A New Proof of Feuerbach's Theorem

Ion Patrascu ${ }^{1}$, Florentin Smarandache ${ }^{2}$

1"Frații Buzești" National College, Bld. Stirbei Voda, nr. 5, Craiova, Dolj, Romania
${ }^{2}$ University of New Mexico, Mathematics, Physics and Natural Sciences Division,
705 Gurley Ave., Gallup, NM 87301, USA
Email: patrascu_ion@yahoo.com; smarand@unm.edu

Abstract

Feuerbach's theorem on the tangent of the circle of the nine points and the inscribed and exinscribed circle is considered one of the most beautiful theorems in geometry. In this paper, we offer a basic proof of this theorem starting from one of Gh. Buicliu's ideas [1].

Keywords: Feuerbach's theorem: circle of the nine points; inscribed circles; exinscribed circles
The Theorem: The circle of the nine points of a triangle is tangent to the inscribed circle and to the exinscribed circles of the triangle (K. Feuerbach - 1822).

Proof: May O_{9} be the center of the circle of the 9 points of the $A B C$ triangle and I the center of its inscribed circle. We denote by D the contact of the inscribed circle with $B C$ and with D ' its diameter within the inscribed circle. May $A H_{a}$ be the height from A (see Figure 1); we will denote by K and M the intersections of the parallel going through I to $A D^{\prime}$ with $A H_{a}$, respectively with $B C$ and L the intersection of the parallel at $A D^{\prime}$, drawn through D, with $A H_{a}$
We also note with P the intersection of the $I L$ and $B C$ lines and with Q the intersection of the half-line ($D^{\prime} K$ with the inscribed circle).

Figure 1
We will prove that Q is the tangency point of the inscribed circle with the circle of the 9 points. (Q is one of Feuerbach's points.) From the fact that the inscribed circle (I) and the exinscribed circle A (Ia) are homothetical through the homothety of pole A, we know that the point E is the exinscribed (I_{a}) circle's contact with $B C$, and that
points D and E are isotomical (symmetrical to M, the middle of $B C$). We note that $\alpha=\mathrm{m}\left(\widehat{I D^{\prime} Q}\right)$, because $I D^{\prime}=$ $I Q$, thus $\mathrm{m}\left(\widehat{I Q D^{\prime}}\right)=\alpha$. The $I D^{\prime} A K$ and $I D L K$ quadrilaterals are parallelograms.
$I D^{\prime} \| A K$ și $I D^{\prime}=K L=r$ (the ray of the inscribed circle), thus the $I D^{\prime} K L$ quadrilater is a parallelogram, so $\mathrm{m}\left(\widehat{I Q D^{\prime}}\right)$ $=\mathrm{m}(\widehat{L Q})=\alpha$. Likewise, $\mathrm{m}(\widehat{D I L})=\mathrm{m}(L \widehat{I Q})=\alpha$, which, along with $I D=I Q=r$, shows that the points D and Q are symmetrical to $I P$. Moreover, because $P D$ is tangent in D to the (I) circle, we have that $P Q$ is tangent in Q to the (I) inscribed circle, so $P D=P Q$.

The fact that the (MI; $D L$) and $\left(D D^{\prime} ; A H_{a}\right)$ lines are parallel leads to: $\frac{P M}{P D}=\frac{P I}{P L}=\frac{P D}{P H_{a}}$.
We remember that $P D^{2}=P M \cdot P H_{a}$, and seeing as how $P D=P Q$, we have that $P Q^{2}=P M \cdot P H_{a}$, which shows $P Q$ is tangent to the circumscribed circle of the $Q M H_{a}$ triangle.
We prove this circle is the circle of the 9 points of the $A B C$ triangle.
It is sufficient to prove that Q belongs to the circle of the 9 points, so we show that $O_{9} Q=\frac{R}{2}$ (R being the ray of the circumscribed circle and O_{9} the center of the circle of the 9 points). We denote by X the orthogonal projection of O_{9} on $B C$. We have that $O_{9} X^{2}+P X^{2}=P_{9}{ }^{2}$.

On another note, $O_{9} M=\frac{R}{2}$ and $O_{9} X^{2}=\frac{R^{2}}{4}-M X^{2}$. We know that X este is the middle of the $M H_{a}$ segment (because O_{9} is the middle of $O H$ - where O and H are, respectively, the center of the circumscribed circle and the orthocenter of ABC).
We obtain $\mathrm{PO}_{9}{ }^{2}=P X^{2}-M X^{2}+\frac{R^{2}}{4}$.
But $P X^{2}-M X^{2}=(P X+M X)(P X-M X)=P M \cdot\left(P H_{a}+H_{a} X-M X\right)$.
However, $M X=M H_{a}$, thus $P X^{2}-M X^{2}=P M \cdot P H_{a}=P D^{2}=P Q^{2}$.
We obtain $\mathrm{PO}_{9}{ }^{2}=P Q^{2}+\frac{R^{2}}{4}$.
We interpret this relationship as follows: the triangle with the length sides $P O_{9}, P Q$ and $\frac{R}{2}$ is rectangular. Because PQ is the tangent of the circumscribed circle to the $M H_{a} Q$ triangle, we obtain the $\frac{R}{2}$ length segment with an end in Q and the other on the $I Q$ line. But the circle circumscribed to the $M H_{a} Q$ triangle has its center at the intersection of the bisection of the $M H_{a}$ segment with perpendiculars in Q on $P Q$, just as O_{9} is the bisection of $M H_{a}$ and is at the distance of $O_{9} M=\frac{R}{2}$ of M and H_{a}, thus $O_{9} Q=\frac{R}{2}$, so O_{9} is the center of the circumscribed circle of the $M H_{a} Q$ triangle.
We continue to prove that the circle of the 9 points is tangent to the A-exinscribed circle in a Feuerbach which we note by Q_{a}. We build on the E point the orthogonal projection of I_{a} on $B C$ and E ' its diameter in the $\left(I_{a}\right)$ circle.

We draw the parallels to $A E^{\prime}$ through I_{a} and E and we denote by K_{a} respectively L_{a} their intersections with the height $A H_{a}$ of the $A B C$ triangle (see Figure 2). The intersection of the $I_{a} K_{a}$ lines and $B C$ is M - the middle of $B C$, but the intersection of the $I_{a} L_{a}$ line with $B C$ we denote by P_{a}. We affirm that the Q_{a} Feuerbach point is the intersection of the exinscribed A-circle with the $E^{\prime} K_{a}$ segment.

Figure 2
We prove that the Q_{a} point is symmetrical to P_{a} on the $I_{a} K_{a}$ line. From what we have so far, the $E{ }^{\prime}{ }_{a} L_{a} K_{a}$ quadrilateral is a parallelogram, so $\Varangle E I_{a} P_{a}=\Varangle I_{a} E^{\prime} Q_{a}$ (alt. int.). because the $I_{a} F^{\prime} Q_{a}$ triangle is isosceles we have that: $\Varangle I_{a} E^{\prime} Q_{a}=\Varangle I_{a} Q_{a} E^{\prime}$.
The $\Varangle E I_{a} Q_{a}$ angle is exterior to the $E^{\prime} I_{a} Q_{a}$ triangle, so $\Varangle E I_{a} Q_{a}=2 \cdot \Varangle I_{a} Q_{a} E^{\prime}$ and seeing as $\Varangle E I_{a} P_{a}=\Varangle I_{a} Q_{a} E^{\prime}$, we have that $\Varangle E I_{a} P_{a}=\Varangle I_{a} Q_{a} E^{\prime}$, relationship which, together with $I_{a} E=I_{a} Q_{a}$ implies $\Delta P_{a} I_{a} E \equiv \Delta Q_{a} I_{a} P_{a}$, and
from here we obtain that $P_{a} Q_{a}=P_{a} E$ and $P_{a} Q_{a} \perp I_{a} K_{a}$. From the parallelism of the $E L_{a}$ line with the $I_{a} K_{a}$ line and $E E^{\prime}$ with $A H_{a}$ we have that: $\frac{P_{a} M}{P_{a} E}=\frac{I_{a} P_{a}}{P_{a} L_{a}}=\frac{P_{a} E}{P_{a} H_{a}}$.

We remember that $P_{a} E^{2}=P_{a} M \cdot P_{a} H_{a}$, thus $P_{a} Q_{a}{ }^{2}=P_{a} M \cdot P_{a} H_{a}$.
This relationship shows that the A-exinscribed circle and the circumscribed circle of the $M H_{a} Q_{a}$ triangle are exterior tangents in the Q_{a} point.

We continue to prove that the circumscribed circle of the $M H_{a} Q_{a}$ triangle is the circle of the 9 points $\left(O_{9}\right)$.
We denote by T the orthogonal projection of O_{9} on $B C$, we have $P_{a} O_{9}{ }^{2}=P_{a} T^{2}+O_{9} T^{2}$.
But $O_{9} T^{2}=O_{9} M^{2}-M T^{2}=\frac{R}{4}-M T^{2}$. We obtain $P_{a} T^{2}-M T^{2}+\frac{R}{4}=P_{a} O_{9}{ }^{2}$. But $M T=H_{a} T=\frac{1}{2} M H_{a}$, we have $P_{a} T^{2}-M T^{2}$ $=\left(P_{a} T+T H_{a}\right)\left(P_{a} T-M T\right)=P_{a} H_{a} \cdot P_{a} M$. We obtained $P_{a} O_{9}{ }^{2}=P_{a} Q_{a}{ }^{2}+\frac{R^{2}}{4}$.

We interpret this relationship as follows: we can build a rectangular triangle with the hypothenuses $P_{a} O_{9}$ with a $P_{a} Q_{a}$ cathetus and a $\frac{R}{2}$ length cathetus. Because $\mathrm{m}\left(\widehat{P}_{a}{\widehat{Q_{a}} I_{a}}\right)=90^{\circ}$, the rectangular triangle with the $P_{a} O_{9}$ hypothenuses will have a 90° angle in Q_{a} and the third corner will be on the prolongment of the $I_{a} Q_{a}$ segment. That corner will be on the bisection of the $M H_{a}$ segment at the distance of $O M=O H_{a}=\frac{R}{2}$. Because $O_{9} M=O_{9} H_{a}=\frac{R}{2}$, we have that O_{9} is the circumscribed center of the $M H_{a} Q_{a}$ triangle, meaning this last circle is the circle of the 9 points of the $A B C$ triangle. The theorem is proved the same way for the B -exinscribed and C -exinscribed circles.

References

[1]. Gh. Buicliu: Probleme de construcții geometrice cu rigla și compasul. Tehnica (publishing house), Bucharest, 1967.
[2]. Florentin Smarandache, Ion Patrascu: The Geometry of Homological Triangles. Education Publisher, Colombus, Ohio, 2012.

