
International Journal of Neutrosophic Science (IJNS) Vol. 19, No. 01, PP. 384-388, 2022

The NILPOTENT Characterization of the finite neutrosophic p-groups
S. A. Adebisi1 ∗, Florentin Smarandache 2

1Department of Mathematics, Faculty of Science, University of Lagos, Nigeria
2University of New Mexico, Gallup Campus, NM 87301, USA

Emails: adesinasunday@yahoo.com; smarand@unm.edu

Abstract

A well known and referenced global result is the nilpotent characterisation of the finite p-groups. This un-
doubtedly transends into neutrosophy. Hence, this fact of the neutrosophic nilpotent p-groups is worth critical
studying and comprehensive analysis. The nilpotent characterisation depicts that there exists a derived series
(Lower Central) which must terminate at {ϵ} ( an identity ) , after a finite number of steps. Now, Suppose that
G(I) is a neutrosophic p-group of class at least m ≥ 3. We show in this paper that Lm−1(G(I)) is abelian and
hence G(I) possesses a characteristic abelian neutrosophic subgroup which is not supposed to be contained in
Z(G(I)). Furthermore, If L3(G(I)) = 1 such that pm is the highest order of an element of G(I)/L2(G(I))
(where G(I) is any neutrosophic p-group) then no element of L2(G(I)) has an order higher than pm.
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1 introduction

N.B : Throughout this paper , please note that our BINARY OPERATION is strictly the usual ordinary addition
( as the operation of multiplication may not be defined due to the fact that I−1 does not exist )

The numbers of the form a + bI , are the basis of the Neutrosophic Algebraic Structures. Here, a and b
are real or complex entities and I is a literal indeterminacy with I2 = I. The generalization of the classical
Algebraic Structures to NeutroAlgebraic Structures was formalized by Smarandache in 2019. The operations
and axioms of such structures are partially true, partially indeterminate, and partially false. This actually is as
extensions of Partial Algebra, and to AntiAlgebraic Structures otherwise called the AntiAlgebras . Since then,
more ideas have so far being developed. Now, our real world is having more applications and developments
from the NeutroAlgebras and AntiAlgebras. These actually pave ways for the formation, proposition and the
developments on new field of research . (For detailed information on this, please, see [G1] ) Furthermore,
the introduction and research developments on the refined neutrosophic algebraic structures and studies on
refined neutrosophic groups were carried out through the able efforts of Agboola Adesina ( please, see [A1]
) . After the successful feat, many other neutrosophic researchers have as well tried to establish and studied
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further more on the refined neutrosophic algebraic structures. ( please, see [A5] ). Further studies on refined
neutrosophic rings and refined neutrosophic subrings, their presentations and fundamental were also worked
upon. Also, Agboola, in his paper [Q] has examined and as well studied the refined neutrosophic quotient
groups, where more properties of refined neutrosophic groups were presented and it was shown that the classi-
cal isomorphism theorems of groups do not hold in the refined neutrosophic groups. The existence of classical
morphisms between refined neutrosophic groups G(I1; I2) and neutrosophic groups G(I) were established.
The readers can as well consult [A2, A4, A7, A13] in order to have detailed knowledge concerning the refined
neutrosophic logic, neutrosophic groups, refined neutrosophic groups and neutrosophy, in general.

Definition 1 ( please, see [1] ): Suppose that (X(I1; I2); +; .) is any refined neutrosophic algebraic structure.
Here, + and . are ordinary addition and multiplication respectively. Then I1 and I2 are the split components of
the indeterminacy factor I that is I = α1I1 + α2I2 with αi ∈ C; i = 1; 2.

Definition 2 ( please, see [1] ): Suppose that (G; ∗) is any group. Then, the couple (G(I1; I2); ∗) can be
referred to as the refined neutrosophic group. Furthermore, this group can be said to be generated by G, I1
and I2 and (G(I1; I2); ∗) is said to be commutative if ∀x; y ∈ G(I1; I2), we have x ∗ y = y ∗ x. Otherwise,
(G(I1; I2); ∗) can be referred to as a non-commutative refined neutrosophic group.

Theorem ( please, see [1] ): (1) Every refined neutrosophic group is a semigroup but not a group. (2) Every
refined neutrosophic group contains a group.’

Corollary ( please, see [1] ): Every refined neutrosophic group (G(I1; I2); +) is a group.

Definition ( please, see [1] ): Let (G(I1; I2); ∗) be a refined neutrosophic group and let A(I1; I2) be a
nonempty subset of G(I1; I2). A(I1; I2) is called a refined neutrosophic subgroup of G(I1; I2) if (A(I1; I2); ∗)
is a refined neutrosophic group. It is essential that A(I1; I2) contains a proper subset which is a group. Other-
wise, A(I1; I2) will be called a pseudo refined neutrosophic subgroup of G(I1; I2).

Definition ( please, see [1] ): Let H(I1; I2) be a refined neutrosophic subgroup of a refined neutrosophic
group(G(I1; I2); .). Define x = (a; bI1; cI2) ∈ G(I1; I2).

Theorem ( please, see [1] ): Let (G(I1; I2); +) be a refined neutrosophic group and let (G(I); +) be a
neutrosophic group such that where I = xI1 + yI2 with x; y ∈ C. Let φ : G(I1; I2) → G(I) be a mapping
defined by φ((a;xI1; yI2)) = (a; (x + y)I)∀(a;xI1; yI2) ∈ (G(I1; I2) with a;x; y ∈ G : Then φ is a group
homomorphism.

Sequel to the discovery of the existence of p-groups, various work have been done while researches are con-
tinuously being carried out from day to day by a number of eminent personalities.

Joseph L. Lagrange, in 1771 had a theorem accredited to him based on finite Group. Meanwhile, he did not
prove this theorems all he did, essentially, was to discuss some special cases. The first complete proof of
the theorem was provided by Abbati. In 1872, the Normegran mathematician L. Sylow had a collection of
theorems on finite group named after him [7], [10], [11].

Moreover, the Sylow theorems have been proved in a number of ways, and the history of the proofs themselves
are the subjects of many papers including (Waterhouse 1979), (Scharlau, 1988), (Casadia & Zappa 1990),
(Gow 1994), and to some extent (Meo 2004). Wielandt (1959) used combinatorial arguments to show part of
the Sylow theorems [9].

Frattini had his argument on Sylow subgroups of a normal subgroup which was slightly generalized by Burn-
side as Burnside’s fusion theorem.
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Others are Brauer, Gorenstein and J.L. Alperin. [6], [8].

A neutrosophic subgroup H(I) of a neutrosophic p-group G(I) may be said to be characterisstic if α(H(I)) ≤
H(I) for all α ∈ Aut(G(I)).

Definition: A neutrosophic group G(I) can be said to be nilpotent if it has a normal series of a finite length n.
That is,

G(I) = G0(I) ≥ G1(I) ≥ G2(I) ≥ · · · ≥ Gn(I) = {e},

where
Gi(I)/Gi+1(I) ≤ Z(G(I)/Gi+1(I)).

By this notion, every finite neutrosophic p-group G(I) is nilpotent. The nilpotence property is an hereditary
one and for any finite neutrosophic p-group, the product also forms t neutrosophic groups which are also
supposed to be nilpotent. If G(I) is nilpotent of a class c, then, every neutrosophic subgroup as well as the
neutrosophic quotient group of G(I) is nilpotent and of class ≤ c. Here, I represents the indeterminacy factor
such that I = α1I1 + α2I2 with αi ∈ C; i = 1; 2.

Definition: If the lower central series terminates after a finite number of steps such that Gn(I) = {e} for some
n), then G(I) is said to be nilpotent.

Proposition : A neutrosophic p-group must be nilpotent.

Proof: Assume G(I) > {e}. Then
Z(G(I)) > {e}

Here, Z(G(I)) is the centre of the neutrosophic group G(I) and Z(G(I)) = {(x1;x2I1;x3I2) = x ∈
G(I)|g−1xy = x, (a1; a2I1; a3I2) = g ∈ G(I)}.
Define ¯G(I) = G(I)/Z(G(I)). Then we have the existence of the series given as follows :

¯G(I) = ¯G(I)0 ≥ · · · ≥ ¯G(I)n+1 = Z(G(I))

show that ¯G(I) is nilpotent with the identity Z(G(I)). And hence, G(I) is nilpotent.

2 Second characterization of the Nilpotent Group

Theorem:
Suppose that G(I) is a neutrosophic, noncyclic nilpotent group. Then, we would have that : (i) If (a1; a2I1; a3I2) =
a ∈ G(I), then ⟨ax|(x1;x2I1;x3I2) = x ∈ G(I)⟩ ⟨G(I)⟩. (ii) G/Z(G(I)) is noncyclic.

Proof:
Since the neutrosophic group G(I) is nilpotent, there is a lower central series:

G(I) = G0(I) ≥ G1(I) ≥ · ≥ Gn−1(I) ≥ Gn(I) = {ϵ}

Here, it is very clear that G(I) > {ϵ}.
Hence, if a, x ∈ G(I). Then (x−1

1 ;x−1
2 I1;x

−1
3 I2) = x−1 ∈ G(I) and ax−1 ∈ G(I).

So, xax−1 ∈ G(I) and ⟨ax|(x1;x2I1;x3I2) = x ∈ G(I)⟩⟨G(I) where ax = xax−1.

Z(G(I)) = {x ∈ G(I)|x = g−1xg, (a1; a2I1; a3I2) = g ∈ G(I), a1, a2, a3,∈ G}

Suppose that G(I)/Z(G(I)) is cyclic, then G(I)/Z(G(I)) = {az|z ∈ G(I)} is cyclic =⇒ ⇐=
Thus G(I)/Z(G(I)) is noncyclic.
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The idea of higher commutators can be used to define a sequence of a neutrosophic subgroup of a neutrosophic
group G(I), which is the lower central series of G(I), by the rules given by :

L1(G(I)) = G(I), L2(G(I)) = [G(I), G(I)] = G′(I), . . .

Li(G(I)) = [Li−1, G(I)] for i > 2.

Definition: The lower central series of a group G(I) is given by

G(I) = G0(I) ⊇ G1(I) ⊇ G2(I) ⊇ · · ·

where for i > 0, Gi(I) = [Gi−1(I), G(I)].
A group G(I) is called nilpotent if Lm(G(I)) = 1 for some m. If n+ 1 is the least value of m satisfying this
condition, then n is called the class of G(I), i.e., cl(G(I)) = n.

Proposition A1 :

(i) Li(G(I)) Char(G(I)) for all i.

(ii) Li+1(G(I)) ⊆ Li(G(I)) and Li(G(I))/Li+1(G(I)) ⊆ Z(G(I)/Li+1(G(I)))

Proposition A2 : Let x, y, z be elements of G(I) and H(I),K(I) be neurosophic subgroups of the neuro-
sophic group G(I). Then,

[H(I),K(I)] = [K(I), H(I)] [5]

Proposition (α): Let G(I) be a neurosophic p-group of class at least m ≥ 3. Then Lm−1(G(I)) is abelian
and hence G(I) possesses a characteristic abelian neurosophic subgroup which is not contained in the centre
of the neurosophic group G(I).

Proof: By (A2), Lm−1(G(I)) is abelian since

Lm−1(G(I)) = [Lm−2(G(I)), G(I)] = [G(I), Lm−2(G(I))]

Now, by (A1(ii)), Lm−1(G)/Lm(G(I)) ⊆ Z(G(I)/Lm(G(I)))
⇒ if Lm(G(I)) = 1, then, Lm−1(G(I)) ⊆ Z(G(I)). But Lm(G(I)) ̸= 1.
⇒ Lm−1(G(I)) ⊇ Z(G(I)). 2

Proposition (β): Let G(I) be a neutrosophic p-group with L3(G(I)) = 1. If pm is the highest order of
an element of G(I)/L2(G(I)), then no element of L2(G(I)) has an order higher than pm.[5]

Proof: By definition,

G = L1(G(I)) ⊃ L2(G(I)) ⊃ · · · ⊃ Li(G(I)) ⊃ Li+1(G(I)) = 1

⇒ G(I) = L1(G()I) ⊃ L2(G(I)) ⊃ L3(G(I)) = 1

... G(I)/L2(G(I)) = {a|o(a) ≤ pm}

= {gL2(G(I))|g ∈ G(I) and |gL2(G(I))| ≤ pm}

(G(I) ⊃ L2(G(I)) ⊃ 1).

⇒ |g||L2(G(I))| ≤ pm

⇒ |L2(G(I))| ≤ pm

pk , k ≥ 1

⇒ |L2(G(I))| ≤ pm−k < pm 2
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3 Applications

The neutrosophic nilpotent p-groups possesses a wide range of several appllications and so it is worth com-
prehensive analysis and detailed investigations .

4 Conclusion

The neurosophic p-group of a given class gives very important and highly intresting results in the general
concept of classical, logic fuzzy as well as the neutrosophy.
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