A NUMERICAL FUNCTION IN CONGRUENCE THEORY

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math & Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article we define a function L which will allow us to generalize (separately or simultaneously) some theorems from Numbers Theory obtained by Wilson, Fermat, Euler, Gauss, Lagrange, Leibnitz, Moser, Sierpinski.

§1. Let A be the set $m \in \mathbb{Z} | m = \pm p^\beta, \pm 2p^\beta$ with p an odd prime, $\beta \in \mathbb{N}^*$, or $m = \pm 2^\alpha$ with $\alpha = 0, 1, 2$, or $m = 0$.

Let’s consider $m = \varepsilon p_1^{\alpha_1} \ldots p_s^{\alpha_s}$, with $\varepsilon = \pm 1$, all $\alpha_i \in \mathbb{N}^*$, and p_1, \ldots, p_s distinct positive numbers.

We construct the FUNCTION $L: \mathbb{Z} \rightarrow \mathbb{Z}$, $L(x, m) = (x + c_1) \ldots (x + c_{\phi(m)})$ where $c_1, \ldots, c_{\phi(m)}$ are all residues modulo m relatively prime to m, and ϕ is the Euler’s function.

If all distinct primes which divide x and m simultaneously are $p_1 \ldots p_s$, then:

$L(x, m) \equiv \pm 1 (\text{mod } p_1^{\alpha_1} \ldots p_s^{\alpha_s})$,

when $m \in A$ respective by $m \notin A$, and

$L(x, m) \equiv 0 (\text{mod } m / (p_1^{\alpha_1} \ldots p_s^{\alpha_s}))$.

Noting $d = p_1^{\alpha_1} \ldots p_s^{\alpha_s}$ and $m^* = m / d$ we find:

$L(x, m) \equiv \pm 1 + k_1^0 d \equiv k_2^1 m^*(\text{mod } m)$

where k_1^0, k_2^1 constitute a particular integer solution of the Diophantine equation $k_2 m^* - k_1 d = \pm 1$ (the signs are chosen in accordance with the affiliation of m to A).

This result generalizes the Gauss’ theorem $(c_1, \ldots, c_{\phi(m)} \equiv \pm 1 (\text{mod } m))$ when $m \in A$ respectively $m \notin A$ (see [1]) which generalized in its turn the Wilson’s theorem (if p is prime then $(p - 1)! \equiv -1 (\text{mod } m)$).

Proof.

The following two lemmas are trivial:

Lemma 1. If $c_1, \ldots, c_{\phi(p^\alpha)}$ are all residues modulo p^α relatively prime to p^α, with p an integer and $\alpha \in \mathbb{N}^*$, then for $k \in \mathbb{Z}$ and $\beta \in \mathbb{N}^*$ we have also that
\[kp^\alpha + c_1, \ldots, kp^\alpha + c_{\varphi(p^\alpha)} \] constitute all residues modulo \(p^\alpha \) relatively prime to it is sufficient to prove that for \(1 \leq i \leq \varphi(p^\alpha) \) we have that \(kp^\alpha + c_i \) is relatively prime to \(p^\alpha \), but this is obvious.

Lemma 2. If \(c_1, \ldots, c_{\varphi(m)} \) are all residues modulo \(m \) relatively prime to \(m \), \(p_i^\alpha \) divides \(m \) and \(p_i^{a_i+1} \) does not divide \(m \), then \(c_1, \ldots, c_{\varphi(m)} \) constitute \(\varphi(m / p_i^\alpha) \) systems of all residues modulo \(p_i^\alpha \) relatively prime to \(p_i^\alpha \).

Lemma 3. If \(c_1, \ldots, c_{\varphi(m)} \) are all residues modulo \(q \) relatively prime to \(q \) and \((b, q) \nmid 1 \) then \(b + c_1, \ldots, b + c_{\varphi(q)} \) contain a representative of the class \(\hat{0} \) modulo \(q \).

Of course, because \((b, q - b) \nmid 1 \) there will be a \(c_i = q - b \) whence \(b + c_i = M_q \).

From this we have the following:

Theorem 1. If \(x, m / p_i^{a_i} \ldots p_i^{a_n} \nmid 1 \),

then
\[
(x + c_1) \ldots (x + c_{\varphi(m)}) \equiv 0 \mod m / p_i^{a_i} \ldots p_i^{a_n}.
\]

Lemma 4. Because \(c_1, \ldots, c_{\varphi(m)} \equiv \pm 1 (\mod m) \) it results that \(c_1, \ldots, c_{\varphi(m)} \equiv \pm 1 (\mod p_i^\alpha) \), for all \(i \), when \(m \in A \) respectively \(m \notin A \).

Lemma 5. If \(p_i \) divides \(x \) and \(m \) simultaneously then:
\[
(x + c_1) \ldots (x + c_{\varphi(m)}) \equiv \pm 1 (\mod p_i^\alpha),
\]

when \(m \in A \) respectively \(m \notin A \). Of course, from the lemmas 1 and 2, respectively 4 we have:
\[
(x + c_1) \ldots (x + c_{\varphi(m)}) \equiv c_1, \ldots, c_{\varphi(m)} \equiv \pm 1 (\mod p_i^\alpha).
\]

From the lemma 5 we obtain the following:

Theorem 2. If \(p_i, \ldots, p_i \) are all primes which divide \(x \) and \(m \) simultaneously then:
\[
(x + c_1) \ldots (x + c_{\varphi(m)}) \equiv \pm 1 (\mod p_i^{a_i} \ldots p_i^{a_n}),
\]

when \(m \in A \) respectively \(m \notin A \).

From the theorems 1 and 2 it results:
\[
L(x, m) \equiv \pm 1 + k_1d = k_2m',
\]

where \(k_1, k_2 \in \mathbb{Z} \). Because \((d, m') \nmid 1 \) the Diophantine equation \(k_2m' - k_1d = \pm 1 \) admits integer solutions (the unknowns being \(k_1 \) and \(k_2 \)). Hence \(k_1 = m't + k_1^0 \) and \(k_2 = dt + k_2^0 \), with \(t \in \mathbb{Z} \), and \(k_1^0, k_2^0 \) constitute a particular integer solution of our equation. Thus:
\[
L(x, m) \equiv \pm 1 + m'dt + k_1^0d = \pm 1 + k_1^0 (\mod m)
\]
or
\(L(x, m) = k_2^2 m'(\text{mod } m) \).

§2. APPLICATIONS

1) Lagrange extended Wilson’s theorem in the following way: “If \(p \) is prime then
\[
\chi^{p-1} \equiv (x+1)(x+2)\ldots(x+p-1)(mod \ p).
\]
We shall extend this result as follows: whichever are \(m \neq 0, \pm 4 \), we have for
\[
x^2 + s^2 \neq 0 \quad \text{that}
\]
\[
\chi^{\varphi(m_s)+s} - x^s \equiv (x+1)(x+2)\ldots(x+|m| - 1)(\text{mod } m)
\]
where \(m_s \) and \(s \) are obtained from the algorithm:

\[
\begin{align*}
(0) & \quad \begin{cases} x = x_0d_0; \quad (x_0, m_0) \not\equiv 1 \\ m = m_0d_0; \quad d_0 \neq 1 \end{cases} \\
(1) & \quad \begin{cases} d_0 = d_0^1 d_1; \quad (d_0^1, m_1) \not\equiv 1 \\ m_0 = m_1d_1; \quad d_1 \neq 1 \end{cases} \\
\ldots & \ldots \\
(s-1) & \quad \begin{cases} d_{s-1} = d_{s-1}^1 d_{s-1}; \quad (d_{s-1}^1, m_{s-1}) \not\equiv 1 \\ m_{s-2} = m_{s-1}d_{s-1}; \quad d_{s-1} \neq 1 \end{cases} \\
(s) & \quad \begin{cases} d_{s-1} = d_{s-1}^1 d_s; \quad (d_{s-1}^1, m_s) \not\equiv 1 \\ m_{s-1} = m_s d_s; \quad d_s \neq 1 \end{cases}
\end{align*}
\]

(see [3] or [4]). For \(m \) positive prime we have \(m_s = m, s = 0 \), and \(\varphi(m) = m - 1 \), that is Lagrange.

2) L. Moser enunciated the following theorem: If \(p \) is prime then \((p-1)!a^p + a = \mathcal{M} p^n \), and Sierpinski (see [2], p. 57): if \(p \) is prime then
\[
a^p + (p-1)!a = \mathcal{M} p^n
\]
which merge the Wilson’s and Fermat’s theorems in a single one.

The function \(L \) and the algorithm from §2 will help us to generalize that if "\(a "\) and \(m \) are integers \(m \neq 0 \) and \(c_1, \ldots, c_{\varphi(m)} \) are all residues modulo \(m \) relatively prime to \(m \) then
\[
c_1, \ldots, c_{\varphi(m)} a^{\varphi(m)+s} - L(0, m)a^s = \mathcal{M} m,
\]
respectively
\[
-L(0, m)a^{\varphi(m)+s} + c_1, \ldots, c_{\varphi(m)} a^s = \mathcal{M} m
\]
or more:
\[
(x + c_1)\ldots(x + c_{\varphi(m)}) a^{\varphi(m)+s} - L(x, m)a^s = \mathcal{M} m
\]
respectively
\[-L(x,m)a^{p(m)}a^i + (x+c_i)\cdots(x+c_{p(m)})a^i = M m\]

which reunite Fermat, Euler, Wilson, Lagrange and Moser (respectively Sierpinski).

3) A partial spreading of Moser’s and Sierpinski’s results, the author also obtained (see [6], problem 7.140, pp. 173-174), the following: if \(m \) is a positive integer, \(m \neq 0,4 \) and "\(a \)" is an integer, then \((a^m - a)(m-1)! = M m \), reuniting Fermat and Wilson in another way.

4) Leibnitz enunciated that: "If \(p \) is prime then \((p - 2)! \equiv 1 \pmod{p} \)";

We consider \(c_i < c_{i+1}(\text{mod } m) \) if \(c_i < c_{i+1} \) where \(0 \leq c_i < |m|, 0 \leq c_{i+1} < |m| \), and \(c_i \equiv c_{i+1}(\text{mod } m), c_{i+1} \equiv c_{i+1}(\text{mod } m) \) it seems simply that \(c_1, c_2, \ldots, c_{p(m)} \) are all residues modulo \(m \) relatively prime to \(m(c_i < c_{i+1}(\text{mod } m)) \) for all \(i, m \neq 0 \), then \(c_1, c_2, \ldots, c_{p(m)} \equiv \pm(\text{mod } m) \) if \(m \in A \) respectively \(m \not\in A \), because \(c_{p(m)} \equiv -1(\text{mod } m) \).

REFERENCES:

[Published in "Libertas Mathematica», University of Texas, Arlington, Vol. XII, 1992, pp. 181-185]