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Abstract

This short technical paper advocates a bootstrapping algorithm from which we can form a 

statistically reliable opinion based on limited clinically observed data, regarding whether

an osteo-hyperplasia could actually be a case of Ewing’s osteosarcoma. The basic 

premise underlying our methodology is that a primary bone tumour, if it is indeed 

Ewing’s osteosarcoma, cannot increase in volume beyond some critical limit without 

showing metastasis. We propose a statistical method to extrapolate such critical limit to 

primary tumour volume. Our model does not involve any physiological variables but 

rather is entirely based on time series observations of increase in primary tumour volume 

from the point of initial detection to the actual detection of metastases. 
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I. Introduction

To date, oncogenetic studies of EWS/FLI-11 induced malignant transformation have 

largely relied upon experimental manipulation of Ewing’s bone tumour cell lines and 

fibroblasts that have been induced to express the oncogene. It has been shown that the 

biology of Ewing’s tumour cells in vitro is dramatically different between cells grown as 

mono-layers and cells grown as anchorage-independent, multi-cellular spheroids (MCS).

The latter is more representative of primary Ewing’s tumour in vivo (Lawlor et. al, 2002). 

MCS are clusters of cancer cells, used in the laboratory to study the early stages of 

avascular tumour growth. Mature MCS possess a well-defined structure, comprising a 

central core of necrotic i.e. dead cells, surrounded by a layer of non-proliferating, 

quiescent cells, with proliferating cells restricted to the outer, nutrient-rich layer of the 

tumour. As such, they are often used to assess the efficacy of new anti-cancer drugs and 

treatment therapies. The majority of mathematical models focus on the growth of MCS or 

avascular tumour growth. Most recent works have focused on the evolution of MCS 

growing in response to a single, externally-supplied nutrient, such as oxygen or glucose, 

and usually two growth inhibitors. 

Mathematical models of MCS growth typically consist of an ordinary differential 

equation (ODE) coupled to one or more reaction-diffusion equations (RDEs). The ODE 

is derived from mass conservation and describes the evolution of the outer tumour 

boundary, whereas the RDEs describe the distribution within the tumour of vital nutrients 
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such as oxygen and glucose and growth inhibitors (Dorman and Deutsch, 2002). 

However studies of this type, no matter how mathematically refined, often fall short of 

direct clinical applicability because of rather rigorous restrictions imposed on the 

boundary conditions. Moreover, these models focus more on the structural evolution of a 

tumour that is already positively classified as cancerous rather than on the clinically 

pertinent question of whether an initially benign growth can at a subsequent stage

become invasive and show metastases (De Vita et. al., 2001).

What we therefore aim to devise in our present paper is a bootstrapping algorithm from 

which we can form an educated opinion based on clinically observed data, regarding 

whether a bone growth initially diagnosed as benign can subsequently prove to be 

malignant (i.e. specifically, a case of Ewing’s osteosarcoma) . The strength of our 

proposed algorithm lies mainly in its computational simplicity – our model does not 

involve any physiological variables but is entirely based on time series observations of 

progression in tumour volume from the first observation point till detection of metastases. 

II. Literature support

In a clinical study conducted by Hense et. al. (1999), restricted to patients with suspected 

Ewing’s sarcoma, tumour volumes of more than 100 ml and the presence of primary

metastases were identified as determinants of poor prognosis in patients with such 

tumours. Diagnoses of primary tumours were ascertained exclusively by biopsies. The 

diagnosis of primary metastases was based on thoracic computed tomography or on 
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whole body bone scans. It was observed that of 559 of the patients (approx. 68% in a 

total sample size of 821) had a volume above 100 ml with smaller tumours being more 

common in childhood than in late adolescence and early adulthood. Extensive volumes 

were observed in almost 90% of the tumours located in femur and pelvis while they were 

less common in other sites (p < 0.001). On average, 26% of all patients were detected 

with clinically apparent primary metastases. 

The detection rate of metastases was markedly higher in patients diagnosed after 1991 (p

< 0.001). Primary metastases were also significantly more common for tumours 

originating in the pelvis and for other tumours in the Ewing’s family of tumours (EFT); 

mainly the peripheral neuro-ectodermal tumours (PNET); (p < 0.01). Tumours greater 

than 100 ml were positively associated with metastatic disease (p < 0.001). Multivariate 

analyses, which included simultaneously all univariate predictors in a logistic regression 

model, indicated the observed associations were mostly unconfounded.

Further it has been found that the metastatic potential of human tumours is encoded in the 

bulk of a primary tumour, thus challenging the notion that metastases arise from sparse

cells within a primary tumour that have the ability to metastasize (Sridhar Ramaswamy 

et. al., 2003). These studies lend credence to our fundamental premise about a critical 

primary tumour volume being used as a classification factor to distinguish between 

benign and potentially malignant bone growth.
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III. Statistical modelling methodology

Assuming that the temporal drift process governing the progression in size of a primary 

Ewing tumour of the bone to be linear (the computationally simplest process), we suggest 

a straightforward computational technique to generate a large family of possible tumour

propagation paths based on clinically observed growth patterns under laboratory 

conditions. In case the governing process is decidedly non-linear, then our proposed 

scheme would not be applicable and in such a case one will have to rely on a completely

non-parametric classification technique like e.g. an Artificial Neural Network (ANN). 

Our proposed approach is a bootstrapping one, whereby a linear autoregression model is 

fitted through the origin to the observation data in the first stage. If one or more beta 

coefficients are found to be significant at least at a 95% level for the fitted model then, in 

the second stage, the autoregression equation is formulated and solved as a linear 

difference equation to extract the governing equation. 

In the final stage, the governing equation obtained as above is plotted, for different values 

of the constant coefficients, as a family of possible temporal progression curves 

generated to explain the propagation property of that particular strain of tumour. The 

critical volume of the primary growth can thereafter be visually extrapolated from the 

observed cluster of points where the generated family of primary tumour progression

curves show a definite uptrend vis-a-vis the actual progression curve. 
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If no beta coefficient is found to be significant in the first stage, a non-linear temporal 

progression process is strongly suspected and the algorithm terminates without 

proceeding onto the subsequent stages, thereby implicitly recommending the problem to a 

non-parametric classification model.

The mathematical structure of our proposed model may be given as follows:

Progression in primary Ewing tumour size over time expressed as an n-step general 

autoregressive process through the origin:
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Formulated as a linear, difference equation we can write:
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Now applying the positive shift operator throughout we get:
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The characteristic equation of the above form is then obtained as follows:
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Here r is the root of the characteristic equation. After solving for r, the governing 

equation can be derived in accordance with the well-known analytical solution techniques 

for ordinary linear difference equations (Kelly and Peterson, 2000). 

IV. Simulated clinical study

We set up a simulated clinical study applying our modelling methodology with the 

following hypothetical primary Ewing tumour progression data adapted from the clinical 

study of Hense et. al. (1999) as given in Table I below:
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Table I
Observation (t) Primary Ewing tumour volume (in ml.)

(At point of first detection)

1 5

2 7

3 9

4 19

5 39

6 91

7 

(At the point of detection of metastasis)

102

Figure I

The temporal progression path of the primary growth from the point of first detection to 

the onset of metastasis is plotted above in Figure I.
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We have fitted an AR (2) model to the primary tumour growth data as follows:

             E (St) = -1.01081081St-1 + 5.32365561St-2                                                        (VI)

The R2 of the fitted model is approximately 0.8311 and the F-statistic is 9.83832 with an 

associated p-value of approximately 0.04812. Therefore the fitted model definitely has an

overall predictive utility at the 5% level of significance. 

The residuals of the above AR (2) fitted model are given in Table II as follows:

Table II
Observation Predicted St Residuals

1 -5.05405405 12.05405405

2 19.5426024 -10.5426024

3 28.168292 -9.168292003

4 28.7074951 10.29250488

5 61.7278351 29.27216495

6 115.638785 -13.63878518

The average of the residuals comes to 3.044841. Therefore the linear difference equation 

to be solved in this case is as follows:

         Xt = -1.01081081Xt-1 + 5.32365561Xt-2 + 3.044841                                          (VII)
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Applying usual solution techniques, the general solution to equation (VII) is obtained as 

follows:

         Xt = c1 (2.43124756) t + c2 (-3.44205837) t                                                     (VIII)

Here c1 and c2 are the constant coefficients which may now be suitably varied to generate 

a family of possible primary tumour progression curves as in Figure II below:

Figure II

In the above plot, we have varied c2 in the range 0.01 to 0.10 and imposed the condition 

c1 = 1 – c2. The other obvious condition is that choice of c1 and c2 would be such as to 

rule out any absurd case of negative volume. Of course the choice of the governing 

equation parameters would also depend on specific clinical considerations (King, 2000).

Generated primary tumour growth curves
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V. Conclusion

From Figure II, it becomes visually apparent that continuing increase in the observed size 

of the primary growth beyond approximately 52 ml. in volume would be potentially 

malignant as this would imply that the tumour would possibly keep exhibiting 

uncontrolled progression till it shows metastasis. This could also be obtained 

arithmetically as the average volume for t = 5.  Therefore the critical volume could be 

fixed around 52 ml. as per the computational results obtained in our illustrative example.  

Though our computational study is intended to be purely illustrative as we have worked 

with hypothetical figures and hence cannot yield any clinical conclusion, we believe we 

have hereby aptly demonstrated the essential algorithm of our statistical approach and 

justified its practical usability under laboratory settings.  We have used a difference 

equation model rather than a differential equation one because under practical laboratory 

settings, observations cannot be made continuously but only at discrete time intervals.

There is immediate scope of taking our line of research further forward by actually 

implementing an autoregressive process to model in vitro growth of MCS with real data.
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