ON THE DIOPHANTINE EQUATION $x^{2}=2 y^{4}-1$

Florentin Smarandache
University of New Mexico 200 College Road Gallup, NM 87301, USA

Abstract

. Another method of solving this equation, different from Ljunggren's, is given in this paper.

Keywords: diophantine equation, quadratic equation, recurrent solution, characteristic equation of a matrix, eigenvalues

1991 MSC: 11D09

Introduction.

In his book of unsolved problems R. K. Guy [2] informs us that the equation $x^{2}=2 y^{4}-1$ has in positive integers the only solutions (1, 1) and (239, 13); (Ljunggren has shown it by a difficult proof). But Mordell asked for a simple proof.

In this note we find another method of solving. Note $t=$ y^{2}. The general integer solution for $x^{2}-2 t^{2}+1=0$ is:

$$
\left(\begin{array}{l}
x_{n+1}=3 x_{n}+4 t_{n} \\
t_{n+1}=2 x_{n}+3 t_{n}
\end{array}\right.
$$

for all $\mathrm{n} \in \mathrm{N}$, where $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(1, \varepsilon)$ with $\varepsilon= \pm 1$ (see [6]),

$$
\text { or }\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)^{n} \cdot\binom{1}{\varepsilon}, \text { for all } n \in N \text {, }
$$

where a matrix at the power zero is equal to the unit matrix I.

Let $A=\left(\begin{array}{cc}3 & 4 \\ 2 & 3\end{array}\right)$, and $\lambda \in R$. Then $\operatorname{det}(A-\lambda \cdot I)=0$
involves $\lambda_{1,2}=3 \pm \sqrt{ } 2$, whence if v is a vector of dimension two then: $\operatorname{Av}=\lambda_{1,2} \cdot \mathrm{v}$ involves $\mathrm{v}_{1,2}=$ $=(2, \pm \sqrt{ } 2)$.

Let $P=\left(\begin{array}{cc}2 & 2 \\ \sqrt{2} & -\sqrt{ } 2\end{array}\right)$ and $D=\left(\begin{array}{cc}3+2 \sqrt{2} & 0 \\ 0 & 3-2 \sqrt{ } 2\end{array}\right)$. We have $P^{-1} \cdot A \cdot P=D$, or $A^{n}=P \cdot D^{n \cdot} P^{-1}=\left(\begin{array}{ll}(1 / 2)(a+b) & (\sqrt{ } 2 / 2)(a-b) \\ (\sqrt{ } 2 / 4)(a-b) & (1 / 2)(a+b)\end{array}\right)$
where $a=(3+2 \sqrt{ } 2)^{n}$ and $b=(3-2 \sqrt{ } 2)^{n}$. Hence, we find:

Or $y_{n}^{2}=\frac{2 \varepsilon+\sqrt{2}}{4}(3+2 \sqrt{2})^{n}+\underset{4}{2 \varepsilon--\sqrt{2}}(3-2 \sqrt{2})^{n}, n \in N$. For
$\mathrm{n}=0,0=1$ it obtains $y_{0}^{2}=1$ (whence $x_{0}=1$), and for
$n=3,0=1$ it obtains $y_{3}^{2}=169$ (whence $x_{3}=239$).
(1) $\quad Y_{n}=\varepsilon \cdot \sum_{k=0}^{n / 2}\binom{n}{2 k} \cdot 3^{n-2 k} \cdot 2^{3 k}+\sum_{k=0}^{(n-1) / 2}\binom{n}{2 k+1} \cdot 3^{n-2 k-1} \cdot 2^{3 \mathrm{k}+1} \cdot$

We still must prove that y_{n}^{2} is a perfect square if and only if $n=0,3$.

We can use a similar method for the diophantine equation $x^{2}=D y^{4} \pm 1$, or more generally: $\quad C X^{2 a}=D y^{2 b}+E$, with $a, b \in N^{*}$ and $C, D, E \in Z^{*}$, noting $x^{a}=U, y^{b}=V$, and applying the results of [6], but the relation (1) becomes very intricate.

References:

[1] J. H. E. Cohn, AThe diophantine equation $y^{2}=D x^{4}+$ 1@ Math. Scand. 42 (1978), 180-188, MR 80a: 10031.
[2] R. K. Guy, Aunsolved problems in number theory@ Springer-Verlag, 1981, Problem D6, 84-85.
[3] W. Ljunggren, Aur theorie der Gleichung $\mathrm{x}^{2}+1=$ Dy ${ }^{4} @$ Avh. Norske Vid. Akad. Oslo, I, 5 (1942) \#5, p. 27; MR 8, 6.
[4] W. Ljunggren, Aome remarks on the diophantine equation $x^{2}-D y^{4}=1$ and $x^{4}-D y^{2}=1 @$ J. London Math. Soc. 41 (1966), 542-544; MR 33\#5555.
[5] L. J. Mordell, Arhe diophantine equation $y^{2}=D x^{4}+$ 1@ J. London Math. Soc. 39 (1964) 161-164; MR 29\#65.
[6] F. Smarandache, A method to solve diophantine equations of two unknowns of second degree@ "Gaceta Matematica", $2^{\text {a }}$ Serie, Volumen 1, Numero 2, 1988, pp. 151-7; translated in Spanish by Francisco Bellot Rosado.
["Gamma", Brasov, Anul IX, November 1986, Nr. 1.]

