Another proof of a theorem relative to the orthological triangles

Ion Pătraşcu - National College "Frații Buzeşti, Craiova, Romania Florentin Smarandache - New Mexico University, U.S.A.

In [1] we proved, using barycentric coordinates, the following theorem:
Theorem: (generalization of the C. Coşniță theorem)
If P is a point in the triangle's $A B C$ plane, which is not on the circumscribed triangle, $A^{\prime} B^{\prime} C^{\prime}$ is its pedal triangle and A_{1}, B_{1}, C_{1} three points such that

$$
\overrightarrow{P A^{\prime}} \cdot \overrightarrow{P A_{1}}=\overrightarrow{P B^{\prime}} \cdot \overrightarrow{P B_{1}}=\overrightarrow{P C^{\prime}} \cdot \overrightarrow{P C_{1}}=k, \quad k \in R^{*},
$$

then the lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.
Bellow, will prove, using this theorem, the following:

Theorem

If the triangles $A B C$ and $A_{1} B_{1} C_{1}$ are orthological and their orthological centers coincide, then the lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent (the triangles $A B C$ and $A_{1} B_{1} C_{1}$ are homological).

Proof:

Let O be the unique orthological center of the triangles $A B C$ and $A_{1} B_{1} C_{1}$ and

$$
\begin{aligned}
& \left\{X_{1}\right\}=A O \cap B_{1} C_{1} \\
& \left\{X_{2}\right\}=B O \bigcap A_{1} C_{1} \\
& \left\{X_{3}\right\}=C O \bigcap A_{1} B_{1}
\end{aligned}
$$

We denote

$$
\begin{aligned}
& \left\{Y_{1}\right\}=O A_{1} \cap B C \\
& \left\{Y_{2}\right\}=O B_{1} \cap A C \\
& \left\{Y_{3}\right\}=O C_{1} \cap A B
\end{aligned}
$$

We observe that $\square O A Y_{3}=\square O C_{1} X_{1}$ (angles with perpendicular sides).
Therefore:

$$
\begin{aligned}
& \sin O A Y_{3}=\frac{O Y_{3}}{O A} \\
& \sin O C_{1} X_{1}=\frac{O X_{1}}{O C_{1}}
\end{aligned}
$$

then

$$
\begin{equation*}
O X_{1} \cdot O A=O Y_{3} \cdot O C_{1} \tag{1}
\end{equation*}
$$

Also

$$
\square O C_{1} X_{2}=\square O B Y_{3}
$$

therefore

$$
\begin{aligned}
& \sin O C_{1} X_{2}=\frac{O X_{2}}{O C_{1}} \\
& \sin O B Y_{3}=\frac{O Y_{3}}{O B}
\end{aligned}
$$

and consequently:

$$
\begin{equation*}
O X_{2} \cdot O B=O Y_{3} \cdot O C_{1} \tag{2}
\end{equation*}
$$

Following the same path:

$$
\sin O A_{1} X_{2}=\frac{O X_{2}}{O C_{1}}=\sin O B Y_{1}=\frac{O Y_{1}}{O B}
$$

from which

$$
\begin{equation*}
O X_{2} \cdot O B=O A_{1} \cdot O Y_{1} \tag{3}
\end{equation*}
$$

Finally

$$
\sin O A_{1} X_{3}=\frac{O X_{3}}{O A_{1}}=\sin O C Y_{1}=\frac{O Y_{1}}{O C}
$$

from which:

$$
\begin{equation*}
O X_{3} \cdot O C=O A_{1} \cdot O Y_{1} \tag{4}
\end{equation*}
$$

The relations (1), (2), (3), (4) lead to

$$
\begin{equation*}
O X_{1} \cdot O A=O X_{2} \cdot O B=O X_{3} \cdot O C \tag{5}
\end{equation*}
$$

From (5) using the Coşniță's generalized theorem, it results that $A_{1} A, B_{1} B, C_{1} C$ are concurrent.

Observation:

If we denote P the homology center of the triangles $A B C$ and $A_{1} B_{1} C_{1}$ and d is the intersection of their homology axes, them in conformity with the Sondat's theorem, it results that $O P \perp d$.

References:

[1] Ion Pătraşcu - Generalizarea teoremei lui Coşniță - Recreații Matematice, An XII, nr. 2/2010, Iaşi, Romania
[2] Florentin Smarandache - Multispace \& Multistructure, Neutrosophic Transdisciliniarity, 100 Collected papers of science, Vol. IV, 800 p., NorthEuropean Scientific Publishers, Honka, Finland, 2010.

