Techno-Art of Selariu SuperMathematics Functions

Aeronautics Capsule

2007
Techno-Art of Selariu SuperMathematics Functions

Editor: Florentin Smarandache

ARP

2007
Front cover art image, called “Aeronautics Capsule”, by Mircea Eugen Şelariu.

This book can be ordered in a paper bound reprint from:

Books on Demand
ProQuest Information & Learning
(University of Microfilm International)
300 N. Zeeb Road
P.O. Box 1346, Ann Arbor
MI 48106-1346, USA
Tel.: 1-800-521-0600 (Customer Service)
http://wwwlib.umi.com/bod/basic

Copyright 2007 by American Research Press, Editor and the Authors for their SuperMathematics Functions and Images.

Many books can be downloaded from the following Digital Library of Arts & Letters:
http://www.gallup.unm.edu/~smarandache/eBooksLiterature.htm

Peer Reviewers:
1. Prof. Mihály Bencze, University of Braşov, Romania.
2. Prof. Valentin Boju, Ph. D.
Officer of the Order “Cultural Merit”, Category “Scientific Research”
MontrealTech - Institut de Technologie de Montréal
Director, MontrealTech Press
P. O. Box 78574, Station Wilderton
Montréal, Québec, H3S 2W9, Canada

(EAN): 9781599730370

Printed in the United States of America
Contents

Aeronautics capsule ➔ first cover

FOREWORD (FOR SUPERMATHEMATICS FUNCTIONS) ➔ 6-16

Selariu SuperMathematics Functions & Other SuperMathematics Functions ➔ 17

<table>
<thead>
<tr>
<th>DOUBLE CLEPSYDRA ➔ 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERMATHEMATICS FLOWERS ➔ 19</td>
</tr>
<tr>
<td>The Ballet of the Functions ➔ 20</td>
</tr>
<tr>
<td>Jacuzzi ➔ 21</td>
</tr>
<tr>
<td>Damaged part of TITANIC ➔ 22</td>
</tr>
<tr>
<td>KAZATCIOK (Russian Popular Dance) ➔ 23</td>
</tr>
<tr>
<td>Flying Bird 1 ➔ 24</td>
</tr>
<tr>
<td>Flying Bird 2 ➔ 25</td>
</tr>
<tr>
<td>MULTICOLORED SUN ➔ 26</td>
</tr>
<tr>
<td>Red Sun ➔ 27</td>
</tr>
<tr>
<td>The double Nozzle for NASA ➔ 28</td>
</tr>
<tr>
<td>The supermathematics Comet ➔ 29</td>
</tr>
<tr>
<td>The Lake of Swans ➔ 30</td>
</tr>
<tr>
<td>+ The Dance of Swords ➔ 30</td>
</tr>
<tr>
<td>+ The Nut Cracker ➔ 30</td>
</tr>
<tr>
<td>+ The Decease of Swan ➔ 30</td>
</tr>
<tr>
<td>The Flowering ➔ 31</td>
</tr>
<tr>
<td>The supermathematics ring surface ➔ 32</td>
</tr>
<tr>
<td>The ex-centric sphere ➔ 33</td>
</tr>
<tr>
<td>The supermathematics Screw Surface ➔ 34</td>
</tr>
<tr>
<td>The Trojan Horse ➔ 35</td>
</tr>
<tr>
<td>The Amphoras ➔ 36</td>
</tr>
<tr>
<td>BUDHA ➔ 37</td>
</tr>
<tr>
<td>JET PLANE ➔ 38</td>
</tr>
<tr>
<td>TROUBLED LAND ➔ 39</td>
</tr>
<tr>
<td>or DOUBLE ANALYTICAL EX-CENTRIC FUNCTION ➔ 39</td>
</tr>
</tbody>
</table>

SELF-PIERCE BODY ➔ 40

| HILLS and VALLEYS ➔ 41 |
| Bernoulli's Lemniscate, Cassini's Ovals and others ➔ 42 |
| Continuous transforming of a circle into a haystack ➔ 43 |
| Cylindrical Symmetry ➔ 44 |
| Smarandache Stepped Functions ➔ 45 |
| SCRIBBLINGS WITH ... HEAD AND TALE ➔ 46 |
| QUADRIPOD ➔ 47 |
| EX-CENTRIC SYMMETRY ➔ 48 |
DRACULA'S CASTLE → 49
TUNING FORK → 50
dex-OID'S + rex-OID'S → 51
Ex-centric geometry, prismatic solids → 52
Vase → 53
HEXAGONAL TORUS → 54
Open square torus → 55
Double square torus → 56
Sinuous Corrugate Washers or Nano-Peristaltic Engine → 57
IGL O O + The magic carpet → 58
Multiple Ex-Centric Circular SuperMathematics Functions → 59
EX-CENTRIC TORUS RING → 60
HYPERSONIC JET AIRPLANE → 61
PLUMP VASE → 62
ARROWS → 63
HYPERBOLIC QUADRATIC CYLINDER 1 → 64
HYPERBOLIC QUADRATIC CYLINDER 2 → 65
EX-CENTRIC FULL SPRING → 66
EX-CENTRIC EMPTY SPRING → 67
EX-CENTRIC PENTAGON HELIX → 68
CYLINDERS with COLLARS → 69
Unicursal Supermathematics Functions 1
+ Old woman from Carpathian Mountain (Romania) → 70
Unicursal Supermathematics Functions 2 → 71
Unicursal Supermathematics Functions 3
+ Walking Pinguins → 72
To Double and Simple Canoe → 73
Romanian folk dance → 74
Pillow → 75
Terra with Marked Meridians → 76
Supermathematics Columns → 77
Aerodynamic Solid → 78
Halving Curve → 79
The crook lines (s ≠ 0) - a generalization of straight lines (s = 0) → 80-82
ARABESQUES 1 → 83
STARS → 84
Hysteretic Curves 1 → 85
Hysteretic Curves 2 → 86
Hysteretic Curves 3 → 87
Ex-Centric Circular Curves with Ex-Centric Variable → 88
Filigree 1 → 89
FILIGREE 2 → 90
U-shaped Curves in 2D and 3D → 91
Explosions → 92
Spatial Figure → 93
Planets and stars → 94
Ex-Centric Circle (n=1) and Asteroid (n=2,4,6) → 95
Ex-Centric Asteroid (n=3,5,7,9) → 96
Ex-Centric Lemniscates → 97
Butterfly with Symmetrical Center 1 → 98
Butterfly with Symmetrical Center 2 → 99
Butterfly with Symmetrical Center 3 → 100
Butterfly Rapidly Flapping the Wings → 101
Flower with Four Petals → 102
Ec-Centric Pyramid 103
Aerodynamic Profile
with Supermathematics Functions 1 104
Aerodynamic Profile
with Supermathematics Functions 2 105
SALT Cellar 106
SUPERMATHEMATICS TOWER 107
THE CONTINUOUS TRANSFORMATION OF A RIGHT TRIANGLE INTO ITS HYPOTENUSE
+ THE CONTINUOUS TRANSFORMATION OF QUADRATE ($R_x = R_y$)
OR RECTANGLE ($R_x \neq R_y$) INTO ITS DIAGONAL 108
Modified $cex \theta$ and $sex \theta$ 109
Sinuous Surface with Analytical Supermathematics Functions 110
Supermathematics Spiral
+ Supermathematics Parables 111
ARABESQUES 2 112
Supermathematics functions $cex \theta$ and $sex \theta$ 113
Supermathematics functions $rex \theta$ and $dex \theta$ 114
Ex-Centric Folklore Carpet 1 115
Ex-Centric Folklore Carpet 2 116
Ex-Centric Folklore Carpet 3 117
WATER FALLING 118
SINGLE and DOUBLE K CYLINDER 119
SUPERMATHEMATICAL KNOT – SHAPED BREAD
and ONE CRACKNEL (PRETZEL) 120
Six Conopyramids 121
FOUR CONOPYRAMIDS VIEWED FROM ABOVE 122
DOUBLe CONOPYRAMID
or the transformation of circle into a square with circular ex-centric supermathematics function $dex \theta$
or quadrilobic functions $cosq \theta$ and $sinq v$ 123
EX-CENTRICS and VALERIU ALACI CUADROLOBs 124
PERFECT CUBE 125
Ex-centric circular curves 1 126
Ex-centric circular curves 2
or Ex-centric Lissajous curves 127

References in SuperMathematics 128

Postface back cover
FOREWORD

(FOR SUPER-MATHEMATICS FUNCTIONS)

In this album we include the so called Super-Mathematics functions (SMF), which constitute the base for, most often, generating, technical, neo-geometrical objects, therefore less artistic.

These functions are the results of 38 years of research, which began at University of Stuttgart in 1969. Since then, 42 related works have been published, written by over 19 authors, as shown in the References.

The name was given by the regretted mathematician Professor Emeritus Doctor Engineer Gheorghe Silas who, at the presentation of the very first work in this domain, during the First National Conference of Vibrations in Machine Constructions, Timișoara, Romania, 1978, named CIRCULAR EX-CENTRIC FUNCTIONS, declared: “Young man, you just discovered not only “some functions, but a new mathematics, a supermathematics!” I was glad, at my age of 40, like a teenager. And I proudly found that he might be right!

The prefix super is justified today, to point out the birth of the new complements in mathematics, joined together under the name of Ex-centric Mathematics (EM), with much more important and infinitely more numerous entities than the existing ones in the actual mathematics, which we are obliged to call it Centric Mathematics (CM.)

To each entity from CM corresponds an infinity of similar entities in EM, therefore the Supermathematics (SM) is the reunion of the two domains: \(SM = CM \cup EM \), where CM is a particular case of null ex-centricity of EM. Namely, \(CM = SM(e = 0) \). To each known function in CM corresponds an infinite family of functions in EM, and in addition, a series of new functions appear, with a wide range of applications in mathematics and technology.

In this way, to \(x = \cos \alpha \) corresponds the family of functions \(x = cex \theta = cex(\theta, s, \varepsilon) \) where \(s = e/R \) and \(\varepsilon \) are the polar coordinates of the ex-center \(S(s, \varepsilon) \), which corresponds to the unity/trigonometric circle or \(E(e, \varepsilon) \), which corresponds to a certain circle of radius R, considered as pole of a straight line \(d \), which rotates around \(E \) or \(S \) with the position angle \(\theta \), generating in this way the ex-centric trigonometric functions, or ex-centric circular supermathematics functions (EC-SMF), by intersecting \(d \) with the unity circle (see.Fig.1). Amongst them the ex-centric cosine of \(\theta \), denoted \(cex \theta = x \), where \(x \) is the projection of the point \(W \), which is the intersection of the straight line with the trigonometric circle \(C(1, O) \), or the Cartesian coordinates of the point \(W \). Because a straight line, passing through \(S \), interior to the circle \((s \leq 1 \rightarrow e < R) \), intersects the circle in two points \(W_1 \) and \(W_2 \), which can be denoted \(W_{1,2} \), it results that there are two determinations of the ex-centric circular supermathematics functions (EC-SMF): a principal one of index 1 \(cex_1 \theta \), and a secondary one \(cex_2 \theta \), of index 2, denoted \(cex_{1,2} \theta \). \(E \) and \(S \) were named ex-centre because they were excluded from the center \(O(0,0) \). This exclusion leads to the apparition of EM and implicitly of SM. By this, the number of mathematical objects grew from one to infinity: to a unique function from CM, for example \(\cos \alpha \), corresponds an infinity of functions \(cex \theta \), due to the possibilities of placing the ex-center \(S \) and/or \(E \) in the plane.

\(S(e, \varepsilon) \) can take an infinite number of positions in the plane containing the unity or trigonometric circle. For each position of \(S \) and \(E \) we obtain a function \(cex \theta \). If \(S \) is a fixed point, then we obtain the ex-centric circular SM functions (EC-SMF), with fixed ex-center, or with constant \(s \) and \(\varepsilon \). But \(S \) or \(E \) can take different positions, in the plane, by various rules or laws, while the
straight line which generates the functions by its intersection with the circle, rotates with the angle \(\theta \) around \(S \) and \(E \).

In the last case, we have an EC-SMF of ex-center variable point \(S/E \), which means \(s = s (\theta) \) and/or \(\varepsilon = \varepsilon (\theta) \). If the variable position of \(S/E \) is represented also by EC-SMF of the same ex-center \(S(s, \varepsilon) \) or by another ex-center \(S_1 \) \(s_1 = s_1 (\theta), \varepsilon_1 = \varepsilon_1 (\theta) \), then we obtain functions of double ex-centricity. By extrapolation, we’ll obtain functions of triple, and multiple ex-centricity. Therefore, EC-SMF are functions of as many variables as we want or as many as we need.

If the distances from \(O \) to the points \(W_{1,2} \) on the circle \(C(1, O) \) are constant and equal to the radius \(R = 1 \) of the trigonometric circle \(C \), distances that will be named ex-centric radiiuses, the distances from \(S \) to \(W_{1,2} \) denoted by \(r_{1,2} \) are variable and are named ex-centric radiiuses of the unity circle \(C(1, O) \) and represent, in the same time, new ex-centric circular supermathematics functions (EC-SMF), which were named ex-centric radial functions, denoted rex\(_{1,2} \theta \), if are expressed in function of the variable named ex-centric \(\theta \) and motor, which is the angle from the ex-center \(E \). Or, denoted Rex\(_{1,2} \alpha \), if it is expressed in function of the angle \(\alpha \) or the centric variable, the angle at \(O(0, 0) \). The \(W_{1,2} \) are seen under the angles \(\alpha_{1,2} \) from \(O(0, 0) \) and under the angles \(\theta \) and \(\theta + \pi \) from \(S(\varepsilon, \varepsilon) \) and \(E \). The straight line \(d \) is divided by \(S \subset d \) in the two semi-straight lines, one positive \(d^+ \) and the other negative \(d^- \). For this reason, we can consider \(r_1 = \text{rex}_1 \theta \) a positive oriented segment on \(d \) \((\rightarrow r_1 > 0) \) and \(r_2 = \text{rex}_2 \theta \) a negative oriented segment on \(d \) \((\rightarrow r_2 < 0) \) in the negative sense of the semi-straight line \(d^- \).
Using simple trigonometric relations, in certain triangles \(\text{OEW}_{1,2} \), or, more precisely, writing the sine theorem (as function of \(\theta \)) and Pitagora’s generalized theorem (for the variables \(a_{1,2} \)) in these triangles, it immediately results the \textit{invariant expressions} of the ex-centric radial functions:

\[
\begin{align*}
\mathbf{r}_{1,2}(\theta) &= \text{rex}_{1,2}\theta = -s\cos(\theta - \varepsilon) + \sqrt{1-s^2 \sin^2(\theta - \varepsilon)} \\
\mathbf{r}_{1,2}(a_{1,2}) &= \text{Rex}_{1,2} = \pm \sqrt{1+s^2 + 2s\cos(\theta - \varepsilon)}
\end{align*}
\]

All \textit{EC-SMF} have \textit{invariant} expressions, and because of that they don’t need to be tabulated, tabulated being only the centric functions from \textit{CM}, which are used to express them. In all of their expressions, we will always find one of the square roots of the previous expressions, of ex-centric radial functions.

Finding these two determinations is simple: for \textbf{+ (plus)} in front of the square roots we always obtain the first determination \((r_1 > 0)\) and for the \textbf{– (minus)} sign we obtain the second determination \((r_2 < 0)\). The rule remains true for all \textit{EC-SMF}. By convention, the first determination, of index \(1\), can be used or written without index.

Some remarks about these \textit{REX ("King")} functions:

- The ex-centric radial functions are the expression of the distance between two points, in the plane, in polar coordinates: \(S(s, \varepsilon) \) and \(W_{1,2}(R = 1, a_{1,2}) \), on the direction of the straight line \(\mathbf{d} \), skewed at an angle \(\theta \) in relation to \(\text{Ox} \) axis;
- Therefore, using exclusively these functions, we can express the equations of all known \textit{plane curves}, as well as of other new ones, which surfaced with the introduction of \textit{EM}. An example is represented by \textit{Booth’s lemniscates} (see Fig. 2, a, b, c), expressed, in polar coordinates, by the equation:
 \[\rho(\theta) = R(\text{rex}_1 \theta + \text{rex}_2 \theta) = -2sR\cos(\theta - \varepsilon) \text{ for } R = 1, \varepsilon = 0 \text{ and } s \in [0, 3].\]

- Another consequence is the generalization of the definition of a circle:
 \textbf{"The Circle} is the plane curve whose points \(M \) are at the distances \(r(\theta) = R_{\text{rex}} \theta = R \cdot \text{rex} [0, E(e, \varepsilon)] \) in relation to a \textbf{certain} point from the circle’s plane \(E(e, \varepsilon) \)."
If $S \equiv O(0,0)$, then $s = 0$ and $\text{rex} \, \theta = 1 = \text{constant}$, and $r(\theta) = R = \text{constant}$, we obtain the circle’s **classical definition**: the points situated at the same distance R from a point, the center of the circle.

Booth Lemniscate Functions

Polar coordinate equation with **supermathematics circle functions** $\text{rex}_{1,2} \, \theta$:

\[\rho = R \left(\text{rex}_1 \, \theta + \text{rex}_2 \, \theta \right) \]

for circle radius $R = 1$

and the numerical ex-centricity $s \in [0,1]$

- The functions $\text{rex} \, \theta$ and $\text{Rex} \, \alpha$ expresses the transfer functions of zero degree, or of the position of transfer, from the mechanism theory, and it is the ratio between the
parameter $R(\alpha_{1,2})$, which positions the conducted element $OM_{1,2}$ and parameter $R_{1,2}(\theta)$, which positions the leader element $EM_{1,2}$.

Between these two parameters, there are the following relations, which can be deduced similarly easy from Fig. 1 that defines EC-SMF.

Between the position angles of the two elements, leadded and leader, there are the following relations:

\[\alpha_{1,2} = \theta \ Y \ \arcsin[e.\sin(\theta - \varepsilon)] = \theta \ Y \ \beta_{1,2}(\theta) = \text{aex}_{1,2} \ \theta \]

and

\[\theta = \alpha_{1,2} \pm \beta_{1,2}(\alpha_{1,2}) = \alpha_{1,2} \pm \arcsin\left[\pm \frac{s.\sin(\alpha_{1,2} - \varepsilon)}{\sqrt{1 + s^2 - 2.s.\cos(\alpha_{1,2} - \varepsilon)}} \right] = \text{Aex} \ (\alpha_{1,2}) \]

The functions $\text{aex}_{1,2} \ \theta$ and $\text{Aex} \ \alpha_{1,2}$ are EC-SMF, called ex-centric amplitude, because of their usage in defining the ex-centric cosine and sine from EC-SMF, in the same manner as the amplitude function or amplitudinus $\text{am}(k,u)$ is used for defining the elliptical Jacobi functions:

\[\text{sn}(k,u) = \text{sn}(\text{am}(k,u)), \ \text{cn}(k,u) = \cos(\text{am}(k,u)), \]

or:

\[\text{cex}_{1,2} \ \theta = \cos(\text{aex}_{1,2} \ \theta), \quad \text{Cex} \ \alpha_{1,2} = \cos(\text{Aex} \ \alpha_{1,2}) \]

and

\[\text{sex}_{1,2} \ \theta = \sin(\text{aex}_{1,2} \ \theta), \quad \text{Sex} \ \alpha_{1,2} = \cos(\text{Aex} \ \alpha_{1,2}) \]

- The radial ex-centric functions can be considered as modules of the position vectors $r_{1,2}$ for the $W_{1,2}$ on the unity circle $C \ (1,0)$. These vectors are expressed by the following relations:

\[r_{1,2} = \text{rex}_{1,2} \ \theta \ \text{rad} \ \theta, \]

where $\text{rad} \ \theta$ is the unity vector of variable direction, or the versor/phasor of the straight line direction d^\ast, whose derivative is the phasor $\text{der} \ \theta = d(\text{rad} \ \theta)/d \ \theta$ and represents normal vectors on the straight lines $\text{OW}_{1,2}$, directions, tangent to the circle in the $W_{1,2}$. They are named the centric derivative phasors. In the same time, the modulus $\text{rad} \ \theta$ function is the corresponding, in CM, of the function $\text{rex} \ \theta$ for $s = 0 \ \Rightarrow \ \theta = a$ when $\text{rex} \ \theta = 1$ and $\text{der} \ \alpha_{1,2}$ are the tangent versors to the unity circle in $W_{1,2}$.

- The derivative of the $r_{1,2}$ vectors are the velocity vectors:

\[v_{1,2} = \frac{d r_{1,2}}{d \theta} = \text{dex}_{1,2} \ \theta \ \text{der} \alpha_{1,2} \]

of the $W_{1,2} \subset C$ points in their rotating motion on the circle, with velocities of variable modulus $v_{1,2} = \text{dex}_{1,2} \ \theta$, when the generating straight line d rotates around the ex-center S with a constant angular speed and equal to the unity, namely $\Omega = 1$. The velocity vectors have the expressions presented above, where $\text{der} \ \alpha_{1,2}$ are the phasors of centric radiuses $R_{1,2}$ of module 1 and of $\alpha_{1,2}$ directions. The expressions of the functions EC-
SM $\text{dex}_{1,2} \theta$, **ex-centric derivative** of θ, are, in the same time, also the $a_{1,2} (\theta)$ angles derivatives, as function of the motor or independent variable θ, namely

$$\text{dex}_{1,2} \theta = d a_{1,2} (\theta)/d \theta = 1 - \frac{s.\cos(\theta - \varepsilon)}{\pm \sqrt{1 - s^2.\sin^2(\theta - \varepsilon)}}$$

as function of θ, and

$$\text{Dex } a_{1,2} = d(\theta)/d a_{1,2} = \frac{1 - s.\cos(\alpha_{1,2} - \varepsilon)}{1 + s^2 - 2.s.\cos(\alpha_{1,2} - \varepsilon)} = \frac{1 - s.\cos(\alpha_{1,2} - \varepsilon)}{\text{Re } \chi^2 \alpha_{1,2}}$$

as functions of $a_{1,2}$.

It has been demonstrated that the **ex-centric derivative** functions EC-SM express the transfer functions of the first order, or of the angular velocity, from the Mechanisms Theory, for all (!) known plane mechanisms.

- The radial ex-centric function $\text{rex } \theta$ expresses exactly the movement of push-pull mechanism $S = R. \text{rex } \theta$, whose motor connecting rod has the length r, equal with e the real ex-centricity, and the length of the crank is equal to R, the radius of the circle, a very well-known mechanism, because it is a component of all automobiles, except those with Wankel engine.

The applications of radial ex-centric functions could continue, but we will concentrate now on the more general applications of EC-SM.

Concretely, to the unique forms as those of the circle, square, parabola, hyperbola, different spirals, etc. from CM, which are now grouped under the name of centrics, correspond an infinity of ex-centric of the same type: circular, square (quadrilobe), parabolic, elliptic, hyperbolic, various spirals ex-centric, etc. Any ex-centric function, with null ex-centricity ($e = 0$), degenerates into a centric function, which represents, at the same time its generating curve. Therefore, the CM itself belongs to EM, for the unique case ($s = e = 0$), which is one case from an infinity of possible cases, in which a point named eccentric $E(e, \varepsilon)$ can be placed in plane. In this case, E is overleaping on one or two points named **center**: the origin $O(0,0)$ of a frame, considered the origin $O(0,0)$ of the referential system, and/or the center $C(0,0)$ of the unity circle for circular functions, respectively, the symmetry center of the two arms of the equilateral hyperbola, for hyperbolic functions.

It was enough that a point E be eliminated from the center (O and/or C) to generate from the old CM a new world of EM. The reunion of these two worlds gave birth to the SM world.

This discovery occurred in the city of the Romanian Revolution from 1989, Timișoara, which is the same city where on November 3rd, 1823 Janos Bolyai wrote: “From nothing I’ve created a new world”. With these words, he announced the discovery of the fundamental formula of the first non-Euclidean geometry.

He – from nothing, I – in a joint effort, proliferated the periodical functions which are so helpful to engineers to describe some periodical phenomena. In this way, I have enriched the mathematics with new objects.

When Euler defined the trigonometric functions, as direct circular functions, if he wouldn’t have chosen three superposed points: the origin O, the center of the circle C and S as a pole of a semi straight line, with which he intersected the trigonometric/unity circle, the EC-SMF would have been discovered much earlier, eventually under another name.

Depending on the way of the “split” (we isolate one point at the time from the superposed ones, or all of them at once), we obtain the following types of SMF:

$$O \equiv C \equiv S \rightarrow \text{Centric functions belonging to CM};$$
and those which belong to EM are:

\[O \equiv C \neq S \rightarrow \text{Ex-centric Circular Supermathematics Functions (EC-SMF)}; \]
\[O \neq C \equiv S \rightarrow \text{Elevated Circular Supermathematics Functions (ELC-SMF)}; \]
\[O \neq C \neq S \rightarrow \text{Exotic Circular Supermathematics Functions (EXC-SMF)}. \]

These new mathematics complements, joined under the temporary name of SM, are extremely useful tools or instruments, long awaited for. The proof is in the large number and the diversity of periodical functions introduced in mathematics, and, sometimes, the complex way of reaching them, by trying the substitution of the circle with other curves, most of them closed.

To obtain new special, periodical functions, it has been attempted the replacement of the trigonometric circle with the square or the diamond. This was the proceeding of Prof. Dr. Math. Valeriu Alaci, the former head of the Mathematics Department of Mechanics College from Timişoara, who discovered the square and diamond trigonometric functions. Hereafter, the mathematics teacher Eugen Visa introduced the pseudo-hyperbolic functions, and the mathematics teacher M. O. Enculescu defined the polygonal functions, replacing the circle with an n-sides polygon; for n = 4 he obtained the square Alaci trigonometric functions. Recently, the mathematician, Prof. Malvina Baica, (of Romanian origin) from the University of Wisconsin together with Prof. Mireea Cărdu, have completed the gap between the Euler circular functions and Alaci square functions, with the so-called Periodic Transtrigonometric functions.

The Russian mathematician Marcusevici describes, in his work “Remarkable sine functions” the generalized trigonometric functions and the trigonometric functions lemniscates.

Even since 1877, the German mathematician Dr. Biehringer, substituting the right triangle with an oblique triangle, has defined the inclined trigonometric functions. The British scientist of Romanian origin Engineer George (Gogu) Constantinescu replaced the circle with the evolvent and defined the Romanian trigonometric functions: Romanian cosine and Romanian sine, expressed by Cor α and Sir α functions, which helped him to resolve some non-linear differential equations of the Sonicity Theory, which he created. And how little known are all these functions even in Romania!

Also the elliptical functions are defined on an ellipse. A rotated one, with its main axis along Oy axis.

How simple the complicated things can become, and as a matter of fact they are! This paradox(ism) suggests that by a simple displacement/expulsion of a point from a center and by the apparition of the notion of the ex-center, a new world appeared, the world of EM and, at the same time, a new Universe, the SM Universe.

Notions like “Supermathematics Functions” and “Circular Ex-centric Functions” appeared on most search engines like Google, Yahoo, AltaVista etc., from the beginning of the Internet. The new notions, like quadrilobe “quadrilobas”, how the ex-centric are named, and which continuously fill the space between a square circumscribed to a circle and the circle itself were included in the Mathematics Dictionary. The intersection of the quadriloba with the straight line d generates the new functions called cosine quadrilobe-ic and sine quadrilobe-ic.

The benefits of SM in science and technology are too numerous to list them all here. But we are pleased to remark that SM removes the boundaries between linear and non-linear; the linear belongs to CM, and the non-linear is the appanage of EM, as between ideal and real, or as between perfection and imperfection.

It is known that the Topology does not differentiate between a pretzel and a cup of tea. Well, SM does not differentiate between a circle \((e = 0)\) and a perfect square \((s = \pm 1)\), between a circle...
and a **perfect triangle**, between an **ellipse** and a **perfect rectangle**, between a **sphere** and a perfect **cube**, etc. With the same parametric equations we can obtain, besides the **ideal** forms of **CM** (circle, ellipse, sphere etc.), also the **real** ones (square, oblong, cube, etc.). For \(s \in [-1,1] \), in the case of ex-centric functions of variable \(\theta \), as in the case of centric functions of variable \(\alpha \), for \(s \in [-\infty, \infty] \), it can be obtained an infinity of intermediate forms, for example, square, oblong or cube with rounded corners and slightly curved sides or, respectively, faces. All of these facilitate the utilization of the new SM functions for drawing and representing of some technical parts, with rounded or splayed edges, in the **CAD/ CAM-SM** programs, which don’t use the computer as drawing boards any more, but create the technical object instantly, by using the parametric equations, that speed up the processing, because only the equations are memorized, not the vast number of pixels which define the technical piece.

The numerous functions presented here, are introduced in mathematics for the first time, therefore, for a better understanding, the author considered that it was necessary to have a short presentation of their equations, such that the readers, who wish to use them in their application’s development, be able to do it.

SM is not a finished work; it’s merely an **introduction** in this vast domain, a first step, the author’s small step, and a giant leap for mathematics.

The **elevated circular SM functions** (ELC-SMF), named this way because by the modification of the numerical ex-centricity \(s \) the points of the curves of elevated sine functions \(\text{sel} \, \theta \) as of the elevated circular function elevated cosine \(\text{cel} \, \theta \) is elevating – in other words it rises on the vertical, getting out from the space \([-1, +1]\) of the other sine and cosine functions, centric or ex-centric. The functions’ \(\text{cex} \, \theta \) and \(\text{sex} \, \theta \) plots are shown in Fig. 3, where it can be seen that the points of these graphs get modified on the horizontal direction, but all remaining in the space \([-1,+1]\), named the existence domain of these functions.

The functions’ \(\text{cel} \, \theta \) and \(\text{sel} \, \theta \) plots can be simply represented by the products:

\[
\begin{align*}
\text{cel} \, 1,2 \, \theta &= \text{rex} \, 1,2 \, \theta \cdot \cos \theta \\
\text{sel} \, 1,2 \, \theta &= \text{rex} \, 1,2 \, \theta \cdot \sin \theta
\end{align*}
\]

and are shown Fig. 4.

The **exotic circular functions** are the most general **SM**, and are defined on the unity circle which is not centered in the origin of the xOy axis system, neither in the eccenter \(S \), but in a certain point \(\mathbf{C} \,(c,\gamma) \) from the plane of the unity circle, of polar coordinates \((c,\gamma)\) in the xOy coordinate system.

Many of the drawings from this album are done with **EC-SMF** of ex-center variable and with arcs that are multiples of \(\theta \) \((n.\theta)\). The used relations for each particular case are explicitly shown, in most cases using the **centric** mathematical functions, with which, as we saw, we could express all **SM** functions, especially when the image programs cannot use **SMF**. This doesn’t mean that, in the future, the new math complements will not be implemented in computers, to facilitate their vast utilization.
Fig. 3,a The ex-centric circular supermathematics function (EC-SMF) ex-centric cosine of θ
for $e = 0, \theta \in [0, 2\pi]$

Fig. 3,b The ex-centric circular supermathematics function (EC-SMF) eccentric sine of θ
for $e = 0, \theta \in [0, 2\pi]$

Numerical ex-centricity $s = e/R \in [-1, 1]$

The computer specialists working in programming the computer assisted design software
CAD/CAM/CAE, are on their way to develop these new programs fundamentally different, because
the technical objects are created with parametric circular or hyperbolic SMFs, as it has been
exemplified already with some achievements such as airplanes, buildings, etc. in
http://www.eng.upt.ro/~mselariu and how a washer can be represented as a toroid ex-centricity (or as
an “ex-centric torus”), square or oblong in an axial section, and, respectively, a square plate with a
central square hole can be a “square torus of square section”. And all of these, because SM doesn’t
make distinction between a circle and a square or between an ellipse and a rectangle, as we mentioned
before.

But the most important achievements in science can be obtained by solving some non-linear
problems, because SM reunites these two domains, so different in the past, in a single entity. Among
these differences we mention that the non-linear domain asks for ingenious approaches for each
problem. For example, in the domain of vibrations, static elastic characteristics (SEC) soft non-linear
(regressive) or hard non-linear (progressive) can be obtained simply by writing $y = mx$, where m is
not anymore \(m = \tan \alpha \) as in the linear case \((s = 0) \), but \(m = \text{tan}_{1,2} \theta \) and depending on the numerical ex-centricity \(s \) sign, positive or negative, or for \(S \) placed on the negative x axis \((\varepsilon = \pi) \) or on the positive x axis \((\varepsilon = 0) \), we obtain the two nonlinear elastic characteristics, and obviously for \(s=0 \) we’ll obtain the linear SEC.

Due to the fact that the functions \(\text{cex} \theta \) and \(\text{sex} \theta \), as well \(\text{Cex} \alpha \) and \(\text{Sex} \alpha \) and their combinations, are solutions of some differential equations of second degree with variable coefficients, it has been stated that the linear systems (Tchebychev) are obtained also for \(s = \pm 1 \), and not only for \(s = 0 \). In these equations, the mass (the point \(M \)) rotates on the circle with a double angular speed \(\omega = 2.\Omega \) (reported to the linear system where \(s = 0 \) and \(\omega = \Omega = \text{constant} \)) in a half of a period, and in the other half of period stops in the point \(A(R,0) \) for \(e = sR = R \) or \(e = 0 \) and in \(A'(-R, 0) \) for \(e = -s.R = -1, \) or \(e = \pi \). Therefore, the oscillation period \(T \) of the three linear systems is the same and equal with \(T = \Omega / 2\pi \). The nonlinear SEC systems are obtained for the others values, intermediates, of \(s \) and \(e \). The projection, on any direction, of the rotating motion of \(M \) on the circle with radius \(R \), equal to the oscillation amplitude, of a variable angular speed \(\omega = \Omega.\text{dex} \theta \) (after \(\text{dex} \theta \) function) is a non-linear oscillating motion.

The discovery of ”king” function \(\text{rex} \theta \), with its properties, facilitated the apparition of a hybrid method (analytic-numerical), by which a simple relation was obtained, with only two terms, to calculate the first degree elliptic complete integral \(K(k) \), with an unbelievable precision, with a minimum of 15 accurate decimals, after only 5 steps. Continuing with the next steps, can lead us to a new relation to compute \(K(k) \), with a considerable higher precision and with possibilities to expand the method to other elliptic integrals, and not only to those. After 6 steps, the relation of \(E(k) \) has the same precision of computation.
The discovery of SMF facilitated the apparition of a new integration method, named integration through the differential dividing.

We will stop here, letting to the readers the pleasure to delight themselves by viewing the drawings from this album.

[Translated from Romanian by Marian Niţu and Florentin Smarandache]

Mircea Eugen Şelariu
Selariu SuperMathematics Functions
&
Other SuperMathematics Functions
\begin{align*}
M \quad \begin{cases}
x = cex \theta \cdot \cos u \\
y = cex \theta \cdot \sin u, \quad \text{Eccenter } S(1,0) \Rightarrow s = 1, \varepsilon = 0, \quad t \in [0, 3\pi]; \quad u \in [0, 2\pi] \\
z = sex \theta
\end{cases}
\end{align*}
$X = \text{dex} (\theta - \pi/2), \ s = s_0 \cos 4 \theta, \ \varepsilon = 0$

$Y = \text{dex} 0, \ \ s_0 \in [0, 1], \ \theta \in [0, 2\pi]$

$X = \text{dex} (\theta + \pi/2), \ s = s_0 \cos 6 \theta, \ \varepsilon = 0$

$Y = \text{dex} 0, \ \ s_0 \in [0, 1], \ \theta \in [0, 2\pi]$

$X = \text{dex} (\theta + \pi/2), \ s = s_0 \cos 8 \theta, \ \varepsilon = 0$

$Y = \text{dex} 0, \ \ s_0 \in [0, 1], \ \theta \in [0, 2\pi]$

$X = \text{dex} (\theta + \pi/2), \ s = s_0 \cos 15 \theta, \ \varepsilon = 0$

$Y = \text{dex} 0, \ \ s_0 \in [0, 1], \ \theta \in [0, 2\pi]$
The Ballet of the Functions

\[F(x) = \text{sign}(\cos x) \cdot \frac{\cos x}{(1 + \tan^n x)^n}, \quad n \in [0, 10] \]

\[F(x) = \text{sign}(\sin x) \cdot \frac{\sin x}{(1 + \tan^n x)^n}, \quad n \in [0, 10] \]

\[F(x) = \text{sign}(\cos x) \cdot \frac{\tan x}{(1 + \text{Abs}(\tan x))^n}, \quad n \in [0, 10] \]

\[F(x) = \text{sign}(\sin x) \cdot \frac{\tan x}{(1 + \text{Abs}(\tan x))^n}, \quad n \in [0, 10] \]
\[\begin{align*}
M & \quad x = (1 - cex\theta).\cos u, \quad s = \sin 2u \\
y & = (1 - cex\theta).\sin u, \quad u \in [0, 2\pi] \\
z & = sex\theta, \quad s = 1, \quad \theta \in [0, 3\pi]
\end{align*}\]

\[\begin{align*}
M & \quad x = (1 - cex\theta).\cos u, \quad s = \sin u \\
y & = (1 - cex\theta).\sin u, \quad s = \cos u, \quad u \in [0, 2\pi] \\
z & = sex\theta, \quad s = 1, \quad \theta \in [0, 3\pi]
\end{align*}\]
\[x = (1 - c\cos\theta) \cdot \cos u \\
M \quad y = (1 + c\cos\theta \cdot \cos u) \quad s = 1, \theta \in [0,3\pi], u \in [0,2\pi] \\
\quad \quad z = \sin\theta \]
K A Z A T C I O K (Russian Popular Dance)
\[\begin{align*}
M \left\{
\begin{array}{l}
 x &= \sqrt{1 - \sin^2 5\theta} \cdot cex(\theta, \varepsilon = 0, s \in [0,1]) - \cos 3\theta \\
 y &= \sqrt{1 - \sin^2 5\theta} \cdot sex(\theta - S\varepsilon = 0, s' = 0.8) + \cos 3\theta
\end{array}
\right.
\text{, } S = \cos 5\theta, \theta \in [0,2\pi], s \in [0,1]
\end{align*} \]

\[\begin{align*}
M \left\{
\begin{array}{l}
 x &= cex(\theta, s) + \sqrt{1 - \sin^2 (3\theta - S)} - s \cdot \cos (5\theta - S) \\
 y &= sex(\theta, s = 0.8) + \sqrt{1 - \sin^2 ((\theta - S) - s \cdot \cos (5\theta - S))}
\end{array}
\right.
\text{, } S = s \cdot \cos 5\theta, s \in [0,1], \theta \in [0,2\pi]
\end{align*} \]
\[\begin{align*}
M \left\{
& x = cex(\theta, s) + \sqrt{1 - \sin^2 3\theta - s.\cos 5\theta.\cos 3\theta} \\
& y = sex(\theta, s = 0.8) + \sqrt{1 - \sin^2 9\theta + \cos 3\theta}
\right\}, s \in [0,1], \varepsilon = 0, \theta \in [0,2\pi]
\end{align*}\]
\[
\begin{aligned}
M \begin{cases}
x = dex20.\theta \cdot \cos \theta \\
y = dex20.\theta \cdot \sin \theta
\end{cases}, s \in [-1,1], \theta \in [0,2\pi]
\end{aligned}
\]
$$M \begin{cases} x = d e x 20 \cdot \theta \cdot \cos \theta, \\ y = d e x 20 \cdot \theta \cdot \sin \theta \end{cases}, s \in [-1, 1], \theta \in [0, 2\pi]$$
The double Nozzle for NASA

\[
\begin{align*}
\mathbf{M} & = \begin{cases}
 x = \text{Re} n \alpha \cos \alpha, \\
y = \text{Re} n \alpha \sin \alpha, \\
z = 3s
\end{cases}, \quad s \in [-1, 1], \quad \alpha \in [0, 2\pi], \quad n = 2, 3, 4, 5.
\end{align*}
\]
The supermathematics Comet

\[
\begin{align*}
M & \left\{ \begin{array}{l}
x = dx \theta \cos \theta \\
y = dx \theta \sin \theta \end{array} \right\}, \quad S(s \in [0,1], \varepsilon = 0), \theta \in [0,2\pi]
\end{align*}
\]
The Lake of Swans

\[
\frac{\text{sign}(\cos x)\cos x}{(1 + \tan^n x)^n}, \ n \in [0, 10]; \ x \in [0, 2\pi]
\]

The Dance of Swords

\[
\frac{\text{sign}(x)\cos x}{1 + \tan^n x}, \ n \in [-10, 10]; \ x \in [0, 2\pi]
\]

The Nut Cracker

\[
\frac{\text{sign}(\sin x)\cos 5x}{1 + \tan^n 2x}, \ n \in [-10, 10]; \ x \in [0, 2\pi]
\]

The Decease of Swan

\[
\frac{\text{sign}(x)\sin x}{(1 + \tan^n x)^n}, \ n \in [0, 10]; \ x \in [0, 2\pi]
\]
\[\begin{aligned}
M = \begin{cases}
\{ x = \text{d}ex \theta, s_1 = s \cdot \cos 4\theta, s_2 = s \cdot \sin 4\theta, \\
y = \text{d}ex \theta, s_1 = s \cdot \cos 4\theta, \theta \in [0, 2\pi] \}
\end{cases}
\end{aligned} \]

\[\begin{aligned}
s \in [0, 1], \varepsilon = -\pi / 2, \theta \in [0, 2\pi]
\end{aligned} \]

\[\begin{aligned}
M = \begin{cases}
\{ x = \text{d}ex \theta, s_1 = s \cdot \cos 8\theta, s_2 = s \cdot \sin 8\theta, \\
y = \text{d}ex \theta, s_1 = s \cdot \cos 8\theta, \theta \in [0, 2\pi] \}
\end{cases}
\end{aligned} \]

\[\begin{aligned}
s \in [0, 1], \varepsilon = -\pi / 2, \theta \in [0, 2\pi]
\end{aligned} \]

\[\begin{aligned}
M = \begin{cases}
\{ x = \text{d}ex \theta, s_1 = s \cdot \cos^2 2\theta, s_2 = s \cdot \sin 2\theta, \varepsilon = -\pi / 2 \\
y = \text{d}ex \theta, s_1 = s \cdot \cos^2 2\theta, s_2 = s \cdot \cos^{3/2} 8\theta, \varepsilon = 0 \}
\end{cases}
\end{aligned} \]

\[\begin{aligned}
s \in [0, 1], \theta \in [0, 2\pi]
\end{aligned} \]
The supermathematics ring surface

\[M \begin{cases} x = (3 + \cos q\theta) \cdot \cos qu \\ y = (3 + \cos q\theta) \cdot \sin qu \\ \sin q\theta \end{cases} \quad s = 1, \ v = 0, \ \theta \in [0, 2\pi], \ u \in [-\pi, \pi] \]

\[M \begin{cases} x = (2 + cex\theta) \cdot \cos u \\ y = (2 + cex\theta) \cdot \sin u \\ s = 1, \ v = 0, \ \theta \in [0, 2\pi], \ u \in [0, 2\pi] \]
The ex-centric sphere

\[M \begin{cases} x = \text{dex}\theta \cdot \cos \theta \cdot \cos u \\ y = \text{dex}\theta \cdot \cos \theta \cdot \sin u \\ z = \text{dex}\theta \cdot \sin \theta \end{cases} \quad \text{S}(s \in [0,1], \ v = 0) \]

\[M \begin{cases} x = \cos q \theta \cdot \cos \theta \cdot \cos u \\ y = \sin q \theta \cdot \cos \theta \cdot \sin u \\ z = \cos q \theta \cdot \sin \theta \end{cases} \quad \text{S}(s \in [0,1], \ v = 0) \]

\[M \begin{cases} x = \text{cex}\theta \cdot \cos u \\ y = \text{sex}\theta \cdot \sin u \\ z = \sin u \end{cases} \quad \text{S}(s \in [0,1], \ v = 0) \]

\[M \begin{cases} x = \cos q \theta \cdot \cos u \\ y = \sin q \theta \cdot \sin u \\ z = \cos q \theta \cdot \sin u \end{cases} \quad \text{S}(s \in [0,1], \ v = 0) \]

\[\Theta \in [0, 2\pi], \ u \in [-\pi, \pi], \ S[s \in [0,1], \ v = 0] \]
\[
\begin{align*}
M & = \left\{ \begin{array}{l}
 x = \frac{2\theta}{13} \cos\left[5 + \cos\left(\frac{2\pi\theta}{13} + u\right)\right]
 \\
y = \frac{2\theta}{13} \sin\left[5 + \cos\left(\frac{2\pi\theta}{13} + u\right)\right]
 \\
z = 8.\sin(\frac{\theta}{4}) + 4.8 \cos\left(\frac{\frac{2\pi\theta}{13} + u}{13}\right)
\end{array} \right. \\
& \quad , \quad u \in [0, 2\pi], \quad \theta \in [0, 2\pi]
\end{align*}
\]
\[X = \theta, \ y = s, \ Z = \cos\theta, \ S(s, \varepsilon) \],
\[S(s \in [-1, 1], \varepsilon = 0), \ \theta \in [0, 2\pi] \]

\[X = \theta, \ y = s, \ Z = \sin\theta, \ S(s, \varepsilon) \],
\[S(s \in [-1, 1], \varepsilon = 0), \ \theta \in [0, 2\pi] \]
\[
\begin{align*}
M &= \begin{cases}
 x &= \sqrt{1 + s^2 - 2s \cos(\theta, s = 0.98) \cdot \cos \alpha} \\
 y &= \sqrt{1 + s^2 - 2s \cos(\alpha, s = \cos \frac{\theta}{2}) \cdot \sin \alpha} \\
 z &= 0.9 \theta, \theta \in [-3.6\pi, 0.5\pi], \alpha \in [0, 2\pi]
\end{cases} \\
M &= \begin{cases}
 x &= \Re x \alpha \cdot \cos \theta \\
 y &= \Re x \alpha \cdot \sin \theta, \theta \in [0, 2\pi] \\
 z &= s \in [0, 2.2\pi]
\end{cases}
\end{align*}
\]
$\{x = 2\sqrt{1 + s^2} - 2 \cdot s \cdot \text{sex}(s, s_1 = 0.98) \cdot \cos \theta \\
y = 1.4\sqrt{1 + s^2} - 2 \cdot s \cdot \text{cex}(s, s_2 = \cos \theta) \cdot \sin \theta \\
z = 0.9s, s \in [-3.6\pi, 0.5\pi], \theta \in [0, 2\pi]\}$
\[
cex2a(x,S, \varepsilon = 0, \lambda) = \cos \left\{ \frac{\pi}{2\lambda} x \left[\frac{\pi}{2\lambda} x - \arcsin \left(\frac{\pi}{2\lambda} x - \varepsilon \right) \right] \right\}
\]
SELF - PIERCE BODY

\[
\begin{align*}
M & \quad \begin{cases}
 x = bex(3\theta, s = 0.9) \\
 y = \sin 2\theta \cdot s \cdot \cos(\theta) \\
 z = \sin 2\theta \cdot \cos(\theta)
\end{cases}
\end{align*}
\]
\[z = \frac{10}{1 + 1.3 x^2 + y^2}\text{sex}(x^2 - y^2), \quad S(s = 0.8, \quad \varepsilon = 0) - \text{Rex}(x^2 - y^2), \quad S(s = 0.64, \quad \varepsilon = 0), \]
\[x, \quad y \in [-\pi, +\pi] \]
Bernoulli's Lemniscate, Cassini's Ovals and others

\[M \begin{cases} x = d \varepsilon(\theta, s = s_0 \cos \theta) \\ y = d \varepsilon(2\theta, s = s_0 \cos 2\theta) \end{cases} S(s_0 \in [0,1], \varepsilon = \frac{\pi}{2}, \theta \in [0,2\pi]) \]
Continuous transforming of a circle into a haystack

$$\begin{align*}
\mathbf{M} \left\{
\begin{array}{ll}
 x = d_{\text{ex}}(\theta, S(s = s_0) \cos \theta, \varepsilon = \frac{\pi}{2}) \\
 y = d_{\text{ex}}(\theta, S(s = s_0 \cos \theta, \varepsilon = 0))
\end{array}
\right. \\
\end{align*}$$

\(s_0 \in [0,1], \theta \in [0,2\pi]\)
Cyclical Symmetry

\[
\begin{align*}
\{ x &= d e x(\theta, S(s = s_o) \cos 4\theta, \varepsilon = -\frac{\pi}{2}) \} \quad & \text{s}_o \in [0,1], \theta \in [0,2\pi] \\
\{ y &= d e x(\theta, S(s = s_o \cos 4\theta, \varepsilon = 0)) \}
\end{align*}
\]
F(nθ, ε) = Ssf (θ) = \[θ − \text{bex}(θ, s = 1) \text{dex 0}] . s . \text{dex nθ}, n = 10, s = \{0.2, 0.4, 0.6, 0.9, 1\}
\[M \begin{cases} x = c \cos(\theta - 1) + 2c \cos(3\theta) \\ y = s \cos(\theta - 1) - 2s \cos(3\theta) \end{cases}, s \in [0,1], \theta \in [0,2\pi] \]
$z = \text{ceq}(x, y, S(s = 0.8, \varepsilon = 0))$, \(x, y \in [-\pi, +\pi]\)
EXCENTRIC SYMMETRY

\[M \left\{ \begin{array}{l} x = 3 \cos \theta + 2 \cos 7\theta \\ y = 3 \sin \theta - 2 \sin(3\theta - 5\theta) \end{array} \right\} S(s \in [-1,0] \text{and} s \in [0,1], \theta = 0, \theta \in [0, \pi] \]
DRACULA'S CASTLE

$Z = \cos(q(x,y)), s = 0.8, x, y \in [-\pi, +\pi]$

$Z = 1 / \cos^2(q(x,y)), s = 0.8, x, y \in [-\pi, +\pi]$

$Z = 1 / \cos(q(x,y)), s = 0.8, x, y \in [-\pi, +\pi]$
\[z = \text{dex}(x, y), \; x \equiv \theta \in [0, \pi], \; S(s \equiv y \in [-1,1], \; \varepsilon = 0) \]

\[z = \text{Rex}(x, y), \; x \equiv \alpha \in [0, \pi], \; S(s \equiv y \in [-1,1], \; \varepsilon = 0) \]
Ex-centric geometry, prismatic solids

\[
\begin{align*}
M \begin{cases}
 x = d_{ex}(4\theta, \varepsilon = 0) \\
 y = d_{ex}(4\theta, \varepsilon = -\pi / 2), \theta \in [0, 2\pi], s \in [0, 1]. \text{or} . s \in [-1, 0] \\
 z = 1.5s
\end{cases}
\end{align*}
\]

\[
\begin{align*}
M_1 \begin{cases}
 x_1 = s \cdot \cos q \theta \\
 y_1 = \sin q \theta \\
 z_1 = -s - 2
\end{cases}, \quad M_2 \begin{cases}
 x_2 = \cos q \theta \\
 y_2 = \sin q \theta \\
 z = s
\end{cases}, \quad \theta \in [0, 2\pi], S(\varepsilon = 0, s \in [-1, 1])
\end{align*}
\]
\[
\begin{align*}
\mathbf{M} = \begin{cases}
 x &= \text{Re} x(s) \cos \theta
 \\
y &= \text{Re} x(s) \sin \theta
 \\
z &= s, \in [-3.6\pi, 0]
\end{cases}, \quad \theta \in [0, 2\pi]
\end{align*}
\]

\[
\begin{align*}
\mathbf{M} = \begin{cases}
 x &= \cos \theta \text{Re} x(\alpha, s_1) = \cos \theta \sqrt{1 + s^2 - 2s \text{cex}(s, s_1 = 0.98)}
 \\
y &= \sin \theta \text{Re} x(\alpha, s_2) = \sin \theta \sqrt{1 + s^2 - 2s \text{sex}(s, s_2 = \cos 5\theta)}
 \\
z &= 0.9s, \in [-3.6\pi, \pi / 2], \theta \in [0, 2\pi]
\end{cases}
\end{align*}
\]
HEXAGONAL TORUS

\[x = (3 + cex[s, S_1(s_1 = 1, \varepsilon_1 = 0)]).\cos \theta \]

\[y = (3 + cex[s, S_1(s_1 = 1, \varepsilon_1 = 0)].\sin \theta \]

\[z = sex[s, S_1(s_1 = 1, \varepsilon_1 = 0)] \]

\[s \in [0, 2\pi], \theta \in [0, 2\pi] \]
Open square torus \(M \) \[x = (3 + \cos s) \cdot \cos q \theta \\
 y = (3 + \cos s) \cdot \sin q \theta \\
z = s \] \(s \in [0, 2\pi], \theta \in [0, 2.2\pi] \)

Square torus \(M \) \[x = (3 + \cos s) \cdot \cos (\theta, s_1 = 1) \\
y = (3 + \cos s) \cdot \sin (\theta, s_1 = 1) \\
z = \sin s \] \(s \in [0, 2\pi], \theta \in [0, 2.2\pi] \)
Double square torus

\[
\begin{align*}
\begin{cases}
 x &= (3 + \cos q(s,l))/\sqrt{1 - \sin^2 \theta}.\cos \theta \\
y &= (3 + \cos q(s,l))/\sqrt{1 - \cos^2 \theta}.\sin \theta \\
z &= \sin q(\theta,l)
\end{cases}
, \ s, \ \theta \in [0, 2\pi]
\end{align*}
\]

Square torus

\[
\begin{align*}
\begin{cases}
 x &= [2 + \cos q(s,l)].\cos \theta \\
y &= [3 + \cos q(s,l)].\sin \theta \\
z &= \sin q(s,l)
\end{cases}
, \ s, \ \theta \in [0, 2\pi]
\end{align*}
\]
Sinuous Corrugate Washers
or
Nano-Peristaltic Engine

\[M \left\{ \begin{array}{l}
x = [3 + \cos q(s,1)].\cos \theta \\
y = [3 + \cos q(s,1)].\sin \theta \\
z = 0.3 \sin q(s,1) + 0.2 \sin(8\theta + \begin{bmatrix} 0 \\
2\pi / 3 \\
0 \end{bmatrix}) + \begin{bmatrix} 0 \\
3 \end{bmatrix}
\end{array} \right. \]
The magic carpet \[z = b(x, S(s = y^2, \varepsilon = 0)) \times \theta \in [0, 2\pi], y \equiv s \in [-1, 1] \]
Multiple Ex – Centric Circular SuperMathematics Functions

sex 0 with dauble ex – centre: $y = s \sin(\theta - \arcsin(s \sin \theta) - \arcsin(s \sin(\theta - \arcsin(s \sin \theta))))$

ex – centre $S(s \in [-1, 1], \varepsilon = 0), \quad \theta \in [0, 2\pi]$

$y = \sin(\theta - \arctan(s \sin 2 \theta) / 2)$

$y = \cos(\theta - \arctan(s \sin 2 \theta)) / \sqrt{a - s \cos 2\theta}$
EX-CENTRIC TORUS RING

\[
x = \{2 + \cos[\theta - \text{bex}(2\theta, s = 0.8)]\} \cos u \\
y = \{2 + \cos[\theta - \text{bex}(2\theta, s = 0.9 \cdot \sin u)]\} \sin u \\
z = \text{sex}(\theta, s = 0.8)
\]

\[
M = \{x, y, z\}, \theta \in [0, 2\pi], u \in [0, \pi]
\]
HYPERSONIC JET AIRPLANE

\[M \begin{cases}
 x = -s \\
 y = \frac{1 - s \sin \alpha}{\text{Re } \alpha} \\
 z = \frac{(1 - s \sin(\alpha + \pi/2))}{\text{Re } \alpha}
\end{cases} \]
\[S(s \in [0,1], \varepsilon = 0), \alpha \in [0,2\pi] \]

\[S(s \in [0,0.8], \varepsilon = 0) \]
\[
\begin{align*}
\mathbf{M} &= \begin{cases}
 x &= \text{Re} \, x s \sqrt{5 + s^2} - 2 s \cdot \cos \alpha \cdot \cos \alpha \\
 y &= \text{Re} \, x s \sqrt{5 + s^2} - 2 s \cdot \cos \alpha \cdot \sin \alpha \\
 z &= s
\end{cases}, \\
S(s \in [0, 2.3\pi], \varepsilon = 0, \alpha \in [0, 2\pi])
\end{align*}
\]
\[x = \text{sex}(\theta, 0, 1) \sqrt{1 - \cos^2 \theta \cdot \cos s} \]
\[y = 2\text{cex}(\theta, 0, 1) \cdot \text{del}(\theta, 0, 1) \cos s \]
\[z = 0.5 \cdot \sin s \]
\[M \]
\[S(s \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \varepsilon = 0), \theta \in [0, 2\pi] \]
HYPERBOLIC QUADRATIC CYLINDER 1

RIGHT: \(n = 4, \ m = 1 \)

\[
\begin{align*}
M \begin{cases}
x &= \cos q(n\theta, s^m, \varepsilon = 0) \\
y &= \sin q(n\theta, s^m, \varepsilon = 0) \\
z &= 1.5s
\end{cases}
\end{align*}
\]

\(S(s \in [-1,1], \varepsilon = 0), \theta \in [0,2\pi] \)
\begin{align*}
 x &= 0.3 \cos \theta \\
 y &= 0.3 \cos \theta \\
 z &= a_{\varepsilon}(\frac{\theta}{4}, S(s = 1, \varepsilon = 0))
\end{align*}
EX - CENTRIC EMPTY SPRING
CYLINDERS with COLLARS
Unicursal Supermathematics Functions 1

\[
\begin{align*}
 x &= \theta + \arctan \left(\frac{a \cos 2\theta \cdot \sin \theta}{b + c \cos 2\theta \cdot \cos \theta} \right) \\
y &= \sin(\theta + \arctan \left(\frac{a \cos 2\theta \cdot \sin \theta}{b + c \cos 2\theta \cdot \cos \theta} \right))
\end{align*}
\]

\[
\begin{align*}
 a, b, c &= \begin{cases}
 1 & \mp 3.5 \\
 2.5 & \pm 3.8, \theta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right] \\
 4 & \pm 4.8
 \end{cases}
\end{align*}
\]

Old woman from Carpathi Mountain (Romania)
To Double and Simple Canoe
Romanian folk dance
\[\begin{align*}
 x &= 3 + cex\theta \cos \theta \\
 y &= cex\theta \sin u \\
 z &= sex\theta \\
\end{align*} \]

, \(S(u \in [0, \frac{3\pi}{2}], \theta \in [0, 2\pi]) \)
| ?? | $x = \cos q^t$
$y = \sin q^t$, $t \equiv \theta \in [0, 2\pi]$
$z \equiv u \in [-1,1]$ |
Halving Curve

$x = \cos \theta, \quad y = \sin \theta,$ \text{ with numerical ex-center: } S(s, \varepsilon = 0), \quad \theta \in [0, 8\pi]$

$S \ (s = 1, \varepsilon = 0) \quad S \ (s = 0.89, \varepsilon = 0)$

$S \ (s = 0, \varepsilon = 0) \quad S \ (s = 0.5, \varepsilon = 0)$

$S \ (s = 0.5, \varepsilon = 0), \ x \rightarrow x^2 \quad S \ (s = 0.5, \varepsilon = 0), \ y \rightarrow y^2$
The crook lines \((s \neq 0)\) - a generalization of straight lines \((s = 0)\)

\[y = m \cdot \text{aex}(x, S) = m \{x - \arcsin[s \cdot \sin(x - \varepsilon)]\}, \text{ Numerical ex - centre } S(s, \varepsilon) \text{ fixed} \]

\begin{align*}
\text{\(m = 1, \quad S(s \in [-1, 0], \varepsilon = 0)\)} & \quad \text{\(m = 1, \quad S(s \in [0, +1], \varepsilon = 0)\)} \\
\end{align*}

\begin{align*}
\text{\(y = m \cdot \text{aex}(x, S), \text{ Numerical ex - centre } S(s, \varepsilon) \text{ variable: } s = \frac{s_0}{\cos x \cdot \sin x}\)} \\
\end{align*}

\[S\left(s = s_0 / \cos x \cdot \sin x \in [-1, 0], \varepsilon = 0 \right) \]
The crook lines ($s \neq 0$) - a generalization of straight lines ($s = 0$)

\[y = m \cdot a \cdot e^{x} \cdot (x, S) = m \{x - \text{arcsin}[s \cdot \sin(x - \varepsilon)]\} \]

Numerical ex–centre $S(s, \varepsilon)$ variable

\begin{align*}
\text{for } m = 1, & \quad S(s = s_0\cdot\cos2x, s_0 \in [-1, 0], \varepsilon = 0) \\
\text{for } m = 1, & \quad S(s = s_0\cdot\cos2x, s_0 \in [0, +1], \varepsilon = 0)
\end{align*}

\begin{align*}
\text{for } m = 1, & \quad S(s = s_0\cdot\cos2x, s_0 \in [-1, +1], \varepsilon = 0), \quad x \in [-3\pi/2, 3\pi/2]
\end{align*}
The crook lines \((s \neq 0, s = 1)\) - a generalization of straight lines \((s = 0)\)

\[y = \pm m \cdot a \cdot e^{x} (x, S) = \pm m \cdot \{x - \arcsin [s \cdot \sin(x - \varepsilon)]\} \]

Numerical ex – centre \(S(s, \varepsilon)\) fixed

Numerical ex – centre \(S(s, \varepsilon)\) fixed: \(S(s \in [-1, 1], \varepsilon = 1)\)
\[x = \text{Dex} \, 10\alpha \cdot \text{Rex} \, 10\alpha \cdot \cos \alpha \]
\[y = \text{Dex} \, 10\alpha \cdot \text{Rex} \, 10\alpha \cdot \sin \alpha \]
\[S(\,s \in [-1,1]\,, \alpha = 0), \quad \alpha \in [0, 2\pi] \]
Hysteresic Curves 1

\[
x = \cos(q(\theta, S(s, \varepsilon = 1))) = \frac{\cos(\theta - \varepsilon_s)}{\sqrt{1 - s^2 \sin^2 \theta}},
\]

\[
y = \sin(q(\theta, S(s, \varepsilon = 1))) = \frac{\sin(\theta - \varepsilon_s)}{\sqrt{1 - s^2 \cos^2 \theta}},
\]

\[
S(s \in [0,1], \varepsilon_s = \begin{cases} 1 & \text{if } 0.5, \varepsilon_s = 0, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\
 & \text{s} = \{0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.00\}
\end{cases}
\]

\[
\varepsilon_s = 1
\]

\[
\varepsilon_s = 0.5
\]
Hysteresis Curves 2

\[\varepsilon_x = 0.5; \quad \varepsilon_y = -0.5 \]

\[\varepsilon_x = 0.5; \quad \varepsilon_y = 1 \]
Ex-Centric Circular Curves with Ex-Centric Variable

0.1 Step

0.2 Step
\(s = 0.1 \ u \in [-1, 1]\) with 0.1 Step

\(s = 0.1 \ u \in [-1, 1]\) with 0.2 Step
\(s = 0.1 \ u \in [0, 1] \) with 0.1 Step

\(s = 0.1 \ u \in [-1, 0] \) with 0.1 Step
$y = \arctan\left(\frac{1}{|\text{sex 0 . Abs[sex 0]|}}\right), S(s \in [-1,1], \varepsilon = 0), \theta \in [0, 2\pi]$
\[
\begin{align*}
\begin{cases}
x = \frac{s\cos 10\alpha \cos \alpha}{\text{Re} x \alpha} \\
y = \frac{s\cos 8\alpha \sin \alpha}{\text{Re} x 10\alpha}
\end{cases}
& S(s \in [0,1], \varepsilon = 0) \\
\alpha & \in [0, 2\pi]
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
x = \frac{s\cos 10\alpha \cos \alpha}{\text{Re} x \alpha} \\
y = \frac{s\cos 7\alpha \sin \alpha}{\text{Re} x 8\alpha}
\end{cases}
& S(s \in [0,1], \varepsilon = 0) \\
\alpha & \in [0, 2\pi]
\end{align*}
\]
$M \left\{ \begin{array}{l}
x = \frac{b \exp 5\theta}{\text{Re} \exp 5\theta} \\
y = \theta \\
z = 3 \exp[2\theta, S(s = 3s_0 \cos^2 \theta)]
\end{array} \right. \quad S(s \in [0,1], \varepsilon = 0), \theta \in [0, 2\pi]$
<table>
<thead>
<tr>
<th>Planets and stars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Ex-Centric Circle (n = 1) and Asteroid (n = 2, 4, 6)

\[M = \begin{cases}
 x = c e^x \theta \\
 y = s e^{x \theta}
\end{cases},
\]

\[S(s \in [-1,1], c = 0), \theta \in [0, 2\pi] \]
Ex-Centric Asteroid ($n = 3, 5, 7, 9$)

\[
\begin{align*}
\{ x &= c e x^n \theta \\
y &= s e x^n \theta \}, S(s \in [-1,1], c = 0), \theta \in [0, 2\pi]
\end{align*}
\]
Ex-Centric Lemniscates

\[M \{ x = \text{deg}(0, S(s = s_0 \cos \theta, \varepsilon = -\pi/2)), y = \text{deg}(0, S(s = s_0 \cos 2\theta, \varepsilon = 0)) \}, s_0 \in [0, 1], \theta \in [0, 2\pi] \]
Butterfly with Symmetrical Center 1

$M \{ x = \text{dex}[0, S(s = s_0 \cos \theta, \varepsilon = -\pi/2)]; y = \text{dex}[0, S(s = s_0 \sin 2\theta, \varepsilon = 0)] \}, s_0 \in [0, 1], \theta \in [0, 2\pi] \}$
Butterfly with Symmetrical Center 2

\[M \{ x = \text{deg}[0, S(s = s_0 \cos \theta, \varepsilon = -\pi/2)]; \ y = \text{deg}[0, S(s = s_0 \sin 2\theta, \varepsilon = 0)] \}, s_0 \in [0, 1], \theta \in [0, 2\pi] \]
Butterfly Rapidly Flapping the Wings
Flower with Four Petals
Ec-Centric Pyramid
Aerodynamic Profile with Supermathematics Functions 1

\[M \{ x = 2 \cos \left(\frac{\theta + \pi}{6} \right), \quad y = 2 \sin \left(\frac{\theta + \pi}{6} \right), \quad 0 \in [0, 2\pi] \} \]

\[M \{ x = 2 \cos \left(\frac{\theta + \pi}{6} \right), \quad y = \sin \left(\frac{\theta + \pi}{6} \right), \quad 0 \in [0, 2\pi] \} \]

\[M \{ x = 2 \cos \left(\frac{\theta + \pi}{6} \right), \quad y = \sin \left(\frac{\theta + \pi}{2} \right), \quad 0 \in [0, 2\pi] \} \]
Aerodynamic Profile with Supermathematics Functions 2

\[M \{ x = 2 \, \text{cex}(\theta + \pi / 6, S(s = 0.2, \varepsilon = 0)), \ y = \text{sex}(\theta + \pi / s, S(s \in [0, 0.9], \varepsilon = 0)), \ \theta \in [0, 2\pi]\} \]
\[M \begin{cases} x = \text{re}x_{1,2}(\theta - \pi / 2) \\ y = \text{re}x_{2,1}\theta \\ z = 2s \end{cases}, S(s \in [-1,1], \varepsilon = 0), \theta \in [0,2\pi] \]
\[
\begin{align*}
\mathbf{M} &= \left\{
\begin{array}{l}
x = (3 + \text{dext}).\text{cex}(s, S(s = 1, \varepsilon = 0)) \\
y = (3 + \cos s).\text{sex}(s, S(s = 1, \varepsilon = 0)).\text{dext}\theta \\
2.\text{dext}.\sin s
\end{array} \right.
\quad S(s \in [0, 2\pi], \varepsilon = 0), \theta \in [0, 2\pi]
\end{align*}
\]
THE CONTINUOUS TRANSFORMATION OF A RIGHT TRIANGLE INTO ITS HYPOTENUSE

\[x = \text{cex}(\theta, S(s, \varepsilon = 0)), \quad y = \text{cex}(\theta, S(-s, \varepsilon = 0)), \quad S(s \in [0,1], \varepsilon = 0), \quad \theta \in [0, \pi] \]

THE CONTINUOUS TRANSFORMATION OF QUADRATE (R_x = R_y) OR RECTANGLE (R_x \neq R_y) INTO ITS DIAGONAL

\[x = R_x \text{cex}(\theta, S(s, \varepsilon = 0)), \quad y = R_y \text{cex}(\theta, S(-s, \varepsilon = 0)), \quad S(s \in [-1,1], \varepsilon = 0), \quad \theta \in [0, \pi] \]
Modified cex0 and sex0

<table>
<thead>
<tr>
<th>y = sex₂Mθ = sin(θ + arctan (\frac{s \cdot \sin 2θ}{\text{Re} x^2 2θ})), S(s ∈ [−1,1], ε = 0), θ ∈ [0,2π]</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = cex₂Mθ = cos(θ + arctan (\frac{s \cdot \sin 2θ}{\text{Re} x^2 2θ})), S(s ∈ [−1,1], ε = 0), θ ∈ [0,2π]</td>
</tr>
</tbody>
</table>

![Graph 1](image1)

![Graph 2](image2)

<table>
<thead>
<tr>
<th>y = cex₂Mθ = cos(θ - arctan (\frac{s \cdot \sin 2θ}{\text{Re} x^2 2θ})), S(s ∈ [−1,1], ε = 0), θ ∈ [0,2π]</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = sex₂Mθ = sin(θ - arctan (\frac{s \cdot \sin 2θ}{\text{Re} x^2 2θ})), S(s ∈ [−1,1], ε = 0), θ ∈ [0,2π]</td>
</tr>
</tbody>
</table>

![Graph 3](image3)

![Graph 4](image4)
Sinuous Surface with Analytical Supermathematics Functions

\[f(x, \lambda) = \arcsin\left(0.21\cos\left(\frac{5\pi x}{\lambda}\right)\sin\left(\frac{3\pi x}{\lambda}\right)\right), \ x \in [-4, 1.2\pi], \ \lambda \in [20, 4] \]
Supermathematics Spiral

\[\begin{align*}
 x &= 0.3 \cos \theta \exp(0.2(0.25 \theta - \arcsin(\sin(0.25 \theta))) \\
 y &= 0.3 \cos \theta \exp(0.2(0.25 \theta - \arcsin(\sin(0.25 \theta)))
\end{align*} \]

\(\theta \in [0, 80] \)

Supermathematics Parabolas

\[\begin{align*}
 x &= -\sqrt{ax \theta} \\
 y &= \sqrt{ax \theta}, \quad S(s \in [-1, 1], \varepsilon = 0), \theta \in [-1, +1]
\end{align*} \]
Supermathematics functions $cex\ xy$ and $sex\ xy$

cex\ xy = \cos(xy - \arcsin[s \sin (xy - \varepsilon)])$ for $s = 0.4$ and $s = 0.9$; $x \in [-3,3], y \in [-3,3]$

sex\ xy = \sin(xy - \arcsin[s \sin (xy - \varepsilon)])$ for $s = 0.4$ and $s = 0.9$; $x \in [-3,3], y \in [-3,3]$

$S\ (s = 0.4, \varepsilon = 0)$

$S\ (s = 0.9, \varepsilon = 0)$
Supermathematics functions $r_{ex\ xy}$ and $d_{ex\ xy}$

\[d_{ex\ xy} = 1 - s \cos xy / \sqrt{1 - s^2 \sin^2 xy} \]

\[r_{ex\ xy} = -s \cos xy - \sqrt{1 - s^2 \sin^2 xy} \]

S ($s = 0.4, \epsilon = 0$)
S ($s = 0.9, \epsilon = 0$)
Ex-Centric Folklore Carpet 2
\[F(\theta, s) = 0.05 \, \theta \cdot \cos \theta \cdot \text{dex} \, \theta = 0.05 \, \theta \cdot \cos(s) \left(1-s\cos^2 \theta / \sqrt{1-s^2 \sin^2 \theta}\right) \]
SINGLE and DOUBLE K CYLINDER

\[M \begin{cases} x = cex \theta \\ y = sex \theta \\ z = 400s \end{cases}, \]

\(s = 0.3, \varepsilon = 0, \theta \in [-\pi, \pi] \)

\[M \begin{cases} x = cex \theta + \cos \theta.s \\ y = sex \theta + \sin \theta.s \\ z = 400s \end{cases}, \]

\(s = 0.3, \varepsilon = 0, \theta \in [-\pi, \pi] \)
SUPERMATHEMATICAL KNOT – SHAPED BREAD
and
ONE CRACKNEL (PRETZEL)

\[
M = \begin{cases}
 x = \cos \theta (3 + 1.5 \cos [s - b\cos(\theta, s = 1)]) \\
 y = \sin \theta (3 + \cos s) \\
 z = \sin s
\end{cases}
\]

, $\theta \in [0, 2\pi]$, $s \in [0, 2\pi]$
Six Conopyramids

\[M \text{ for one conopyramid } \begin{cases} x = s \cos \theta \\ y = s \sin \theta \\ z = s \end{cases}, \quad s \in [0, 1], \quad \theta \in [0, 2\pi] \]
F O U R C O N O P Y R A M I D S V I E W E D F R O M A B O V E

\[M = \begin{cases} x = s \cdot \cos \theta \\ y = s \cdot \sin \theta \end{cases}, \quad \theta \in [0, 2\pi], \quad s \in [0, 2] \]
DOUBLE CONOPYRAMID
or the transformation of circle into a square with circular ex-centric supermathematics function \(\text{dex} \ \theta \) or quadrilobic functions \(\cos q \ \theta \) and \(\sin q \ ν \)

\[
\begin{align*}
M &= \begin{cases}
 x = \cos q \theta \\
 y = \sin q \theta \\
 z = s
\end{cases}, \quad S[s \in [-1, 1], \ \varepsilon = 0], \ \theta \in [0, 2\pi]
\end{align*}
\]
PERFECT CUBE

\[X = \cos^2(\theta, e = 1) \cdot \cos^2(e, \theta = 1) \]
\[Y = \cos^2(\theta + \pi/2, e = 1) = -\sin(\theta, e = 1) \]
\[Z = \cos^2(e + \pi/2, \theta = 1) = -\sin(u, e = 1) \]
Ex-centric circular curves

\[
M \left\{ \begin{array}{l}
x = cex(\theta, S(s_x, \varepsilon_x)) \\
y = sex(\theta, S(s_y, \varepsilon_y))
\end{array} \right. , \quad \varepsilon_x = \varepsilon_y = 0
\]

- \(s_x \in [0, 1], s_y = 1\)
- \(s_x = 1, s_y \in [0, 1]\)
- \(s_x \in [0, 1], s_y = 0.5\)
- \(s_x = 0.5, s_y \in [0, 1]\)
Ex-centric circular curves 2

\[
M \left\{ \begin{array}{l}
x = cex(m\theta, S(s_x, \varepsilon_x)) \\
y = sex(n\theta, S(s_y, \varepsilon_y))
\end{array} \right\}, \quad \varepsilon_x = \varepsilon_y = 0
\]

or

Ex-centric Lissajous curves

\[
m = 2, n = 3, \quad s_x \in [0, 1], \quad s_y = 0.5
\]

\[
m = 2, n = 3, \quad s_y \in [0, 1], \quad s_x = 0.5
\]
References in SuperMathematics:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Petrisor Emilia</td>
<td>SISTEME DINAMICE HAOTICE</td>
<td>Seria Monografii matematic, Tipografia Univ. de Vest din Timisoara, 1992</td>
</tr>
<tr>
<td>23</td>
<td>Cioara Romeo</td>
<td>FORME CLASICE PENTRU FUNCTII CIRCULARE EXCENTRICE</td>
<td>Proceedings of the Scientific Communications Meetings of "Aurel Vlaicu" University, Third Edition, Arad, 1996, pg.61 ...65</td>
</tr>
</tbody>
</table>
Emil (USA)
Filipescu Avr.

26 Selariu Mircea
CALITATEA CONTROLULUI CALITATII
Buletin AGIR anul II nr.2 (4) -1997

27 Selariu Mircea
ANALIZA CALITATII MISCARILOR PROGRAMATE
cu FUNCTII SUPERMATEMATICE
IDEM, Vol.7: Mecatronica, Dispozitive si Rob.Ind.,
pag. 163...184

Fritz Georg
(G)
Meszaros A.
(G)

28 Selariu Mircea
ALTALANOS SIKMECHANIZMUSOK
Bul.St al Lucr. Prem.,Universitatea din
Szekely
(Ungaria)
Barna
MAGASFOKU MATEMATIKAVAL

29 Selariu Mircea
A FELSOFOKU MATEMATIKA ALKALMAZASAI
Bul.St al Lucr. Prem., Universitatea din
Popovici
Maria

30 Konig
PROGRAMAREA MISCARII DE CONTURARE A
Mariana
ROBOTILOR INDUSTRIALI cu AJUTORUL
Selariu Mircea
FUNCTIIOR TRIGONOMETRICE CIRCULARE
EXCENTRICE
MEROTEHNIKA, Al V-lea Simp. Nat.de
pag.419...425

31 Konig
PROGRAMAREA MISCARII de CONTURARE ale
Mariana
R I cu AJUTORUL FUNCTIIOR
Selariu Mircea
TRIGONOMETRICE CIRCULARE EXCENTRICE,
THE STUDY OF THE UNIVERSAL PLUNGER IN
CONSOLE USING THE ECCENTRIC CIRCULAR
FUNCTIONS
Com. V-a Conf. PUPR, Timisoara, 1986,
pag.37...42

32 Konig
Mariana
Selariu Mircea

33 Staicu
CICLOIDELE EXPRIMATE CU AJUTORUL
Florentiu
FUNCTIEI SUPERMATEMATICE REX
Selariu Mircea

34 Gheorghiu
FUNCTII CIRCULARE EXCENTRICE DE SUMA si
Em. Octav
DIFERENTA DE ARCE
Selariu Mircea
Bozantan
Emil

35 Gheorghiu
FUNCTII CIRCULARE EXCENTRICE. DEFINITII,
Octav,
PROPRIETATI, APLICATII TEHNICE.
Selariu Mircea,
39	Staicu Florentiu	DISPOZITIVE UNIVERSALE de PRELUCRARE a SUPRAFETELOR COMPLEXE de TIPUL EXCENTRICELOR ELIPTICE	Com. Ses. anuale de com.st. Oradea, 1994
40	George LeMac	THE EX-CENTRIC TRIGONOMETRIC FUNCTIONS: an extension of the classical trigonometric functions.	The University of Western Ontario, London, Ontario, Canada Deptment of Applied Mathematics May 18, 2001, pag.1...78
41	Selariu Mircea	PROIECTAREA DISPOZITIVELOR DE PRELUCRARE, Cap. 17 din PROIECTAREA DISPOZITIVELOR	Editura Didactica si Pedagogica, Bucuresti, 1982, pag. 474 ... 543
42	Selariu Mircea	QUADRILOBIC VIBRATION SYSTEMS	The 11-th International Conference on Vibration Engineering, Timisoara, Sept. 27-30, 2005 pag. 77 .. 82
The Romanian mathematician Grigore C. Moisil was saying: “I am for new things, but, more than the things that are new today, I appreciate the things that will be new starting tomorrow”.

This is also the case with the complements of ex-centric mathematics, which, reunited with the ordinary mathematics, have been temporarily named supermathematics. It has been named this way because it generates the multiplication, from one to infinite, of all functions, curves, relations, etc., in other words of all actual mathematics’ entities. The supermathematics has the same equation for circle as for perfect square or triangles. In supermathematics there is no difference between linear and nonlinear. And, also, as it can be observed from this album, it gets, sometimes, “artistic” valences. And this is just a small human step in mathematics and a big leap of mathematics for the mankind.

The preparation of this album was made possible only because of the discovery of the mathematics’ complements. The mathematical expressions of the new supermathematics functions constitute the base of the colored curves’ families, as well as the base of some technical and/or artistic solids.

We hope that some of them will pleasantly impress your eyes. The excitement of the retina, though, is a collateral effect. The album doesn’t limit itself at the waves that have the capability of impressing the eye, but intends to extend to the “invisible light: infra-red and ultraviolet” through which to impress the thinking, “the invisible eye” of the brain, the idea. The infra-red warmly invites you to meditate on the unlimited technical and mathematical possibilities of the new functions. The ultraviolet evokes a multiplication chain reaction of the existing mathematical forms/objects. Because, citing again from Grigore C. Moisil, “The most powerful explosive is not the toluene, is not the atomic bomb, but the man’s idea”. Between circle and square, as well as between sphere and cube, there exist an infinity of other supermathematics forms, which pretend the same right to exist.

The rumor is that “After Pythagoras discovered his famous theorem, he sacrificed one hundred oxen. From that time on, after a new discovery takes place, the big horned animals have great palpitations”. This story is credited to Ludwig Björne. In fact behind each discovery there is a story. The history records that in December 1989, the so called “Romanian polenta” exploded. In 1978 it was published the first article from the domain of the mathematics’ functions (Ex-centric circular functions) and from that time on it is expected an explosion in mathematics. Is it possible that it will start with the arts?