Properties of a Hexagon Circumscribed to a Circle

Prof. Ion Pătrașcu
Frații Buzești College, Craiova, Romania
Dr. Florentin Smarandache
University of New Mexico, Gallup, NM 87301, USA

In this paper we analyze and prove two properties of a hexagon circumscribed to a circle:

Property 1.

If $A B C D E F$ is a hexagon circumscribed to a circle with the center in O, tangent to the sides $A B, B C, C D, D E, E F, F A$ respectively in $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, and if the lines of the triplet formed from two lines that belong to the set $\{A D, B E, C F\}$ and a line that belongs to the set $\left\{A^{\prime} D^{\prime}, B^{\prime} E^{\prime}, C^{\prime} F^{\prime}\right\}$ are concurrent, then the lines $A D, B E, C F, A^{\prime} D^{\prime}, B^{\prime} E^{\prime}, C^{\prime} F^{\prime}$ are concurrent.

Property 2.

If $A B C D E F$ is a hexagon circumscribed to a circle with the center in O , tangent to the sides $A B, B C, C D, D E, E F, F A$ respectively in $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, such that the hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is circumscribable, then the lines $A D, B E, C F, A^{\prime} D^{\prime}, B^{\prime} E^{\prime}, C^{\prime} F$ are concurrent.

To prove these propositions we'll use:
Lemma 1 (Brianchon's Theorem)
If $A B C D E F$ is a hexagon circumscribable then the lines $A D, B E, C F$ are concurrent.

Lemma 2

If $A B C D E F$ is a hexagon circumscribed to a circle tangent to the sides $A B, B C, C D, D E, E F, F A$ respectively in $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, such that $A^{\prime} D^{\prime} \cap C^{\prime} F^{\prime}=\left\{A_{o}\right\}, B^{\prime} E^{\prime} \cap A^{\prime} D^{\prime}=\left\{B_{o}\right\}, C^{\prime} F^{\prime} \cap B^{\prime} E^{\prime}=\left\{C_{o}\right\}$, then $A_{o} \in A D, B_{o} \in B E, C_{o} \in C F$.

Fig. 1

Proof of Lemma 2

We note $\{X\}=A F \cap D E$ and $\{Y\}=A B \cap D C$ (see figure 1).
In the quadrilateral $X A Y D$ circumscribed, the Newton's theorem gives that the lines $A D, A^{\prime} D^{\prime}, C^{\prime} F^{\prime}$ and $X Y$ are concurrent, therefore $A_{o} \in A D$.

Similarly, is proven that $B_{O} \in B E$ and that $C_{O} \in C F$

Proof of Property 1

We suppose that $A D, B E$ and $A^{\prime} D^{\prime}$ are concurrent in the point I (see fig. 2).
We denote $\{X\}=A F \cap D E$ and $\{Y\}=A B \cap D C$, we apply Newton's theorem in the quadrilateral $X A Y D$, it results that the line $C^{\prime} F^{\prime}$ also passes through I.

Y Fig. 2

On the other side from Lemma 1 it results that $C F$ passes through I .
We note $\{Z\}=E F \cap A B$ and $\{U\}=B C \cap E D$ in the circumscribed quadrilateral $E Z B U$. Newton's theorem shows that the lines $B E, Z U, B^{\prime} E^{\prime}$ and $A^{\prime} D^{\prime}$ are concurrent. Because $B E$ and $A^{\prime} D^{\prime}$ pass through I, it results that also $B^{\prime} E^{\prime}$ passes through I, and the proof is complete.

Observation

There exist circumscribable hexagons $A B C D E F$ in which the six lines from above are concurrent (a banal example is the regular hexagon).

Proof of Property 2
From Lemma 1 we obtain that $A D \cap B E \cap C F=\{I\}$ and $A^{\prime} D^{\prime} \cap B^{\prime} E \cap C^{\prime} F^{\prime}=\left\{I^{\prime}\right\}$. From Lemma 2 it results that $I^{\prime} \in A D$ and $I^{\prime} \in B E$, because $A D \cap B E=\{I\}$, we obtain that $I=I^{\prime}$ and consequently all six lines are concurrent.

Reference:

Florentin Smarandache, "Problems with and without...problems!", Somipress, Fés, Morocco, 1983.

