A Multiple Theorem with Isogonal and Concyclic Points

Dr. Florentin Smarandache
University of New Mexico, Gallup, NM 87301, USA
Prof. Ion Pătrașcu
Frații Buzești College, Craiova, Romania

Let's consider $A^{\prime}, B^{\prime}, C^{\prime}$ three points on the sides $(B C),(C A),(A B)$ of triangle $A B C$ such that simultaneously are satisfied the following conditions:
i. $\quad A^{\prime} B^{2}+B^{\prime} C^{2}+C^{\prime} A^{2}=A^{\prime} C^{2}+B^{\prime} A^{2}+C^{\prime} B^{2}$
ii. The lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent.

Prove that:
a) The perpendiculars drawn in A^{\prime} on $B C$, in B^{\prime} on $A C$, and in C^{\prime} on $A B$ are concurrent in a point P.
b) The perpendiculars drawn in A^{\prime} on $B^{\prime} C^{\prime}$, in B^{\prime} on $A^{\prime} C^{\prime}$, and in C^{\prime} on $A^{\prime} B^{\prime}$ are concurrent in a point P^{\prime}.
c) The points P and P^{\prime} are isogonal.
d) If $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the projections of P^{\prime} on $B C, C A$, respective $A B$, then the points $A^{\prime}, A^{\prime \prime}, B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime}$, are concyclic points.
e) The lines $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ are concurrent.

Proof:

a) Let P be the intersection of the perpendicular drawn in A^{\prime} on $B C$ with the perpendicular drawn in B^{\prime} on $A C$. We have:

$$
\begin{aligned}
& P B^{2}-P C^{2}=A^{\prime} B^{2}-A^{\prime} C^{2} \\
& P C^{2}-P A^{2}=B^{\prime} C^{2}-B^{\prime} A^{2} .
\end{aligned}
$$

By adding side by side these two relations, it results

$$
\begin{equation*}
P B^{2}-P A^{2}=A^{\prime} B^{2}-A^{\prime} C^{2}+B^{\prime} C^{2}-B^{\prime} A^{2} . \tag{1}
\end{equation*}
$$

If we note with C_{1} the projection of P on $A B$, we have:

$$
\begin{equation*}
P B^{2}-P A^{2}=C_{1} B^{2}-C_{1} A^{2} . \tag{2}
\end{equation*}
$$

From the relations (1), (2), and (i) we obtain that $C_{1} \equiv C^{\prime}$, therefore P has as ponder triangle the triangle $A^{\prime} B^{\prime} C^{\prime}$.
b) Let A_{1}, B_{1}, C_{1} respective the orthogonal projections of the points A, B, C on $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$ respectively $A^{\prime} B^{\prime}$.
We have

$$
\begin{aligned}
& A_{1} C^{\prime 2}-A_{1} B^{\prime 2}=C^{\prime} A^{2}-B^{\prime} A^{2}, \\
& B_{1} C^{\prime 2}-B_{1} A^{\prime 2}=C^{\prime} B^{2}-A^{\prime} B^{2}, \\
& C_{1} A^{\prime 2}-C_{1} B^{\prime 2}=A^{\prime} C^{2}-B^{\prime} C^{2} .
\end{aligned}
$$

From these relations we deduct

$$
A_{1} C^{\prime 2}+B_{1} A^{\prime 2}+C_{1} B^{\prime 2}=A_{1} B^{\prime 2}+B_{1} C^{\prime 2}+C_{1} B^{\prime 2}
$$

therefore, a relation of the same type as (i) for the triangle $A^{\prime} B^{\prime} C^{\prime}$. By using a similar method it results that $A_{1} B_{1} C_{1}$ is the triangle ponder of a point P^{\prime}.
c) The quadrilateral $A B^{\prime} P C^{\prime}$ is inscribable, therefore $\Varangle A P B^{\prime} \equiv \Varangle A C^{\prime} B^{\prime}$, and because these angles are the complements of the angles $\Varangle C^{\prime} A P$ and $\Varangle B^{\prime} A P^{\prime}$, it results that these angles are congruent, therefore the Cevians $A P$ and $A P^{\prime}$ are isogonal, similarly we can show that the Cevians $B P$ and $B P^{\prime}$ are isogonal and also the Cevians $C P$ and $C P^{\prime}$ are isogonal.
d) It is obvious that the medians of the segments $\left(A^{\prime} A^{\prime \prime}\right),\left(B^{\prime} B^{\prime \prime}\right)$ and $\left(C^{\prime} C^{\prime \prime}\right)$
pass through F, which is the middle of the segment $\left(P P^{\prime}\right)$. We have to prove that F is the center of the circle that contains the given points of the problem.

We will use the median's theorem on the triangles $C^{\prime} P P^{\prime}$ and $B^{\prime} P P^{\prime}$ to compute $C^{\prime} F$ and $B^{\prime} F$.

$$
\text { We note } m\left(\widehat{P^{\prime} A C}\right)=m(\Varangle P A B)=\alpha, A P=x, A P^{\prime}=x^{\prime} \text {; }
$$

then we have

$$
\begin{gathered}
4 C^{\prime} F^{2}=2\left(P C^{\prime 2}+P^{\prime} C^{\prime 2}\right)-P P^{\prime 2} \\
4 B^{\prime} F^{2}=2\left(P B^{\prime 2}+P^{\prime} B^{\prime 2}\right)-P P^{\prime 2} \\
P C^{\prime}=x \sin \alpha, P^{\prime} C^{\prime 2}=P^{\prime} C^{\prime \prime 2}+C^{\prime \prime} C^{\prime 2}, P^{\prime} C^{\prime \prime}=x^{\prime} \sin (A-\alpha) \\
A C^{\prime \prime}=x^{\prime} \cos (A-\alpha), A C^{\prime}=x \cos \alpha, \\
P^{\prime} C^{\prime 2}=x^{\prime 2}+\sin ^{2}(A-\alpha)+\left(x^{\prime} \cos (A-\alpha)-x \cos \alpha\right)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
& =x^{\prime 2}+x^{2} \cos ^{2} \alpha-2 x x^{\prime} \cos \alpha \cos (A-\alpha) \\
4 C^{\prime} F^{2} & =2\left[x^{\prime 2}+x^{2} \cos ^{2} \alpha-2 x x^{\prime} \cos \alpha \cos (A-\alpha)\right]-P P^{\prime 2} \\
4 C^{\prime} F^{2} & =2\left[x^{\prime 2}+x^{2}-2 x x^{\prime} \cos \alpha \cos (A-\alpha)\right]-P P^{\prime 2}
\end{aligned}
$$

Similarly we determine the expression for $4 B^{\prime} F^{2}$, and then we obtain that $C^{\prime} F=B^{\prime} F$, therefore the points $C^{\prime}, C^{\prime \prime}, B^{\prime \prime}, B^{\prime}$ are concyclic.

We'll follow the same method to prove that $C^{\prime} F=A^{\prime} F$ which leads to the fact that the points $C^{\prime}, C^{\prime \prime}, A^{\prime}, A^{\prime \prime}$ are also concyclic, and from here to the requested statement.
e) From (ii) it results (from Ceva's theorem) that:

$$
\begin{equation*}
A^{\prime} B \cdot B^{\prime} C \cdot C^{\prime} A=A^{\prime} C \cdot B^{\prime} A \cdot C^{\prime} B . \tag{3}
\end{equation*}
$$

Let's consider the points' A, B, C power respectively in rapport to the circle determined by the points $A^{\prime}, A^{\prime \prime}, B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime}$, we have

$$
\begin{aligned}
& A B^{\prime} \cdot A B^{\prime \prime}=A C^{\prime} \cdot A C^{\prime \prime} \\
& B A^{\prime} \cdot B A^{\prime \prime}=B C^{\prime} \cdot B C^{\prime \prime} \\
& C A^{\prime} \cdot C A^{\prime \prime}=C B^{\prime} \cdot C B^{\prime \prime} .
\end{aligned}
$$

Multiplying these relations we obtain:
$A^{\prime} B \cdot B A^{\prime \prime} \cdot B^{\prime} C \cdot B C^{\prime \prime} \cdot C^{\prime} A \cdot A C^{\prime \prime}=C^{\prime} B \cdot B C^{\prime \prime} \cdot B^{\prime} A \cdot A B^{\prime \prime} \cdot A^{\prime} C \cdot C A^{\prime \prime}$.
Taking into account the relation in (3), it results

$$
B A^{\prime \prime} \cdot C B^{\prime \prime} \cdot A C^{\prime \prime}=B C^{\prime \prime} \cdot A B^{\prime \prime} \cdot C A^{\prime \prime} .
$$

This last relation along with Ceva's theorem will lead us to the conclusion that the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ are concurrent.

Reference:

F. Smarandache, Problèmes avec et sans ... problèmes!, Somipress, Fès, Morocco, 1983.

