Lemoine Circles

Professor Ion Patrascu, Fratii Buzesti National College, Craiova, Romania
Professor Florentin Smarandache, New Mexico University, Gallup, NM, USA

In this article, we get to Lemoine's circles in a different manner than the known one.

Theorem 1.

Let ABC a triangle and K its simedian center. We take through K the parallel A_1A_2 to BC, $A_1 \in (AB)$, $A_2 \in (AC)$; through A_2 we take the antiparallels A_2B_1 to AB in relation to CA and CB, $B_1 \in (BC)$; through B_1 we take the parallel B_1B_2 to AC, $B_2 \in AB$; through B_2 we take the antiparallels B_1C_1 to BC, $C_1 \in (AC)$, and through C_1 we take the parallel C_1C_2 to AB, $C_1 \in (BC)$. Then:

i. C_2A_1 is an antiparallel of AC;

ii. $B_1B_2 \cap C_1C_2 = \{K\}$;

iii. The points $A_1, A_2, B_1, B_2, C_1, C_2$ are concyclic (the first Lemoine circle).

Proof.

i. The quadrilateral BC_2KA is a parallelogram, and its center, i.e. the middle of the segment (C_2A_1), belongs to the simedian BK; it follows that C_2A_2 is an antiparallel to AC (see Figure 1).

ii. Let $\{K'\} = A_1A_2 \cap B_1B_2$, because the quadrilateral $K'B_1CA_2$ is a parallelogram; it follows that CK' is a simedian; on the other hand, CK is a simedian, and since $K, K' \in A_1A_2$, it follows that we have $K' = K$.

1
iii. B_2C_1 being an antiparallel to BC and $A_1A_2 \parallel BC$, it means that B_2C_1 is an antiparallel to A_1A_2, so the points B_2, C_1, A_2, A_1 are concyclic.

From $B_1B_2 \parallel AC, \measuredangle B_2C_1A \equiv \measuredangle ABC, \measuredangle B_1A_2C \equiv \measuredangle ABC$ we get that the quadrilateral $B_2C_1A_2B_1$ is an isosceles trapezoid, so the points B_2, C_1, A_2, B_1 are concyclic.

Analogously, it can be shown that the quadrilateral $C_2B_1A_2A_1$ is an isosceles trapezoid, therefore the points C_2, B_1, A_2, A_1 are concyclic.

From the previous three quartets of concyclical points, it results the concyclicity of the points belonging to the first Lemoine circle.

Theorem 2.
In the scalene triangle ABC, let K be the simedian center. We take from K the antiparallel A_1A_2 to $BC; A_1 \in AB, A_2 \in AC$; through A_2 we build $A_2B_1 \parallel AB$; $B_1 \in (BC)$, then through B_1 we build B_1B_2 the antiparallel to $AC, B_2 \in (AB)$, and through B_2 we build $B_2C_1 \parallel BC, C_1 \in AC$, and, finally, through C_1 we take the antiparallel C_1C_2 to $AB, C_2 \in (BC)$. Then:
i. \(C_2 A_1 \parallel AC \);

ii. \(B_1 B_2 \cap C_1 C_2 = \{ K \} \);

iii. The points \(A_1, A_2, B_1, B_2, C_1, C_2 \) are concyclical (the second Lemoine circle).

Proof.

i. Let \(\{ K' \} = A_1 A_2 \cap B_1 B_2 \), having \(\angle AA_1 A_2 = \angle ACB \) and \(\angle BB_1 B_2 \equiv \angle BAC \) because \(A_1 A_2 \) and \(B_1 B_2 \) are antiparallels to \(BC, AC \), respectively, it follows that \(\angle K' A_1 B_2 \equiv \angle K' B_2 A_1 \); so \(K'A_1 = K'B_2 \); having \(A_1 B_2 \parallel B_1 A_2 \) as well, it follows that also \(K'A_2 = K'B_1 \), so \(A_1 A_2 = B_1 B_2 \). Because \(C_1 C_2 \) and \(B_1 B_2 \) are antiparallels to \(AB \) and \(AC \), we have \(K''C_2 = K''B_1 \); we noted \(\{ K'' \} = B_1 B_2 \cap C_1 C_2 \); since \(C_1 B_2 \parallel B_1 C_2 \), we have that the triangle \(K''C_1 B_2 \) is also isosceles, therefore \(K''C_1 = C_1 B_2 \), and we get that \(B_1 B_2 = C_1 C_2 \). Let \(\{ K''' \} = A_1 A_2 \cap C_1 C_2 \); since \(A_1 A_2 \) and \(C_1 C_2 \) are antiparallels to \(BC \) and \(AB \), we get that the triangle \(K'''A_2 C_1 \) is isosceles, so \(K'''A_2 = K'''C_1 \), but \(A_1 A_2 = C_1 C_2 \) implies that \(K'''C_2 = K'''A_1 \), then \(\angle K'''A_1 C_2 \equiv \angle K'''A_2 C_1 \) and, accordingly, \(C_2 A_1 \parallel AC \).

![Figure 2](image)

ii. We noted \(\{ K' \} = A_1 A_2 \cap B_1 B_2 \); let \(\{ X \} = B_2 C_1 \cap B_1 A_2 \); obviously, \(BB_1 X B_2 \) is a parallelogram; if \(K_0 \) is the middle of \((B_1 B_2) \), then \(BK_0 \) is a simedian,
since B_1B_2 is an antiparallel to AC, and the middle of the antiparallels of AC are situated on the simedian BK. If $K_0 \neq K$, then $K_0K \parallel A_1B_2$ (because $A_1A_2 = B_1B_2$ and $B_1A_2 \parallel A_1B_2$), on the other hand, B, K_0, K are collinear (they belong to the simedian BK), therefore K_0K intersects AB in B, which is absurd, so $K_0 = K$, and, accordingly, $B_1B_2 \cap A_1A_2 = \{K\}$. Analogously, we prove that $C_1C_2 \cap A_1A_2 = \{K\}$, so $B_1B_2 \cap C_1C_2 = \{K\}$.

iii. K is the middle of the congruent antiparallels A_1A_2, B_1B_2, C_1C_2, so $KA_1 = KA_2 = KB_1 = KB_2 = KC_1 = KC_2$. The simedian center K is the center of the second Lemoine circle.

Remark.

The center of the first Lemoine circle is the middle of the segment $[OK]$, where O is the center of the circle circumscribed to the triangle ABC. Indeed, the perpendiculars taken from A, B, C on the antiparallels B_2C_1, A_1C_2, B_1A_2 respectively pass through O, the center of the circumscribed circle (the antiparallels have the directions of the tangents taken to the circumscribed circle in A, B, C). The mediatrix of the segment B_2C_1 pass though the middle of B_2C_1, which coincides with the middle of AK, so is the middle line in the triangle AKO passing through the middle of (OK). Analogously, it follows that the mediatrix of A_1C_2 pass through the middle L_1 of $[OK]$.

Bibliography.

