K-NOMIAL COEFFICIENTS

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article we will widen the concepts of "binomial coefficients" and "trinomial coefficients" to the concept of "k-nomial coefficients", and one obtains some general properties of these. As an application, we will generalize the" triangle of Pascal".

Let's consider a natural number $k \geq 2$; let $P(x)=1+x+x^{2}+\ldots+x^{k-1}$ be the polynomial formed of k monomials of this type; we'll call it "k-nomial".

We will call k-nomial coefficients the coefficients of the power of x of $\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n}$, for n positive integer. We will note them $C k_{n}^{h}$ with $h \in\{0,1,2, \ldots, 2 p n\}$.

In continuation one will build by recurrence a triangle of numbers which will be called " triangle of the numbers of order k ".

CASE 1: $k=2 p+1$.

On the first line of the triangle one writes 1 and one calls it "line 0 ".
(1) It is agreed that all the cases which are to the left and to the right of the first (respectively of the last) number of each line will be consider like being 0 . The lines which follow are called "line 1 ", "line 2 ", etc... Each line will contain $2 p$ numbers to the left of the first number, p numbers on the right of the last number of the preceding line. Numbers of the line $i+1$ are obtained by using those of the line i in the following way:
$C k_{i+1}^{j}$ is equal to the addition of p numbers which are to its left on the line i and of p numbers which are to the right on the line i, to the number which is above it (see. Fig. 1). One will take into account the convention 1.

Fig. 1
line i

line $i+1 \quad \cdot C k_{i+1}^{j}$

Example for $k=5$:

$$
\begin{aligned}
& \begin{array}{lllllllllll}
& & & & & 1 & & & & \\
1 & 2 & 1 & 1 & 1 & 1 & & \\
3 & 4 & 5 & 4 & 3 & 2 & 1
\end{array} \\
& \begin{array}{lllllllllllll}
1 & 3 & 6 & 10 & 15 & 18 & 19 & 18 & 15 & 10 & 6 & 3 & 1
\end{array} \\
& \begin{array}{lllllllllllllllll}
1 & 4 & 10 & 20 & 35 & 52 & 68 & 80 & 85 & 80 & 68 & 52 & 35 & 20 & 10 & 4 & 1
\end{array}
\end{aligned}
$$

The number

$$
\begin{aligned}
& C 5_{1}^{0}=0+0+0+0+1=1 ; \\
& C 5_{1}^{3}=0+1+0+0+0=1 ; \\
& C 5_{2}^{3}=0+1+1+1+1=4 ; \\
& C 5_{3}^{7}=4+5+4+3+2=18 ; \\
& \text { etc. }
\end{aligned}
$$

Properties of the triangle of numbers of order k :

1) The line i has $2 p i+1$ elements.
2) $C k_{n}^{h}=\sum_{i=0}^{2 p} C k_{n-1}^{h-i}$ where by convention $C k_{n}^{t}=0$ for

$$
\left\{\begin{array}{l}
t<0 \\
t>2 p r
\end{array}\right. \text { and }
$$

This is obvious taking into account the construction of the triangle.
3) Each line is symmetrical relative to the central element.
4) First elements of the line i are 1 and i.
5) The line i of the triangle of numbers of order k represent the k-nomial coefficients of $\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{i}$.

The demonstration is done by recurrence on i of \mathbb{N}^{*} :
a) For $i=1$ it is obvious; (in fact the property would be still true for $i=0$).
b) Let's suppose the property true for n. Then

$$
\begin{aligned}
& \left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n+1}=\left(1+x+x^{2}+\ldots+x^{k-1}\right)\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n}= \\
& =\left(1+x+x^{2}+\ldots+x^{2 p}\right) \cdot \sum_{j=0}^{2 p n} C k_{n}^{j} \cdot x^{j}= \\
& =\sum_{t=0}^{2 p(n+1)} \sum_{\substack{i+j=t \\
0 \leq \leq \leq 2 p \\
0 \leq \leq \leq 2 p n}} C k_{n}^{i} \cdot x^{i} \cdot x^{j}= \\
& =\sum_{t=0}^{2 p(n+1)}\left(\sum_{j=0}^{2 p} C k_{n}^{t-j}\right) x^{t}=\sum_{t=0}^{2 p p(n+1)} C k_{n+1}^{t} \cdot x^{t} .
\end{aligned}
$$

6) The sum of the elements locate on line n is equal to k^{n}.

The first method of demonstration uses the reasoning by recurrence. For $n=1$ the assertion is obvious. One supposes the property truth for n, i.e. the sum of the elements located on the line n is equal to k^{n}. The line $n+1$ is calculated using the elements of the line n. Each element of the line n uses the sum which calculates each of p elements locate to its left on the line $n+1$, each of p elements locate to its right on the line $n+1$ and that which is located below: thus it is used to calculate k numbers of the line $n+1$.

Thus the sum of the elements of the line $n+1$ is k times larger than the sum of those of the line n, therefore it is equal to k^{n+1}.
7) The difference between the sum of the k-nomial coefficients of an even rank and the sum of the k-nomial coefficients of an odd rank located on the same line $\left(C k_{n}^{0}-C k_{n}^{1}+C k_{n}^{2}-C k_{n}^{3}+\ldots\right)$ is equal to 1 .
One obtains it if in $\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n}$ one takes $x=-1$.
8) $C k_{n}^{0} \cdot C k_{m}^{h}+C k_{n}^{1} \cdot C k_{m}^{h-1}+\ldots+C k_{n}^{h} \cdot C k_{m}^{0}=C k_{n+m}^{h}$

This results from the fact that, in the identity

$$
\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n} \cdot\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{m}=\left(1+x+x^{2}+\ldots+x^{k-1}\right)^{n+m}
$$

the coefficient of x^{h} in the member from the left is $\sum_{i=0}^{h} C k_{n}^{i} \cdot C k_{m}^{h-i}$ and that of x^{h} on the right is $C k_{n+m}^{h}$.
9) The sum of the squares of the k-nomial coefficients locate on the line n is equal to the k-nomial coefficient located in the middle of the line $2 n$.
For the proof one takes $n=m=h$ in the property 8 . One can find many properties and applications of these k-nomial coefficients because they widen the binomial coefficients whose applications are known.

CASE 2: $k=2 p$.
The construction of the triangle of numbers of order k is similar:
On the first line one writes 1 ; it is called line 0
The lines which follow are called line 1 , line 2 , etc. Each line will have $2 p-1$ elements more than the preceding one; because $2 p-1$ is an odd number, the elements of each line will be placed between the elements of the preceding line (which is different from the case 1 where they are placed below).

The elements locate on the line $i+1$ are obtained by using those of the line i in the following way:
$C k_{i+1}^{j}$ is equal to the sum of p elements located to its left on the line i with p elements located to its right on the line i.

Fig. 2
line i

$$
\text { line } i+1 \quad \cdot C k_{i+1}^{j}
$$

Example for $k=4$:

$$
\begin{aligned}
& 1 \\
& \begin{array}{llll}
1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 3 & 2 & 1 \\
6 & 10 & 12 & 12 & 10 & 6 & 3 & 1
\end{array} \\
& \begin{array}{lllllllllllll}
1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4 & 1
\end{array}
\end{aligned}
$$

From the property 1': $C k_{n}^{h}=\sum_{i=0}^{2 p-1} C k_{n-1}^{h-i}$
By joining together properties 1 and 1': $C k_{n}^{h}=\sum_{i=0}^{k-1} C k_{n-1}^{h-i}$
The other properties of Case 1 are preserved in Case 2, with similar profs. However in the property 7 , one sees that the difference between the sum of the k-nomial coefficients of even rank and that of the k-nomial coefficients of odd rank locate on the same line is equal to 0 .

