A FUNCTION IN THE NUMBER THEORY

Florentin Smarandache
The University of New Mexico
Department of Mathematics
Gallup, NM 87301, USA
Abstract:
In this paper I shall construct a function $1^{1} \eta$ having the following properties:
(1) $\forall \mathrm{n} \in \mathrm{Z}, \mathrm{n} \neq 0,(\eta(\mathrm{n}))!=M \mathrm{n}$ (multiple of n$)$.
(2) $\eta(n)$ is the smallest natural number satisfying property (1).

MSC: 11A25, 11B34.
Introduction:
We consider:
$\mathrm{N}=\{0,1,2,3, \ldots\}$ and $\mathrm{N}^{*}=\{1,2,3, \ldots\}$.
Lemma 1. $\forall \mathrm{k}, \mathrm{p} \varepsilon \mathrm{N}^{*}, \mathrm{p} \neq 1, \mathrm{k}$ is uniquely written
in the form: $\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{l} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}$ where
$\mathrm{a}_{\mathrm{n}(\mathrm{i})}^{(\mathrm{p})}=\frac{\mathrm{p}^{\mathrm{n(i)}-1}}{\mathrm{p}-1}, \mathrm{i}=\overline{1, l}, \mathrm{n}_{1}>\mathrm{n}_{2}>\ldots \mathrm{n}_{l}>0$ and $1 \leq \mathrm{t}_{\mathrm{j}} \leq \mathrm{p}-1, \mathrm{j}=\overline{1,1-1}, 1 \leq \mathrm{t}_{l} \leq \mathrm{p}, \mathrm{n}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} \in \mathrm{N}$,
$\mathrm{i}=\overline{1, l}, l \varepsilon \mathrm{~N}^{*}$.
Proof.
The string $\left(\mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}\right)_{\mathrm{n} \in \mathrm{N}}$ consists of strictly increasing infinite natural numbers and
$\mathrm{a}_{\mathrm{n}+1}{ }^{(\mathrm{p})}-1=\mathrm{p} * \mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}, \alpha \mathrm{n} \varepsilon \mathrm{N}^{*}, \mathrm{p}$ is fixed,
$\mathrm{a}_{1}{ }^{(\mathrm{p})}=1, \mathrm{a}_{2}{ }^{(\mathrm{p})}=1+\mathrm{p}, \mathrm{a}_{3}{ }^{(\mathrm{p})}=1+\mathrm{p}+\mathrm{p}^{2}, \ldots$. Therefore:
$N^{*}=\underset{n \varepsilon N^{*}}{U}\left(\left[a_{n}{ }^{(p)}, a_{n+1}{ }^{(p)}\right] \cap N^{*}\right)$ where $\left(a_{n}{ }^{(p)}, a_{n+1}{ }^{(p)}\right) \cap\left(a_{n+1}{ }^{(p)}, a_{n+2}{ }^{(p)}\right)=0$
because $\mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}<\mathrm{a}_{\mathrm{n}+1}{ }^{(\mathrm{p})}<\mathrm{a}_{\mathrm{n}+2}{ }^{(\mathrm{p})}$.
Let $\mathrm{k} \varepsilon \mathrm{N}^{*}, \mathrm{~N}^{*}=\mathrm{U}\left(\left(\mathrm{a}_{\mathrm{n}}{ }^{\mathrm{p})}, \mathrm{a}_{\mathrm{n}+1}{ }^{(\mathrm{p})}\right) \cap \mathrm{N}^{*}\right)$,
therefore $\exists!\mathrm{n}_{1} \varepsilon \mathrm{~N}^{*}: \mathrm{k} \varepsilon\left(\mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}, \mathrm{a}_{\mathrm{n}(1)+1}{ }^{(\mathrm{p})}\right)$, therefore k is uniquely written under the form
$\mathrm{k}=\left(\frac{\mathrm{k}}{\frac{\mathrm{a}^{(\mathrm{p})}}{\mathrm{n}_{1}}}\right) \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\mathrm{r}_{1}$ (integer division theorem).

[^0]We note

$$
\mathrm{k}=\left(\frac{\mathrm{k}}{\substack{\mathrm{a}^{(\mathrm{p})} \\ \mathrm{n}_{1}}}\right)=\mathrm{t}_{1} \rightarrow \mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}^{(\mathrm{p})}+\mathrm{r}_{1}, \mathrm{r}_{1}<\mathrm{a}_{\mathrm{n}(1)}^{(\mathrm{p})}
$$

If $\mathrm{r}_{1}=0$, as $\mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})} \leq \mathrm{k} \leq \mathrm{a}_{\mathrm{n}(1)+1}{ }^{(\mathrm{p})}-1 \rightarrow 1 \leq \mathrm{t}_{1} \leq \mathrm{p}$ and Lemma 1 is proved.
If $\mathrm{r}_{1} \neq 0$, then $\exists!\mathrm{n}_{2} \varepsilon \mathrm{~N}^{*}: \mathrm{r}_{1}\left(\varepsilon \quad \mathrm{a}_{\mathrm{n}(2)}{ }^{(\mathrm{p})}, \mathrm{a}_{\mathrm{n}(2)+1}{ }^{(\mathrm{p})}\right.$);
$\mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}>\mathrm{r}_{1}$ involves $\mathrm{n}_{1}>\mathrm{n}_{2}, \mathrm{r}_{1} \neq 0$ and $\mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})} \leq \mathrm{k} \leq \mathrm{a}_{\mathrm{n}(1)+1}{ }^{(\mathrm{p})}-1$ involves $1 \leq \mathrm{t}_{1} \leq \mathrm{p}-1$ because we have $\mathrm{t}_{1} \leq\left(\mathrm{a}_{\mathrm{n}(\mathrm{l})+1}{ }^{(\mathrm{p})}-1-\mathrm{r}_{1}\right): \mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}<\mathrm{p}_{1}$.

The procedure continues similarly. After a finite number of steps l, we achieve $\mathrm{r}_{l}=0$, as $\mathrm{k}=$ finite, $\mathrm{k} \varepsilon \mathrm{N}^{*}$ and $\mathrm{k}>\mathrm{r}_{1}>\mathrm{r}_{2}>\ldots>\mathrm{r}_{l}=0$ and between 0 and k there is only a finite number of distinct natural numbers. Thus:
k is uniquely written: $\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\mathrm{r}_{1}, 1 \leq \mathrm{t}_{1} \leq \mathrm{p}-1$,
r is uniquely written: $\mathrm{r}_{1}=\mathrm{t}_{2} * \mathrm{a}_{\mathrm{n}(2)}^{(\mathrm{p})}+\mathrm{r}_{2}, \mathrm{n}_{2}<\mathrm{n}_{1}$,

$$
1 \leq \mathrm{t}_{2} \leq \mathrm{p}-1
$$

r_{l-1} is uniquely written: $\mathrm{r}_{l-1}=\mathrm{t}_{l} * \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}+\mathrm{r}_{l}$, and $\mathrm{r}_{l}=0$,

$$
\mathrm{n}_{l}<\mathrm{n}_{l-1}, \quad 1 \leq \mathrm{t}_{l} \leq \mathrm{p}
$$

thus k is uniquely written under the form
$\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}$
with $\mathrm{n}_{1}>\mathrm{n}_{2}>\ldots>\mathrm{n}_{l}>0$, because $\mathrm{n}_{l} \varepsilon \mathrm{~N}^{*}, 1 \leq \mathrm{t}_{\mathrm{j}} \leq \mathrm{p}-1, \mathrm{j}=1, l-1,1 \leq \mathrm{t}_{l} \leq \mathrm{p}, l \geq 1$.
Let $\mathrm{k} \varepsilon \mathrm{N}^{*}, \mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}$ with
$\mathrm{a}_{\mathrm{n}(\mathrm{i})}{ }^{(\mathrm{p})}=\frac{\mathrm{p}^{\mathrm{ni}}-1}{\mathrm{p}-1}$,
$\mathrm{i}=\overline{1, l}, l \geq 1, \mathrm{n}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} \varepsilon \mathrm{N}^{*}, \mathrm{i}=\overline{1, l}, \mathrm{n}_{1}>\mathrm{n}_{2}>\ldots>\mathrm{n}_{l}>0$
$1 \leq \mathrm{t}_{\mathrm{j}} \leq \mathrm{p}-1, \mathrm{j}=\overline{1, l-1}, 1 \leq \mathrm{t}_{\mathrm{l}} \leq \mathrm{p}$.
I construct the function $\eta_{p}, p=$ prime $>0, \eta_{p}: N^{*} \rightarrow N$ thus:
$\forall \mathrm{n} \varepsilon \mathrm{N}^{*} \eta_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{n}}{ }^{(\mathrm{p})}\right)=\mathrm{p}^{\mathrm{n}}$,

$$
\eta_{\mathrm{p}}\left(\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}^{(\mathrm{p})}+\ldots+\mathrm{t}_{l} \mathrm{a}_{\mathrm{n}(l)}^{(\mathrm{p})}\right)=\mathrm{t}_{1} \eta_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{n}(1)^{(\mathrm{p})}}\right)+\ldots+\mathrm{t}_{l} \eta_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{n}(l)}^{(\mathrm{p})}\right) .
$$

NOTE 1. The function η_{p} is well defined for each natural number.
Proof
LEMMA 2. $\forall \mathrm{k} \varepsilon \mathrm{N}^{*}, \mathrm{k}$ is uniquely written as $\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n} 1}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{l} \mathrm{a}_{\mathrm{n} l}{ }^{(\mathrm{p})}$ with the conditions from Lemma
1, thus $\exists!\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}=\eta_{\mathrm{p}}\left(\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{l} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}\right)$ and $\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)} \varepsilon \mathrm{N}^{*}$.
LEMMA 3. $\forall \mathrm{k} \varepsilon \mathrm{N}^{*}, \forall \mathrm{p} \varepsilon \mathrm{N}, \mathrm{p}=$ prime then $\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{l} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}$ with the conditions from Lemma 2 thus $\eta_{\mathrm{p}}(\mathrm{k})=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{p}^{\mathrm{n}(\mathrm{l})}$

It is known that
$\left(\frac{a_{1}+\ldots+a_{n}}{b}\right) \geq\left(\frac{a_{1}}{b}\right)+\ldots+\left(\frac{a_{n}}{b}\right) \quad \forall a_{i}, b \varepsilon N^{*}$ where through $[\alpha]$ we
have written the integer side of the number α. I shall prove that p's powers sum from the natural numbers which make up the result factors
$\left(\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(\mathrm{l})}\right)!$ is $\geq \mathrm{k} ;$

$$
\begin{aligned}
& \left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}}\right) \geq\left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}}{\mathrm{p}}\right)+\ldots+\left(\frac{\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}}\right)= \\
& \mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-1}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)-1} \\
& \left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}^{\mathrm{n}}}\right) \geq\left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}}{\mathrm{p}^{\mathrm{n}(l)}}\right)+\ldots+\left(\frac{\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}^{\mathrm{n}(l)}}\right)= \\
& \mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{0} \\
& \left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}^{\mathrm{n}(1)}}\right) \geq\left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}}{\mathrm{p}^{\mathrm{n}(1)}}\right)+\ldots+\left(\frac{\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}^{\mathrm{n}(1)}}\right)= \\
& \mathrm{t}_{1} \mathrm{p}^{0}+\ldots+\frac{\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}}{\mathrm{p}^{\mathrm{n}(1)}} .
\end{aligned}
$$

Adding $\rightarrow \mathrm{p}$'s powers the sum is $\geq \mathrm{t}_{1}\left(\mathrm{p}^{\mathrm{n}(1)-1}+\ldots+\mathrm{p}^{0}\right)+\ldots+\mathrm{t}_{l}\left(\mathrm{p}^{\mathrm{n}(l)-1}+\ldots+\mathrm{p}^{0}\right)=$
$\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{a}_{\mathrm{n}(l)}{ }^{(\mathrm{p})}=\mathrm{k}$.
Theorem 1. The function $n_{p}, p=$ prime, defined previously, has the following properties:
(1) $\exists \mathrm{k} \varepsilon \mathrm{N}^{*},\left(\mathrm{n}_{\mathrm{p}}(\mathrm{k})\right)!=M \mathrm{p}^{\mathrm{k}}$.
(2) $\eta_{\mathrm{p}}(\mathrm{k})$ is the smallest number with the property (1).

Proof
(1) Results from Lemma 3.
(2) $\forall \mathrm{k} \varepsilon \mathrm{N}^{*}, \mathrm{p} \geq 2$ one has $\mathrm{k}=\mathrm{t}_{1} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}+\ldots+\mathrm{t}_{\mathrm{t}} \mathrm{a}_{\mathrm{n}(1)}{ }^{(\mathrm{p})}$
(by Lemma 2) is uniquely written, where:
$\mathrm{n}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} \varepsilon \mathrm{N}^{*}, \mathrm{n}_{1}>\mathrm{n}_{2}>\ldots \mathrm{n}_{l}>0$,
$a_{n(i)}^{(p)}=\frac{p^{n(i)}-1}{p-1} \varepsilon N^{*}$,
$\mathrm{i}=\overline{1, l,} 1 \leq \mathrm{t}_{\mathrm{j}} \leq \mathrm{p}-1, \quad \mathrm{j}=\overline{1, l-1}, 1<\mathrm{t}_{l}<\mathrm{p}$.
$\rightarrow \eta_{p}(k)=t_{1} p^{n(1)}+\ldots+\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(l)}$. I note: $\mathrm{z}=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{p}^{\mathrm{n}(l)}$.
Let us prove that z is the smallest natural number with the property (1). I suppose by the method of reductio ad absurdum that $\exists \gamma \varepsilon \mathrm{N}, \gamma<\mathrm{z}$:
$\gamma!=M \mathrm{p}^{\mathrm{k}} ;$
$\gamma<\mathrm{z} \rightarrow \gamma \leq \mathrm{z}-1 \rightarrow(\mathrm{z}-1)!=M \mathrm{p}^{\mathrm{k}}$.
$\mathrm{z}-1=\mathrm{z}=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{p}^{\mathrm{n}(\mathrm{l}}-1 ; \mathrm{n}_{1}>\mathrm{n}_{2}>\ldots \mathrm{n}_{l} \geq 1$ and
$\mathrm{n}_{\mathrm{j}} \varepsilon \mathrm{N}, \mathrm{j}=\overline{1, \mathrm{l}}$;
$\left(\frac{\mathrm{z}-1}{\mathrm{p}}\right)=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-1}+\ldots+\mathrm{t}_{l-1}^{\mathrm{n}(l-1)-1}+\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(\mathrm{l})-1}-1$ as $\left(\frac{-1}{\mathrm{p}}\right)=-1$ because $\mathrm{p} \geq 2$,
$\left(\frac{\mathrm{z}-1}{\mathrm{p}^{\mathrm{n}(l)}}\right)=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l)}+\ldots+\mathrm{t}_{l-1} \mathrm{p}^{\mathrm{n}(l-1)-\mathrm{n}(l)}+\mathrm{t}_{l} \mathrm{p}^{0}-1$ as $\left(\frac{-1}{\mathrm{p}^{\mathrm{n}(l)}}\right)=-1$
as $\mathrm{p} \geq 2, \mathrm{n}_{l} \geq 1$,
$\left(\frac{\mathrm{z}-1}{\mathrm{p}^{\mathrm{n}(l)+1}}\right)=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l)-1}+\ldots+\mathrm{t}_{l-1} \mathrm{p}^{\mathrm{n}(l-1)-\mathrm{n}(l)-1}+\left(\frac{\mathrm{t}_{\mathrm{p}} \mathrm{p}^{\mathrm{n}(l)}-1}{\mathrm{p}^{\mathrm{n}(l)+1}}\right)=$
$\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l)-1}+\ldots+\mathrm{t}_{l-1} \mathrm{p}^{\mathrm{n}(l-1)-\mathrm{n}(l)-1}$ because
$0<\mathrm{t}_{\mathrm{p}} \mathrm{p}^{\mathrm{n}(l)}-1 \leq \mathrm{p}^{*} \mathrm{p}^{\mathrm{n}(l)}-1<\mathrm{p}^{\mathrm{n}(l)+1}$ as $\mathrm{t}_{l}<\mathrm{p} ;$
$\left(\frac{\mathrm{z}-1}{\mathrm{p}^{\mathrm{n}(l-1)}}\right)=\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l-1)}+\ldots+\mathrm{t}_{l-1} \mathrm{p}^{0}+\left(\frac{\mathrm{t}_{l} \mathrm{p}^{\mathrm{n}(l)}-1}{\mathrm{p}^{\mathrm{n}(l-1)}}\right)=$

$$
\begin{aligned}
& \mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)-\mathrm{n}(l-1)}+\ldots+\mathrm{t}_{l-1} \mathrm{p}^{0} \text { as } \mathrm{n}_{l-1}>\mathrm{n}_{l}, \\
& \left(\frac{\mathrm{z}-1}{\mathrm{p}^{\mathrm{n}(1)}}\right)=\mathrm{t}_{1} \mathrm{p}^{0}+\left(\frac{\mathrm{t}_{2} \mathrm{p}^{\mathrm{n}(2)}+\ldots+\mathrm{t}_{\mathrm{t}} \mathrm{p}^{\mathrm{n}(l)}-1}{\mathrm{p}^{\mathrm{n}(1)}}\right)=\mathrm{t}_{1} \mathrm{p}^{0} .
\end{aligned}
$$

Because $0<\mathrm{t}_{2} \mathrm{p}^{\mathrm{n}(2)}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{p}^{\mathrm{n}(l)}-1 \leq(\mathrm{p}-1) \mathrm{p}^{\mathrm{n}(2)}+\ldots+(\mathrm{p}-1) \mathrm{p}^{\mathrm{n}(l-1)}+\mathrm{p}^{*} \mathrm{p}^{\mathrm{n}(l)}-1 \leq$

$$
\begin{aligned}
& (p-1) * \sum_{i=n(l-1)}^{n_{2}} p_{i}+p^{n(l)+1}-1 \leq \\
& (p-1) \frac{p^{n(2)+1}}{p-1}=p^{n(2)+1}-1<p^{n(1)}-1<p^{n(1)} \text { therefore } \\
& \left(\frac{\mathrm{t}_{2} p^{n(2)}+\ldots+\mathrm{t}_{1} p^{n(l)}-1}{\mathrm{n}(1)}\right)=0 \\
& \left(\frac{\mathrm{z}-1}{\mathrm{p}^{\mathrm{n}(1)+1}}\right)=\left(\frac{\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{\mathrm{l}} \mathrm{p}^{\mathrm{n}(l)}-1}{\mathrm{p}^{\mathrm{n}(1)+1}}\right)=0 \text { because: }
\end{aligned}
$$

$0<\mathrm{t}_{1} \mathrm{p}^{\mathrm{n}(1)}+\ldots+\mathrm{t}_{\mathrm{p}} \mathrm{p}^{\mathrm{n}(l)}-1<\mathrm{p}^{\mathrm{n}(1)+1}-1<\mathrm{p}^{\mathrm{n}(1)+1}$ according to a reasoning similar to the previous one.
Adding one gets p 's powers sum in the natural numbers which make up the product factors $(\mathrm{z}-1)$! is:
$\mathrm{t}_{1}\left(\mathrm{p}^{\mathrm{n}(1)-1}+\ldots+\mathrm{p}^{0}\right)+\ldots+\mathrm{t}_{l-1}\left(\mathrm{p}^{\mathrm{n}(l-1)-1}+\ldots+\mathrm{p}^{0}\right)+\mathrm{t}_{l}\left(\mathrm{p}^{\mathrm{n}(l)-1}+\ldots+\mathrm{p}^{0}\right)$ whence
$1 * \mathrm{n}_{l}=\mathrm{k}$ or $\mathrm{n}_{l}<\mathrm{k}$ or $1<\mathrm{k}$ because
$\mathrm{n}_{l}>1$ one has $(\mathrm{z}-1)!\neq M \mathrm{p}^{\mathrm{k}}$, this contradicts the supposition made.
Whence $\eta_{\mathrm{p}}(\mathrm{k})$ is the smallest natural number with the property $\left(\eta_{\mathrm{p}}(\mathrm{k})\right)!=M \mathrm{p}^{\mathrm{k}}$.
I construct a new function $\eta: Z \backslash\{0\} \rightarrow \mathrm{N}$ defined as follows:

$$
\left\{\begin{array}{l}
\eta(\pm 1)=0 \\
\alpha n=\varepsilon p_{1}^{\alpha(1)} \ldots p_{s}^{\alpha(s)} \text { with } \varepsilon= \pm 1, p_{i} \text { prime } \\
p_{i}=p_{j} \text { for } i \neq j, \alpha_{i} \geq 1, i=1, s, \eta(n)=\underset{i=1, \ldots, s p_{i}}{\max \left\{\eta\left(\alpha_{i}\right)\right\}}
\end{array}\right.
$$

Note 2. η is well defined all over.

Proof

(a) $\forall \mathrm{n} \varepsilon \mathrm{Z}, \mathrm{n} \neq 0, \mathrm{n} \neq \pm 1, \mathrm{n}$ is uniquely written, abstraction of the order of the factors, under the form: $\mathrm{n}=\varepsilon \mathrm{p}_{1}{ }^{\alpha(1)} \ldots \mathrm{p}_{\mathrm{s}}{ }^{\alpha(\mathrm{s})}$ with $\varepsilon= \pm 1$, where $\mathrm{p}_{\mathrm{i}}=$ prime, $\mathrm{p}_{\mathrm{i}} \neq \mathrm{p}_{\mathrm{j}}, \alpha_{\mathrm{i}} \geq 1$ (decomposed into prime factors in Z , which is a factorial ring).

Then $\exists!\eta(n)=\max \left\{\eta_{p(i)}\left(\alpha_{i}\right)\right\}$ as $s=$ finite and $\eta_{p(i)}\left(\alpha_{i}\right) \varepsilon N^{*}$

$$
\mathrm{i}=1, \mathrm{~s}
$$

and $\exists \max _{\mathfrak{i}=1}\left\{\eta_{\mathrm{p}(\mathrm{i})}\left(\alpha_{\mathrm{i}}\right)\right\}$
$\mathrm{i}=1, \ldots, \mathrm{~s}$
(b) $\mathrm{n}= \pm 1 \rightarrow \mathrm{E}!\eta(\mathrm{n})=0$.

Theorem 2. The function η previously defined has the following properties:
(1) $(\eta(\mathrm{n}))!=M \mathrm{n}, \forall \mathrm{n} \varepsilon \mathrm{Z} \backslash\{0\}$;
(2) $\eta(n)$ is the smallest natural number with this property.

Proof

$$
\text { (a) } \eta(\mathrm{n})=\max _{\mathrm{i}=1, \ldots, \mathrm{~s}}\left\{\eta_{\mathrm{p}(\mathrm{i})}\left(\alpha_{\mathrm{i}}\right)\right\}, \mathrm{n}=\varepsilon^{*} \mathrm{p}_{1}^{\alpha(1)} \ldots \mathrm{p}_{\mathrm{s}}^{\alpha(\mathrm{s})} \quad(\mathrm{n} \neq \pm 1)
$$

$\left(\eta_{\mathrm{p}(1)}\left(\alpha_{1}\right)\right)!=M \mathrm{p}_{1}{ }^{\alpha(1)}$,
$\left(\eta_{\mathrm{p}(\mathrm{s})}\left(\alpha_{\mathrm{s}}\right)\right)!=M \mathrm{p}_{\mathrm{s}}{ }^{\alpha(\mathrm{s})}$.
Supposing max $\left\{\eta_{\mathrm{p}(\mathrm{i})}\left(\mathrm{a}_{1}\right)\right\}=\eta_{\mathrm{p}}\left(\alpha_{\mathrm{i}(0)}\right) \rightarrow\left(\eta_{\mathrm{p}}\left(\alpha_{\mathrm{i}(0)}\right)\right)!=$ $i=1, \ldots, s \quad i_{0} \quad i_{0}$
$M \mathrm{p}_{\mathrm{i}(0)}^{\alpha_{\mathrm{i}(0)}}, \quad \eta_{\mathrm{i}_{0}}\left(\alpha_{\mathrm{i}}\right) \varepsilon \mathrm{N}^{*}$ and because $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=1, \mathrm{i} \neq \mathrm{j}$,
then $\left(\eta_{\mathrm{p}}^{\mathrm{i}_{0}}\left(\alpha_{\mathrm{i}_{\mathrm{i}}}\right)\right)!=M \mathrm{p}_{\mathrm{j}}^{\alpha(\mathrm{j})}, \overline{\mathrm{j}=\mathrm{I}}, \mathrm{s}$.
$\operatorname{Also}\left(\eta_{\mathrm{p}}\left(\alpha_{\mathrm{i}_{0}}\right)\right)!=M \mathrm{p}_{1}{ }^{\alpha(1)} \ldots \mathrm{p}_{\mathrm{s}}{ }^{\alpha(\mathrm{s})}$.
(b) $\mathrm{n}= \pm 1 \rightarrow \eta(\mathrm{n})=0 ; 0$! $=1,1=M \varepsilon * 1=M \mathrm{n}$.
(2) (a) $\mathrm{n} \neq \pm 1 \rightarrow \mathrm{n}=\mathrm{p}_{1}{ }^{\alpha(1)} \ldots \mathrm{p}_{\mathrm{s}}{ }^{\alpha(\mathrm{s})}$ hence $\eta(\mathrm{n})=\max _{\mathrm{i}=1,2} \eta_{\mathrm{p}(\mathrm{i})}$

Let $\max _{\mathrm{i}=1, \mathrm{~s}}\left\{\eta_{\mathrm{p}(\mathrm{i})}\left(\alpha_{\mathrm{i}}\right)\right\}=\eta_{\mathrm{p}}\left(\mathrm{i}_{0} \alpha_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{s} ;$
$\eta_{\mathrm{p}}^{\mathrm{i}_{0}}\left(\alpha_{\mathrm{i}}\right)$ is the smallest natural number with the property:
$\left.\underset{\mathrm{i}_{0}}{\left(\eta_{\mathrm{p}}\right.}\left(\alpha_{\mathrm{i}_{0}}\right)\right)!=M \underset{\mathrm{p}_{\mathrm{i}}}{\alpha_{0}(0)} \rightarrow \alpha \gamma \varepsilon \mathrm{N}, \gamma<\eta_{\mathrm{p}}\left(\alpha_{\mathrm{i}}\right)$ whencw

$\eta(\alpha)$ is the smallest natural number with the property.
$\mathrm{p}_{\mathrm{i} 0} \quad \mathrm{i}_{0}$
(b) $\mathrm{n}= \pm 1 \rightarrow \eta(\mathrm{n})=0$ and it is the smallest natural number $\rightarrow 0$ is the smallest natural number with the property $0!=M(\pm 1)$.

NOTE 3. The functions η_{p} are increasing, not injective, on $N^{*} \rightarrow\left\{p^{k} \mid k=1,2,3, \ldots\right\}$ they are surjective.

The function η is increasing, it is not injective, it is surjective on $\mathrm{Z} \backslash\{0\} \rightarrow \mathrm{N} \backslash\{1\}$.
CONSEQUENCE. Let $\mathrm{n} \varepsilon \mathrm{N}^{*}, \mathrm{n}>4$. Then $\mathrm{n}=$ prime involves $\eta(\mathrm{n})=\mathrm{n}$.
Proof
" \rightarrow "
$\mathrm{n}=$ prime and $\mathrm{n} \geq 5$ then $\eta(\mathrm{n})=\eta_{\mathrm{n}}(1)=\mathrm{n}$.
"↔"
Let $\eta(\mathrm{n})=\mathrm{n}$ and assume by reduction ad absurdum that $\mathrm{n} \neq$ prime. Then
(a) $\mathrm{n}=\mathrm{p}_{1}{ }^{\alpha(1)} \ldots \mathrm{p}_{\mathrm{s}}{ }^{\alpha(\mathrm{s})}$ with $\mathrm{s} \geq 2, \alpha_{\mathrm{i}} \varepsilon \mathrm{N}^{*}, \mathrm{i}=1, \mathrm{~s}$,
$\eta(\mathrm{n})=\max _{\mathrm{i}=1, \mathrm{~s}}\left\{\eta_{\mathrm{p}(\mathrm{i})}\left(\alpha_{\mathrm{i}}\right)\right\}=\eta_{\mathrm{p}}\left(\mathrm{i}_{\mathrm{i}}\right)<\alpha_{\mathrm{i}}{ }_{0} \mathrm{p}_{\mathrm{i}}<\mathrm{n}$
contradicting the assumption.
(b) $\mathrm{n}=\mathrm{p}_{1}{ }^{\alpha(1)}$ with $\alpha_{1} \geq 2$ involves $\eta(\mathrm{n})=\eta_{\mathrm{p}(1)}\left(\alpha_{1}\right) \leq \mathrm{p}_{1} * \alpha_{1}<\mathrm{p}_{1}{ }^{\alpha(1)}=\mathrm{n}$
because $\alpha_{1} \geq 2$ and $\mathrm{n}>4$, which contradicts the hypothesis.

Application

1. Find the smallest natural number with the property:
$\mathrm{n}!=M\left(\pm 2^{31} * 3^{27} * 7^{13}\right)$.

Solution

$\eta\left(\pm 2^{31} * 3^{27} * 7^{13}\right)=\max \left\{\eta_{2}(31), \eta_{3}(27), \eta_{7}(13)\right\}$.
Let us calculate $\eta_{2}(31)$; we make the string
$\left(\mathrm{a}_{\mathrm{n}}{ }^{(2)}\right)_{\mathrm{n} \in \mathrm{N}}{ }^{*}=1,3,7,15,31,63, \ldots$
$31=1 * 31 \rightarrow \eta_{2}(1 * 31)=1 * 2^{5}=32$.

Let's calculate $\eta_{3}(27)$ by making the string
$\left(\mathrm{a}_{\mathrm{n}}{ }^{(3)}\right)_{\mathrm{n} \mathrm{N}}{ }^{*}=1,4,13,40, \ldots ; 27=2 * 13+1$ involves $\eta_{3}(27)=\eta_{3}(2 * 13+1 * 1)=$
$2 * \eta_{3}(13)+1 * \eta_{3}(1)=2 * 3^{3}+1 * 3^{1}=54+3=57$.
Let's calculate $\eta_{7}(13)$; making the string
$\left(\mathrm{a}_{\mathrm{n}}{ }^{(7)}\right)_{\mathrm{n} \varepsilon \mathrm{N}}{ }^{*}=1,8,57, \ldots ; 13=1 * 8+5 * 1 \rightarrow \eta_{7}(13)=1 * \eta_{7}(8)+5 * \eta_{7}(1)=$
$1 * 7^{2}+5 * 7^{1}=49+35=84 \rightarrow \eta\left(\pm 2^{31} * 3^{27} * 7^{13}\right)=\max \{32,57,84\}=84$ involves $84!=$
$M\left(\pm 2^{31} * 3^{27} * 7^{13}\right)$ and 84 is the smallest number with this property.
2. What are the numbers n where n ! ends with 1000 zeros?

Solution:
$\mathrm{n}=10^{1000},(\eta(\mathrm{n}))!=M 10^{1000}$ and it is the smallest number with this property.
$\eta\left(10^{1000}\right)=\eta\left(2^{1000} * 5^{1000}\right)=\max \left\{\eta_{2}(1000), \eta_{5}(1000)\right\}=\eta_{5}(1000)=$
$\eta_{5}(1 * 781+1 * 156+2 * 31+1)=1 * 5^{5}+1 * 5^{4}+2 * 5^{3}+1 * 5^{7}=4005,4005$ is the smallest
number with this property. $4006,4007,4008,4009$ also satisfy this property, but 4010 does not because $4010!=4009!* 4010$ which has 1001 zeros.

Florentin Smarandache
17.11.1979

University of Craiova
Natural Science Faculty
Romania
[Published in "An. Univ. Timisoara", Seria St. Matematice, Vol. XVIII, Fasc. 1, pp. 79-88, 1980; see Mathematical Reviews: 83c : 10008.]

[^0]: ${ }^{1}$ This function has been called the Smarandache function. Over one hundred articles, notes, problems and a dozen of books have been written about it.

