r)$ to the corresponding configuration of the orthopole theorem. Then, to the points A, B, C will correspond their polars a, b, c. To the line $A B$ corresponds its pole, which we'll note C^{\prime} and it is $a \bigcap b$,
similarly, we'll obtain the poles B^{\prime} and A^{\prime} of the lines $A C$ and $B C$. To the line d will correspond, through the considered duality, its pole, which we'll note with P.

Fig. 2
If we denote with $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}$ respectively, the intersections of line P with the sides of the triangle $\triangle A B C$, through the considered duality to these points correspond the lines $A^{\prime} P, B^{\prime} P$ and $C^{\prime} P$ respectively. Because the lines $A A^{\prime}$ and d are perpendicular, their poles P_{1} and P will be placed such that $\mathrm{m}\left(P_{1} O P\right)=90^{\circ}$, therefore P_{1} is the intersection of the perpendicular in O on $O P$ with $B^{\prime} C^{\prime}=a$. Similarly, the pole of the perpendicular $B B^{\prime}$ on d will be P_{2} the intersection with $b=A^{\prime} C^{\prime}$ of the perpendicular drawn in O on $O P$ and at the perpendicular's intersection in O on $O P$ with $c=A^{\prime} B^{\prime}$ we will find P_{3} the pole of $C C^{\prime}$.

To the perpendicular drawn in A^{\prime} on $B C$ corresponds, through duality, its pole A_{1} which is located at the intersection of the perpendicular in O on $A^{\prime} O$ with $P P_{1}$. Similarly we construct the points B_{1}, C_{1} corresponding to the perpendiculars drawn from B^{\prime} on $A C$ and from C^{\prime} on $A B$. Because these last perpendiculars are concurrent in the line's orthopole, their poles A_{1}, B_{1}, C_{1} are collinear points (they belong to the orthopole's polar).

Selecting certain points, we can formulate the following:

The Dual Theorem of the Orthopole

If $A B C$ is a triangle, O and P two distinct point in its plane such that the perpendicular in O on $O P$ intersects $B C, C A, A B$ respectively in the points P_{1}, P_{2}, P_{3}, and the perpendiculars drawn in the point O on $O A, O B, O C$ intersect respectively the lines $P P_{1}, P P_{2}, P P_{3}$ in the points A_{1}, B_{1}, C_{1}, then the points A_{1}, B_{1}, C_{1} are collinear.

Fig. 3

Observation:

By inversing the solutions of O and P will find, following the same constructions indicated in the dual theorem of the orthopole, other collinear points $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}$.

Next, will point out several particular cases of the dual theorem of the orthopole.

1. Theorem of Bobillier

If $A B C$ is a triangle and O is an arbitrary point in its plane, the perpendiculars drawn in O on $A O, B O, C O$ intersect respectively $B C, A C, A B$ into the collinear points A_{1}, B_{1}, C_{1}.

Proof

We apply the dual theorem of the orthopole in the particular case $P=A$: then the point P_{1} coincides with A_{1} because $P P_{1}$ becomes $A P_{1}$ (the point P_{1} belongs to the line $B C$), similarly, the points B_{1} and C_{1} belong to $A C$ respectively $A B$, it results that A_{1}, B_{1}, C_{1} are collinear.

Remark

The Bobillier's Theorem was obtained transforming through duality in rapport with a circle O the theorem relative to a triangle's altitudes' concurrence.

2. Theorem

If $A B C$ is a triangle and P a point on its circumscribed circle with the center O, the tangents in P to the circle intersect the sides $B C, C A, A B$ respectively in P_{1}, P_{2}, P_{3}.

Will denote with $A^{\prime}, B^{\prime}, C^{\prime}$ the opposite diameters to A, B, C in the circle O and let's consider $\left\{A_{1}\right\}=A^{\prime} P \cap O P_{1},\left\{B_{1}\right\}=B^{\prime} P \cap O P_{2},\left\{C_{1}\right\}=C^{\prime} P \cap O P_{3}$, then the points A_{1}, B_{1}, C_{1} are collinear.

Fig. 4

Proof

The tangent in P to the circumscribed circle is perpendicular on the ray $O P$, therefore the points P_{1}, P_{2}, P_{3} are constructed as in the hypothesis of the dual theorem of the orthopole. The point A^{\prime} being diametric - opposite to A (see Fig. 4), we have $\mathrm{m}\left(A P A^{\prime}\right)=90^{\circ}$, therefore A_{1} is the intersection of the perpendicular in P on $A P$ with $O P_{1}$, similarly there are constructed B_{1} and C_{1}, and from the dual theorem of the orthopole it results their colinearity.

References

[1] N.N. Mihăileanu, Lecţii complementare de geometrie, Editura didactică şi pedagogică, Bucureşti, 1976.
[2] Traian Lalescu, Geometria triunghiului, Editura Apollo, Craiova, 1993.
[3] Roger A. Johnson, Advanced Euclidian Geometry, Dover Publications, Inc. Mineala, New York, 2007.

