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Abstract. The main purpose of this paper is to provide a method of multi-criteria decision-making that
combines simplified neutrosophic linguistic sets and normalized Bonferroni mean operator to address the
situations where the criterion values take the form of simplified neutrosophic linguistic numbers and the
criterion weights are known. Firstly, the new operations and comparison method for simplified neutro-
sophic linguistic numbers are defined and some linguistic scale functions are employed. Subsequently,
a Bonferroni mean operator and a normalized weighted Bonferroni mean operator of simplified neutro-
sophic linguistic numbers are developed, in which some desirable characteristics and special cases with
respect to the parameters p and q in Bonferroni mean operator are studied. Then, based on the simplified
neutrosophic linguistic normalized weighted Bonferroni mean operator, a multi-criteria decision-making
approach is proposed. Finally, an illustrative example is given and a comparison analysis is conducted
between the proposed approach and other existing method to demonstrate the effectiveness and feasibility
of the developed approach.

1. Introduction

In practice, multi-criteria decision-making (MCDM) methods are widely used to rank alternatives or
select the optimal one with respect to several concerned criteria. However, in some cases, it is difficult for
decision-makers to explicitly express preference in solving MCDM problems with uncertain or incomplete
information. Under these circumstances, fuzzy sets (FSs), proposed by Zadeh [1], where each element has
a membership degree represented by a real number in [0, 1], are regarded as a significant tool for solving
MCDM problems [2,3]. Sometimes, FSs cannot handle the cases where the membership degree is uncertain
and hard to be defined by a crisp value. Therefore, interval-valued fuzzy sets (IVFSs) were proposed [4]
to capture the uncertainty of membership degree. Generally, if the membership degree is defined, then
the non-membership degree can be calculated by default. In order to deal with the uncertainty of non-
membership degree, Atanassov [5] introduced the intuitionistic fuzzy sets (IFSs) which is an extension
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of Zadehs FSs, and the corresponding intuitionistic fuzzy logic [6] was proposed. IFSs consider both the
membership degree and the non-membership degree simultaneously. So IFSs and intuitionistic fuzzy logic
are more flexible in handling information containing uncertainty and incompleteness than traditional FSs.
Currently, IFSs have been widely applied in solving MCDM problems [7-9]. Moreover, intuitionistic fuzzy
numbers [10], triangular intuitionistic fuzzy numbers [11,12] and intuitionistic trapezoidal fuzzy numbers
[13], which are derived form IFSs, are also significant tools to cope with fuzzy and uncertain information.
In reality, the degree of membership and non-membership in IFSs may be expressed as interval numbers
instead of specific numbers. Hence, interval-valued intuitionistic fuzzy sets (IVIFSs) [14] were proposed,
which is an extension of FSs and IVFSs. In recent years, MCDM problems with evaluation information
derived from IVIFSs have attracted much attention of researchers [15-19], in which, aggregation operators,
prospect score function and possibility degree method are involved.

Although FSs and IFSs have been developed and generalized, they cannot deal with all sorts of fuzzi-
ness in real problems. Such as problems that are too complex or ill-defined to be solved by quantitative
expressions. The linguistic variable is an effective tool because the use of linguistic information enhances
the reliability and flexibility of classical decision models [20,21]. Resent years, linguistic variables have
been studied in depth and numerous MCDM methods associated with other theories have been devel-
oped. Intuitionistic linguistic sets (ILSs), which combine IFSs and linguistic variables are applied to solve
multi-criteria group decision-making problems [22]. ILSs and their extensions [23-25] can describe both
a linguistic variable and an intuitionistic fuzzy number, in which the former can provide a qualitative
assessment value, whilst the later can define the confidence degree for the given evaluation value. Hesitant
fuzzy linguistic sets (HFLSs), which are based on linguistic term sets and hesitant fuzzy sets are used to
express decision-makers hesitance that exists in giving the associated membership degrees of one linguistic
term [26,27]. Hesitant fuzzy linguistic term sets (HFLTSs), which describe decision-makers preferences by
using several linguistic terms are more suitable than traditional fuzzy linguistic sets in expressions [28].
In addition, a method based on the cloud model, which can correctly depict the uncertainty of qualitative
concept has been successfully utilized [24,29,30]. A method based on the 2-tuple linguistic information
model [31,32], which can effectively avoid the information distortion and has hitherto occurred in linguistic
information processing [33]. It is clear that all of those proposals of linguistic variables, promising as they
are still need to be refined from a formal point of view. In a word, linguistic variables can only express the
uncertain information but not the incomplete or inconsistent one. For example, when a paper is sent to a
reviewer, he or she gives the statement that the paper is good. And he or she may say the possibility that
the statement is true is 60%, the one that the statement is false is 50% and the degree that he or she is not
sure is 20%. This issue cannot be handled effectively with FSs and IFSs. Therefore, some new theories are
required.

Smarandache [34,35] coined the neutrosophic logic and neutrosophic sets (NSs). Rivieccio [36] pointed
out that a NS is a set where each element of the universe has a truth-membership, indeterminacy-
membership and falsity-membership, respectively, and it lies in the non-standard unit interval ]0−, 1+[.
In recent years, the NS theory has found practical applications in various fields, such as semantic web ser-
vices [37], mineral prospectivity prediction [38], image processing [39-41], granular computing [42], medical
diagnosis [43] and information fusion [44]. Since it is hard to apply NSs in real scientific and engineering
situations, single-valued neutrosophic sets (SVNSs) [45] and interval neutrosophic sets (INSs) [37] were
introduced, which are two particular instances of NSs. Subsequently, studies had been conducted in various
aspects, which concentrated mainly on defining operations and aggregation operators [46-48], correlation
coefficients [49,50], entropy measures [51,52] and similarity measures [53] to cope with opinions of experts
or decision-makers in MCDM problems. To overcome the drawback of using linguistic variables associated
with FSs and IFSs, the single-valued neutrosophic trapezoid linguistic sets (SVNTLSs), which is based on
linguistic term sets, SVNSs and trapezoid fuzzy numbers, were proposed [54]. In addition, the interval
neutrosophic linguistic sets (INLSs) , which is based on linguistic term sets and INSs, were introduced
[55]. However, the operations proposed in [55] have some limitations that will be discussed in Subsection
3.2. And this paper will define new operations for simplified neutrosophic linguistic sets (SNLSs), which
is a reduced form of INLSs. As for the aforementioned example, it can be expressed as ⟨h5, (0.6, 0.2, 0.5)⟩
by means of SNLSs. SNLSs have enabled great progress in describing linguistic information and to some
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extent may be considered to be an innovative construct.
In general, aggregation operators are important tools for addressing information fusion in MCDM prob-

lems. The Bonferroni mean (BM) operator, proposed by Bonferroni [56] has a desirable characteristic that
can capture the interrelationship of input arguments. Recently, Xu and Yager [57] extended BM operator
to IFSs. Zhou and He developed a intuitionistic fuzzy normalized weighted bonferroni mean (IFNWBM)
operator [58], and Liu and Wang introduced a single-valued neutrosophic normalized weighted Bonfer-
roni meam (SVNNWBM) operator [59]. Beliakov and James [60] proposed an extending generalized BM
operator to Atanassov orthopairs in MCDM situations. Wei et al. [61] developed an uncertain linguistic
Bonferroni mean (ULBM) operator and an uncertain linguistic geometric Bonferroni mean (ULGBM) oper-
ator to aggregate the uncertain linguistic information. Obviously, BM operator has been extended to IFSs,
SVNSs, Atanassov orthopairs and uncertain linguistic variables. Motivated by INLSs [55] and IFNWBM
[58], this paper is to develop a simplified neutrosophic linguistic Bonferroni mean (SNLBM) operator and
a simplified neutrosophic linguistic normalized weighted Bonferroni mean (SNLNWBM) operator. In ad-
dition, a MCDM approach based on SNLNWBM operator is proposed.

The rest of the paper is organized as follows. In Section 2, linguistic term sets as well as the concepts
of NSs and SNSs are briefly reviewed. In Section 3, new operations of simplified neutrosophic linguistic
numbers (SNLNs) are provided and a method for comparing SNLNs is proposed based on the linguistic
scale function. In Section 4, the traditional BM is extended to the simplified neutrosophic linguistic envi-
ronment. A SNLBM operator and a SNLNWBM operator are developed and some properties and special
cases are discussed. In addition, a MCDM approach based on the SNLNWBM operator is introduced. In
Section 5, an illustrative example is given based on the proposed approach and the influence of parameters
p and q in SNLNWBM operator on decision-making results is analyzed. In addition, a comparison analysis
between the proposed approach and the existing method is conducted. Some summary remarks are given
in Section 6.

2. Preliminaries

In this section, some basic concepts and definitions related to SNLSs, including linguistic term sets,
linguistic scale functions, NSs and simplified neutrosophic sets (SNSs) are introduced, which will be
utilized in the latter analysis.

2.1. The linguistic term set and its extension
Suppose that H = {h0, h1, h2, · · · , h2t} is a finite and totally ordered discrete term set, where t is a nonneg-

ative real number. It is required that hi and h j must satisfy the following characteristics [62,63].
(1) The set is orderd: hi < h j if and only if i < j.
(2) Negation operator: ne1(hi) = h(2t−i).
To preserve all the given information, the discrete linguistic label H = {h0, h1, h2, · · · , h2t} is extended to

a continuous label H = {hi|0 ≤ i ≤ L}, in which hi < h j if and only if i < j, and L(L > 2t) is a sufficiently
large positive integer. If hi ∈ H, then hi is called the original linguistic term; otherwise hi is called the virtual
linguistic term [64].

For any linguistic variables hi, h j ∈ H, the operations are defined as below [65].
(1) λhi = hλ×i;
(2) hi ⊕ h j = hi+ j;
(3) hi ⊗ h j = hi× j;
(4) (hi)λ = hiλ .

2.2. Linguisitic scale function
To use data more efficiently and to express the semantics more flexibly, linguistic scale functions assign

different semantic values to linguistic terms under different situations [27]. They are preferable in practice
because these functions are flexible and can give more deterministic results according to different semantics.
For the linguistic term hi in a linguistic set H, where H = {hi|i = 0, 1, 2, · · · , 2t}, the relationship between the
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element hi and its subscript i is strictly monotonically increasing [65]. Those new functions are provided as
below.
Definition 1 [27]. If θi ∈ [0, 1] is a numeric value, then the linguistic scale function f that conducts the
mapping from hi to θi (i = 0, 1, 2, · · · , 2t) is defined as follows:

f : hi → θi (i = 0, 1, 2, · · · , 2t),

where 0 < θ0 < θ1 < θ2 < · · · < θ2t.
Clearly, the function f is strictly monotonically increasing with respect to subscript i. The symbol

θi (i = 0, 1, 2, · · · , 2t) reflects the preference of the decision-makers when they are using the linguistic term
hi ∈ H (i = 0, 1, 2, · · · , 2t). Therefore, the function/value in fact denotes the semantics of the linguistic terms.

(1) f1(hi) = θi =
i

2t (i = 0, 1, 2, · · · , 2t).
The evaluation scale of the linguistic information given above is divided on average.

(2) f2(hi) = θi =

α
t−αt−i

2αt−2 (i = 0, 1, 2, · · · , t),
αt+αi−t−2

2αt−2 (i = t + 1, t + 2, · · · , 2t).
With the extension from the middle of the given linguistic term set to both ends, the absolute deviation

between adjacent linguistic subscripts also increases.

(3) f3(hi) = θi =

 tβ−(t−i)β

2tβ (i = 0, 1, 2, · · · , t),
tγ+(i−t)γ

2tγ (i = t + 1, t + 2, · · · , 2t).
With the extension from the middle of the given linguistic term set to both ends, the absolute deviation

between adjacent linguistic subscripts will decrease.
To preserve all the given information and facilitate the calculation, the above function can be expanded

to f ∗ : H̄ → R+ (R+ = {r|r ≥ 0, r ∈ R}), which satisfies f ∗(hi) = θi, and is a strictly monotonically increasing
and continuous function. Therefore, the mapping from H̄ to R+ is one-to-one because of its monotonicity,
and the inverse function of f ∗ exists and is denoted by f ∗−1.
Example 1. Assume t = 3. Then a linguistic term set H can be given as H = {h0, h1, h2, · · · , h3} ={very poor,
poor, slightly poor, fair, slightly good, good, very good}. And the following results can be obtained.

(1) If f1(hi) = θi =
i
6 (i = 0, 1, 2, · · · , 6), then f−1

1 (θi) = h6θi (θi ∈ [0, 1]).

(2) If f2(hi) = θi =

α
3−α3−i

2αt−2 (i = 0, 1, 2, 3)
α3+αi−3−2

2α3−2 (i = 4, 5, 6)
, then f−1

2 (θi) =

h3−logα(α3−(2α3−2)θi)(θi ∈ [0, 0.5])
h3+logα((2α3−2)θi−α3+2)(θi ∈ (0.5, 1])

.

(3) If f3(hi) = θi =

 3β−(3−i)β

2×3β (i = 0, 1, 2, 3)
3γ+(i−3)γ

2×3γ (i = 4, 5, 6)
, then f−1

3 (θi) =

h
3−(3β−2×3βθi)

1
β
(θi ∈ [0, 0.5])

h
3+(2×3γθi−3γ)

1
γ

(θi ∈ (0.5, 1])
.

2.3. NSs and SNSs

Definition 2 [34]. Let X be a space of points (objects) with a generic element in X, denoted by x. A NS A
in X is characterized by a truth-membership function tA(x), an indeterminacy-membership function iA(x)
and a falsity-membership function fA(x). tA(x), iA(x) and fA(x) are real standard or nonstandard subsets of
]0−, 1+[, that is, tA(x) : X→]0−, 1+[, iA(x) : X→]0−, 1+[, and fA(x) : X→]0−, 1+[. There is no restriction on the
sum of tA(x), iA(x) and fA(x), so 0− ≤ sup tA(x) + sup ıA(x) + sup fA(x) ≤ 3+.

Since it is hard to apply NSs to practical problems, Ye [66] reduced NSs of nonstandard interval numbers
into a kind of SNSs of standard interval numbers.
Definition 3 [36,66]. Let X be a space of points (objects) with a generic element in X, denoted by x. A NS
A in is characterized by tA(x), iA(x) and fA(x), which are single subintervals/subsets in the real standard
[0, 1], that is, tA(x) : X → [0, 1], iA(x) : X → [0, 1], and fA(x) : X → [0, 1]. And the sum of tA(x), iA(x)
and fA(x) satisfies the condition 0 ≤ tA(x) + iA(x) + fA(x) ≤ 3. Then a simplification of A is denoted by
A =

{
(x, tA(x), iA(x), fA(x)) |x ∈ X} , which is called a SNS. It is a subclass of NSs. If ∥X∥ = 1, a SNS will be

degenerated to a simplified neutrosophic number (SNN), denoted by A = (tA, iA, fA).
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3. SNLNs and their operation

SNLNs, as the elements and special cases of SNLSs, are of great significance in information evaluation.
In this section, the advantages and applications of SNLNs are firstly introduced, which is on the basis of
linguistic tern sets and SNSs. Then, new operations and comparison rules of SNLNs are presented.

3.1. SNLSs
Definition 4. Let X be a space of points (objects) with a generic element in X, denoted by x and H =
{h0, h1, h2, · · · , h2t} be a finite and totally ordered discrete term set, where t is a nonnegative real number.
A SNLS A in X is characterized as A =

{⟨
x, hθ(x), (t(x), i(x), f (x))

⟩
|x ∈ X} , where hθ(x) ∈ H, t(x) ∈ [0, 1],

i(x) ∈ [0, 1] and f (x) ∈ [0, 1], with the condition 0 ≤ tA(x) + iA(x) + fA(x) ≤ 3 for any x ∈ X. And tA(x),
iA(x) and fA(x) represent, respectively, the degree of truth-membership, indeterminacy-membership and
falsity-membership of the element x in X to the linguistic term hθ(x). In addition, if ∥X∥ = 1, a SNLS will
be degenerated to a SNLN, denoted by A =

⟨
hθ, (t, i, f )

⟩
. And A will be degenerated to a linguistic term if

t = 1, i = 0 and f = 0.

3.2. Operations of SNLNs

Definition 5 [55]. Let ai =
⟨
hθi , (ti, ii, fi)

⟩
and a j =

⟨
hθ j , (t j, i j, f j)

⟩
be any two SNLNs and λ ≥ 0. Then the

following operations of SNLNs can be defined.
(1) ai ⊕ a j =

⟨
hθi ⊕ hθ j , (ti + t j − tit j, iii j, fi f j)

⟩
;

(2) ai ⊗ a j =
⟨
hθi ⊗ hθ j , (tit j, ii + i j − iii j, fi + f j − fi f j)

⟩
;

(3) λai =
⟨
λhθi ,

(
1 − (1 − ti)λ, iλi , f λi

)⟩
;

(4) aλi =
⟨
(hθi )

λ,
(
tλi , 1 − (1 − ii)λ, 1 − (1 − fi)λ

)⟩
.

However, the operations presented in Definition 5 have some obvious limitations:
(1) All operations are carried out directly on the basis of the subscripts of linguistic terms, which cannot

reveal the critical differences of final results under various semantic situations.
(2) The two parts of SNLNs are processed separately in the additive operation, which ignores the

correlation of them. In some situations, it might be irrational. This is shown in the following example.
Example 2. In the example of the performance evaluation of a house under two parameters, in which
c1 stands for the parameter beautiful and c2 stands for the parameter wooden, and the two parameters
are equally important. Suppose that a1 = ⟨h5, (1, 0, 0)⟩ represents the statement that all the decision-makers
think the house is good, and a2 = ⟨h5, (0, 1, 1)⟩ represents the statement that non of the decision-makers think
the house is good. Then the comprehensive performance evaluation can be calculated by using Definition
5, a12 = 0.5a1 ⊕ 0.5a2 = ⟨h5, (1, 0, 0)⟩.

Obviously, the result above are contradictory and unreasonable. Since (1, 0, 0) is the maximum of SNNs
and (0, 1, 1) is the minimum of SNNs, a1 = ⟨h5, (1, 0, 0)⟩ is superior to a2 = ⟨h5, (0, 1, 1)⟩. It stands to reason
that the comprehensive performance evaluation should be between a1 and a2. However, according to the
result, a12 = a1, which is apparently against the logical thinking. In this way, it would be more reasonable
if the two parts of SNLNs were taken into account at the same time.

In order to overcome the existing limitations given above, a new definition of operations of SNLNs
based on linguistic scale function are defined as below.
Definition 6. Let ai = ⟨hθi , (ti, ii, fi)⟩ and a j = ⟨hθ j , (t j, i j, f j)⟩ be two SNLNs, f ∗ be a linguistic scale function
and λ ≥ 0. Then the following operations of SNLNs can be defined.

(1) ai ⊕ a j =
⟨

f ∗−1
(

f ∗(hθi ) + f ∗(hθ j )
)
,
(

f ∗(hθi )ti+ f ∗(hθ j )t j

f ∗(hθi )+ f ∗(hθ j )
,

f ∗(hθi )ii+ f ∗(hθ j )i j

f ∗(hθi )+ f ∗(hθ j )
,

f ∗(hθi ) fi+ f ∗(hθ j ) f j

f ∗(hθi )+ f ∗(hθ j )

)⟩
;

(2) ai ⊗ a j =
⟨

f ∗−1
(

f ∗(hθi ) f ∗(hθ j )
)
,
(
tit j, ii + i j − iii j, fi + f j − fi f j

)⟩
;

(3) λai =
⟨

f ∗−1 (λ f ∗(hθi )
)
, (ti, ii, fi)

⟩
;

(4) aλi =
⟨

f ∗−1
((

f ∗(hθi )
)λ) , (tλi , 1 − (1 − ii)λ, 1 − (1 − fi)λ

)⟩
;

(5) ne1(ai) =
⟨

f ∗−1 ( f ∗(h2t) − f ∗(hθi )
)
, ( fi, 1 − ii, ti)

⟩
.
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According to Definition 1, it is known that f ∗ is a mapping from the linguistic term hi to the numeric
value θi and f ∗−1 is a mapping from θi to hi. So the first parts of (1-5) are linguistic terms. It is obvious that
the second parts of (1-5) are SNNs. In a word, the results obtained by Definition 6 are also SNLNs.

The operations defined above are on the basis of the linguistic scale function, which can present different
results when a different linguistic function f ∗ is employed. Thus, decision-makers can flexibly select f ∗

depending on their own personal preferences and the actual semantic situations. Furthermore, the new
addition operation of SNLNs is more reliable and reasonable. Because the final result can reflect the close
combination with each element of the original SNLNs.

In practical applications, ai ⊕ a j, ai ⊗ a j, λai and aλi necessarily appear in defining basic operations, but
their results have no practical meaning. Only in the aggregation process do ai⊕a j combine with λai or ai⊗a j

combine with aλi make sense.
Example 3. Assume H = {h0, h1, h2, · · · , h6}, a1 = ⟨h2, (0.6, 0.4, 0.2)⟩, a2 = ⟨h4, (0.5, 0.6, 0.2)⟩ and λ = 2. Then
the following results can be calculated.

If α = 1.4 and f ∗2 (x) =

α
t−αt−x

2αt−2 (0 ≤ x ≤ t)
αt−αx−t−2

2αt−2 (t < x ≤ 2t)
, then

(1) a1 ⊕ a2 = ⟨h6, (0.5385, 0.5229, 0.2)⟩;
(2) a1 ⊗ a2 = ⟨h1.0646, (0.3, 0.76, 0.36)⟩;
(3) 2a1 = ⟨h4.9754, (0.6, 0.4, 0.2)⟩;
(4) a2

1 = ⟨h0.6215, (0.36, 0.64, 0.36)⟩;
(5) ne1(a1) = ⟨h4, (0.2, 0.6, 0.6)⟩.
As for the issue discussed in Example 2, the comprehensive performance evaluation result can be

amended by using Definition 6, a′12 = 0.5a1 ⊕ 0.5a2 = ⟨h5, (0.5, 0.5, 0.5)⟩. It is shown that a′12 is inferior to
a1 and superior to a2, namely, a1 > a′12 > a2, which can normally describe the comprehensive evaluation
information and be preferable in practice.

It can be easily proved that all the results given above are also SNLNs. In terms of the corresponding
operations of SNLNs, the following theorem can also be easily proved.
Theorem 1. Let ai =

⟨
hθi , (ti, ii, fi)

⟩
, a j =

⟨
hθ j , (t j, i j, f j)

⟩
and ak =

⟨
hθk , (tk, ik, fk)

⟩
be three arbitrary SNLNs and

f ∗ be a linguistic scale function. Then the following properties are true.
(1) ai ⊕ a j = a j ⊕ ai;
(2) (ai ⊕ a j) ⊕ ak = ai ⊕ (a j ⊕ ak);
(3) ai ⊗ a j = a j ⊗ ai;
(4) (ai ⊗ a j) ⊗ ak = ai ⊗ (a j ⊗ ak);
(5) λai ⊕ λa j = λ(ai ⊕ a j), λ ≥ 0;
(6) λ1ai ⊕ λ2ai = (λ1 + λ2)ai, λ1, λ2 ≥ 0;
(7) (ai ⊕ a j)λ = aλi ⊕ aλj , λ ≥ 0;

(8) aλ1
i ⊗ aλ2

i = aλ1+λ2
i , λ1, λ2 ≥ 0.

3.3. Comparison method for SNLNs

Based on the score function and accuracy function of ILSs, the score function, accuracy function and
certainty function of a SNLN, which are significant indexes for ranking alternatives in decision-making
problems are defined.
Definition 7. Let ai =

⟨
hθi , (ti, ii, fi)

⟩
be an SNLN and f ∗ be a linguistic scale function. Then the score

function, accuracy function and certainty function for ai can be defined, respectively, as below.
(1) S(ai) = f ∗(hθi )(ti + 1 − ii + 1 − fi);
(2) A(ai) = f ∗(hθi )(ti − fi);
(3) C(ai) = f ∗(hθi )ti.
For a SNLN ai, if the truth-membership ti with respect to the linguistic term hθi is bigger and the

determinacy-membership ii and the falsity-membership fi corresponding to hθi are smaller, then ai is
greater and the reliability of hθi is higher. For the accuracy function A(ai), if the difference between ti and fi
with respect to hθi is bigger, then the statement is more affirmative, i.g., the accuracy of ai is higher. As for
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the certainty function C(ai), the certainty of ai positively depends on the value of ti. Obviously, the bigger
S(ai), A(ai) and C(ai) are, the greater the corresponding ai is.
Example 4. Use the data of Example 3. Then the following results can be calculated.

(1) S(a1) = 0.7706, S(a2) = 1.0450;
(2) A(a1) = 0.1541, A(a2) = 0.1844;
(3) C(a1) = 0.2312, C(a2) = 0.3074.
On the basis of Definition 7, the method to compare SNLNs can be defined as below.

Definition 8. Let ai =
⟨
hθi , (ti, ii, fi)

⟩
and a j =

⟨
hθ j , (t j, i j, f j)

⟩
be two SNLNs and f ∗ be a linguistic scale

function. Then the comparison method can be defined.
(1) If S(ai > S(a j), then ai > a j;
(2) If S(ai = S(a j) and A(ai > A(a j), then ai > a j;
(3) If S(ai = S(a j), A(ai = A(a j) and C(ai > C(a j), then ai > a j;
(4) If S(ai = S(a j), A(ai = A(a j) and C(ai = C(a j), then ai = a j.

Example 5. Assume H = {h0, h1, h2, · · · , h6}. Then the following results can be calculated.

If α = 1.4 and f ∗2 (x) =

α
t−αt−x

2αt−2 (0 ≤ x ≤ t)
αt+αx−t−2

2αt−2 (t < x ≤ 2t)
, then

(1) For two SNLNs a1 = ⟨h4, (0.5, 0.6, 0.2)⟩ and a2 = ⟨h2, (0.6, 0.4, 0.2)⟩, according to Definition 8, S(a1) =
1.0450 > S(a2) = 0.7706. Therefore, a1 > a2.

(2) For two SNLNs a1 = ⟨h4, (0.8, 0.3, 0.2)⟩ and a2 = ⟨h4, (0.6, 0.2, 0.1)⟩, according to Definition 8, S(a1) =
S(a2) = 1.4138 and A(a1) = 0.3688 > A(a2) = 0.3074. Therefore, a1 > a2.

(3) For two SNLNs a1 = ⟨h2, (0.8, 0.3, 0.2)⟩ and a2 = ⟨h2, (0.7, 0.3, 0.1)⟩, according to Definition 8, S(a1) =
S(a2) = 0.8862, A(a1) = A(a2) = 0.2312 and C(a1) = 0.3082 > C(a2) = 0.2312. Therefore, a1 > a2.

4. SNLNWBM operator and its application in MCDM problems

In this section, the traditional BM operator is extended to deal with simplified neutrosophic linguisitic
information. A SNLBM operator and a SNLNWBM operator are proposed. Further, some desirable
characteristics and special cases with respect to the parameters p and q in BM operator are discussed. In
addition, a MCDM approach is developed, which is on the basis of the SNLNWBM operator.

4.1. BM and NWBM operator

Definition 9 [56]. Let p, q ≥ 0 and ai (i = 1, 2, · · · ,n) be a collection of nonnegative real numbers. If

Bp,q(a1, a2, · · · , an) =

 1
n(n − 1)

n∑
i, j=1
i, j

(
ap

i aq
j

)
1

p+q

,

then Bp,q is called the BM operator.
Obviously, the BM operator has the following properties [56].
(1) Bp,q(0, 0, · · · , 0) = 0.
(2) Bp,q(a, a, · · · , a) = a if ai = a, for all i.
(3) Bp,q(a′1, a

′
2, · · · , a′n) ≥ Bp,q(a1, a2, · · · , an), that is, Bp,q is monotonic if a′i ≥ ai, for all i.

(4) min
i

(ai) ≤ Bp,q(a1, a2, · · · , an) ≤ max
i

(ai).

Especially, if q = 0, then the BM operator reduces to the following [56]:

Bp,0(a1, a2, · · · , an) =

 1
n(n − 1)

n∑
i, j=1
i, j

ap
i


1
p

=

1
n

n∑
i=1

ap
i


1
p

,
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which is a generalized mean operator. Particularly, the following cases hold.
(1) If p = 1 and q = 0, then the BM operator reduces to the well-known average mean operator.

B1,0(a1, a2, · · · , an) =
1
n

n∑
i=1

ai.

(2) If p→ 0 and q = 0, then the BM operator reduces to the geometric mean operator.

lim
p→0

Bp,0(a1, a2, · · · , an) =

 n∏
i=1

ai


1
n

.

The BM operator discussed above can only consider the interrelationship between ai and a j, and ignore
their own weights of the aggregation arguments. Nevertheless, in many situations, the importance of
each argument should be taken into consideration. So the NWBM operator that can allow the weights of
aggregation arguments will be introduced.
Definition 10 [58]. Let p, q ≥ 0, ai (i = 1, 2, · · · ,n) be a collection of nonnegative real numbers, and
ω = (ω1, ω2, · · · , ωn) be the weight vector of ai (i = 1, 2, · · · ,n), ωi ∈ [0, 1] and

∑n
i=1 ωi = 1. If

NWBp,q
ω (a1, a2, · · · , an) =


n∑

i, j=1
i, j

( ωiω j

1 − ωi
ap

i aq
j

)
1

p+q

,

then NWBp,q
ω is called the NWBM operator.

The NWBM operator can satisfy the properties of reducibility, commutativity, idempotency, monotonic-
ity and boundedness and reflect the interrelationship of input arguments.

4.2. SNLBM and SNLNWBM operator
In this subsection, the traditional BM and NWBM operator are extended to accommodate the situations

where the input arguments are SNLNs. Furthermore, a SNLBM operator and a SNLNWBM operator are
developed and some desirable properties and special cases are analyzed.
Definition 11. Let p, q ≥ 0, ai =

⟨
hθi , (ti, ii, fi)

⟩
(i = 1, 2, · · · ,n) be a collection of SNLNs and SNLBp,q : Ωn → Ω.

If

SNLBp,q(a1, a2, · · · , an) =

 1
n(n − 1)

n⊕
i, j=1
i, j

(ap
i ⊗ aq

j )


1

p+q

(1)

whereΩ is the set of all SNLNs, then SNLBp,q is called the SNLBM operator.
In the following, the SNLNWBM operator will be fully introduced.

Definition 12. Let p, q ≥ 0, ai =
⟨
hθi , (ti, ii, fi)

⟩
(i = 1, 2, · · · , n) be a collection of SNLNs and SNLNWBp,q

ω :
Ωn → Ω. If

SNLNWBp,q
ω (a1, a2, · · · , an)


n⊕

i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ ap
j )


1

p+q

, (2)

whereΩ is the set of all SNLNs andω = (ω1, ω2, · · · , ωn) is the weight vector of ai,ωi ∈ [0, 1] and
∑n

i=1 ωi = 1.
Then SNLNWBp,q

ω is called the SNLNWBM operator.
According to the operations of SNLNs in Definition 6, the following results can be obtained.

Theorem 2. Let p, q ≥ 0, ai =
⟨
hθi , (ti, ii, fi)

⟩
(i = 1, 2, · · · , n) be a collection of SNLNs, and ω = (ω1, ω2, · · · , ωn)
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be the weight vector of ai, ωi ∈ [0, 1] and
∑n

i=1 ωi = 1. Then the aggregated result by using Eq. (2) is also a
SNLN.

SNLNWBp,q
ω (a1, a2, · · · , an)

=

⟨
f ∗−1




n∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

1
p+q
 ,




n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

tp
i tq

j

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q


1
p+q

,

1 −


1 −

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − ii)p(1 − i j)q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q



1
p+q

,

1 −


1 −

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − fi)p(1 − f j)q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q



1
p+q

⟩
.

(3)

In the following, Eq. (3) will be proved by using the mathematical induction on n.
Proof. (1) Firstly, the following equation need to be proved.

n⊕
i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ aq
j )

=

⟨
f ∗−1


n∑

i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,


n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

tp
i tq

j

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − ii)p(1 − i j)q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − fi)p(1 − f j)
q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q


⟩
.

(4)
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(a) When n = 2, the following equation can be calculated.

2⊕
i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ aq
j ) =

ω1ω2

1 − ω1
(ap

1 ⊗ aq
2) ⊕ ω2ω1

1 − ω2
(ap

2 ⊗ aq
1)

=
⟨

f ∗−1
(
ω1ω2

1 − ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q) , (tp

1tq
2, 1 − (1 − i1)p(1 − i2)q, 1 − (1 − f1)p(1 − f2)q

)⟩
⊕
⟨

f ∗−1
(
ω2ω1

1 − ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q) , (tp

2tq
1, 1 − (1 − i2)p(1 − i1)q, 1 − (1 − f2)p(1 − f1)q

)⟩
=
⟨

f ∗−1
(
ω1ω2

1 − ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q + ω2ω1

1 − ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q) , ω1ω2

1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q tp

1tq
2 +

ω2ω1
1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q tp

2tq
1

ω1ω2
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q + ω2ω1

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q ,

ω1ω2
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q (1 − (1 − i1)p(1 − i2)q) + ω2ω1

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q (1 − (1 − i2)p(1 − i1)q)

ω1ω2
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q + ω2ω1

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q ,

ω1ω2
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q (1 − (1 − f1)p(1 − f2)q) + ω2ω1

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q (1 − (1 − f2)p(1 − f1)q)

ω1ω2
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ2 )
)q + ω2ω1

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ1 )
)q ⟩ .

That is, when n = 2, Eq. (4) is right.
(b) Suppose that when n = k, Eq. (4) is right. That is,

k⊕
i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ aq
j )

=

⟨
f ∗−1


k∑

i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,


k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

tp
i tq

j

k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − ii)p(1 − i j)q
)

k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − fi)p(1 − f j)
q
)

k∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q


⟩
.

(5)

Then, when n = k + 1, the following result can be calculated.

k+1⊕
i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ aq
j ) =

k⊕
i, j=1
i, j

ωiω j

1 − ωi
(ap

i ⊗ aq
j ) ⊕

k⊕
i=1

ωiωk+1

1 − ωi
(ap

i ⊗ aq
k+1) ⊕

k⊕
j=1

ωk+1ω j

1 − ωk+1
(ap

k+1 ⊗ aq
j ). (6)
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Firstly, the following equation need to be proved.

k⊕
i=1

ωiωk+1

1 − ωi
(ap

i ⊗ aq
k+1)

=

⟨
f ∗−1

 k∑
i=1

ωiωk+1

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q ,


k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)qtp

i tq
k+1

k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q ,

k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q (1 − (1 − ii)p(1 − ik+1)q)

k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q ,

k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q (1 − (1 − fi)p(1 − fk+1)q)

k∑
i=1

ωiωk+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθk+1 )
)q


⟩
.

(7)

In the following, Eq. (7) will be proved by using the mathematical induction on k.
(i) When k = 2, the following result can be calculated.

2⊕
i=1

ωiω3

1 − ωi
(ap

i ⊗ aq
3) =

ω1ω3

1 − ω1
(ap

1 ⊗ aq
3) ⊕ ω2ω3

1 − ω2
(ap

2 ⊗ aq
3)

=
⟨

f ∗−1
(
ω1ω3

1 − ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q) , (tp

1tq
3, 1 − (1 − i1)p(1 − i3)q, 1 − (1 − f1)p(1 − f3)q

)⟩
⊕
⟨

f ∗−1
(
ω2ω3

1 − ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q) , (tp

2tq
3, 1 − (1 − i2)p(1 − i3)q, 1 − (1 − f2)p(1 − f3)q

)⟩
=
⟨

f ∗−1
(
ω1ω3

1 − ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q + ω2ω3

1 − ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q) , ω1ω3

1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q tp

1tq
3 +

ω2ω3
1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q tp

2tq
3

ω1ω3
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q + ω2ω3

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q ,

ω1ω3
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q (1 − (1 − i1)p(1 − i3)q) + ω2ω3

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q (1 − (1 − i2)p(1 − i3)q)

ω1ω3
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q + ω2ω3

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q ,

ω1ω3
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q (1 − (1 − f1)p(1 − f3)q) + ω2ω3

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q (1 − (1 − f2)p(1 − f3)q)

ω1ω3
1−ω1

(
f ∗(hθ1 )

)p ( f ∗(hθ3 )
)q + ω2ω3

1−ω2

(
f ∗(hθ2 )

)p ( f ∗(hθ3 )
)q ⟩ .

That is, when k = 2, Eq. (7) is right.
(ii) Suppose that when k = l, Eq. (7) is right. That is,

l⊕
i=1

ωiωl+1

1 − ωi
(ap

i ⊗ aq
l+1) =

⟨
f ∗−1

 l∑
i=1

ωiωl+1

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q ,


l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)qtp

i tq
l+1

l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q ,

l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q (1 − (1 − ii)p(1 − il+1)q)

l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q ,

l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q (1 − (1 − fi)p(1 − fl+1)q)

l∑
i=1

ωiωl+1
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+1 )
)q


⟩
.
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Then, when k = l + 1, the following result can be calculated.

l+1⊕
i=1

ωiωl+2

1 − ωi
(ap

i ⊗ aq
l+2)

=

l⊕
i=1

ωiωl+2

1 − ωi
(ap

i ⊗ aq
l+2) ⊕ ωl+1ωl+2

1 − ωl+1
(ap

l+1 ⊗ aq
l+2)

=

⟨
f ∗−1

 l∑
i=1

ωiωl+2

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,


l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)qtp

i tq
l+2

l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,

l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q (1 − (1 − ii)p(1 − il+2)q)

l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,

l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q (1 − (1 − fi)p(1 − fl+2)q)

l∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q


⟩

⊕
⟨

f ∗−1
(
ωl+1ωl+2

1 − ωl+1

(
f ∗(hθl+1 )

)p ( f ∗(hθl+2 )
)q) , (tp

l+1tq
l+2, 1 − (1 − il+1)p(1 − il+2)q, 1 − (1 − fl+1)p(1 − fl+2)q

)⟩

=

⟨
f ∗−1

 l+1∑
i=1

ωiωl+2

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,


l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)qtp

i tq
l+2

l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,

l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q (1 − (1 − ii)p(1 − il+2)q)

l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q ,

l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q (1 − (1 − fi)p(1 − fl+2)q)

l+1∑
i=1

ωiωl+2
1−ωi

(
f ∗(hθi )

)p( f ∗(hθl+2 )
)q


⟩
.

That is, when k = l + 1, Eq. (7) is right.
(iii) So, for all , Eq. (7) is right.
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Similarly, the following equation can be proved.

k⊕
j=1

ωk+1ω j

1 − ωk+1

(
ap

k+1 ⊗ aq
j

)

=

⟨
f ∗−1

 k∑
j=1

ωk+1ω j

1 − ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q ,


k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q

tp
k+1tq

j

k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q ,

k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q (

1 − (1 − ik+1)p(1 − i j)q
)

k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q ,

k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q (

1 − (1 − fk+1)p(1 − f j)q
)

k∑
j=1

ωk+1ω j

1−ωk+1

(
f ∗(hθk+1 )

)p( f ∗(hθ j )
)q


⟩
.

(8)

So, by using Eqs. (5), (7) and (8), Eq. (6) can be transformed as

k+1⊕
i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ aq
j

)

=

k⊕
i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ aq
j

)
⊕

k⊕
i=1

ωiωk+1

1 − ωi

(
ap

i ⊗ aq
k+1

)
⊕

k⊕
j=1

ωk+1ω j

1 − ωk+1

(
ap

k+1 ⊗ aq
j

)

=

⟨
f ∗−1


k+1∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,


k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

tp
i tq

j

k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − ii)p(1 − i j)q
)

k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q ,

k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − fi)p(1 − f j)
q
)

k+1∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q


⟩
.



Z.-p. Tian et al. / Filomat xx (yyyy), zzz–zzz 14

So, when n = k + 1, Eq. (4) is right. Thus, Eq. (4) is right for all n.
(2) Then, By using Eq. (4), Eq. (3) can be proved right.

SNLNWBp,q
ω (a1, a2, · · · , an) =


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ aq
j

)
1

p+q

=

⟨
f ∗−1




n∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

1
p+q
 ,




n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q

tp
i tq

j

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q


1
p+q

,

1 −


1 −

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − ii)p(1 − i j)q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q



1
p+q

,

1 −


1 −

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q (

1 − (1 − fi)p(1 − f j)q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hθi )

)p( f ∗(hθ j )
)q



1
p+q

⟩
.

The traditional NWBM operator has the properties of reducibility, commutativity, idempotency, mono-
tonicity and boundedness. In the following, that the SNLNWBM operator satisfies those properties will be
proved.
Theorem 3 (reducibility). Let ω = ( 1

n ,
1
n , · · · , 1

n ). Then SNLNWBp,q
ω (a1, a2, · · · , an) = SNLBp,q(a1, a2, · · · , an).
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Proof. Since ω = ( 1
n ,

1
n , · · · , 1

n ), according to Eq. (2), the following equation can be obtained.

SNLNWBp,q
ω (a1, a2, · · · , an) =


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ aq
j

)
1

p+q

=


n⊕

i, j=1
i, j

1
n2

1 − 1
n

(
ap

i ⊗ aq
j

)
1

p+q

=


n⊕

i, j=1
i, j

1
n(n − 1)

(
ap

i ⊗ aq
j

)
1

p+q

=

 1
n(n − 1)

n⊕
i, j=1
i, j

(
ap

i ⊗ aq
j

)
1

p+q

= SNLBp,q(a1, a2, · · · , an).

Theorem 4 (commutativity). Let (a′1, a
′
2, · · · , a′n) be any permutation of (a1, a2, · · · , an). If p = q, then

SNLNWBp,q
ω (a′1, a

′
2, · · · , a′n) = SNLNWBp,q

ω (a1, a2, · · · , an).
Proof. Since (a′1, a

′
2, · · · , a′n) is any permutation of (a1, a2, · · · , an), according to Eq. (7) in Theorem 1, the

following equation can be obtained.


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
(a′i)

p ⊗ (a′ j)
p
)

1
2p

=


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ ap
j

)
1

2p

⇒


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
(a′i ⊗ a′ j)

p
)

1
2p

=


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
(ai ⊗ a j)p

)
1
2p

.

Thus, SNLNWBp,q
ω (a′1, a

′
2, · · · , a′n) = SNLNWBp,q

ω (a1, a2, · · · , an).
Theorem 5 (idempotency). Let ai = a (i = 1, 2, · · · ,n). Then SNLNWBp,q

ω (a1, a2, · · · , an) = a.



Z.-p. Tian et al. / Filomat xx (yyyy), zzz–zzz 16

Proof. Since ai = a for all i, according to Eq. (8) in Theorem 1 , the following equation can be obtained.

SNLNWBp,q
ω (a1, a2, · · · , an) =


n⊕

i, j=1
i, j

ωiω j

1 − ωi

(
ap

i ⊗ aq
j

)
1

p+q

=


n⊕

i, j=1
i, j

ωiω j

1 − ωi
ap+q


1

p+q

= a


n⊕

i, j=1
i, j

ωiω j

1 − ωi


1

p+q

= a.

Theorem 6 (monotonicity). Let ai =
⟨
hai , (tai , iai , fai )

⟩
(i = 1, 2, · · · ,n) and bi =

⟨
hbi , (tbi , ibi , fbi )

⟩
be two

collections of SNLNs. If hai ≥ hbi , tai ≥ tbi , iai ≤ ibi and fai ≤ fbi for all i, then SNLNWBp,q
ω (a1, a2, · · · , an) ≥

SNLNWBp,q
ω (b1, b2, · · · , bn).

Proof.
(1) For linguistic term part
Since hai ≥ hbi for all i, and both f ∗ and f ∗−1 are strictly monotonically increasing and continuous

functions, then the following inequalities can be obtained.(
f ∗(hai )

)p ≥ ( f ∗(hbi )
)p and

(
f ∗(ha j )

)q
≥
(

f ∗(hb j )
)q

⇒ ( f ∗(hai )
)p( f ∗(ha j )

)q
≥ ( f ∗(hbi )

)p( f ∗(hb j )
)q

⇒
ωiω j

1 − ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q
≥
ωiω j

1 − ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q

⇒
n∑

i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q
≥

n∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q

⇒


n∑

i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q

1
p+q

≥


n∑

i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q

1
p+q

⇒ f ∗−1




n∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q

1
p+q
 > f ∗−1




n∑
i, j=1
i, j

ωiω j

1 − ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q

1
p+q
 .

(2) For truth-membership part, indeterminacy-membership part and falsity-membership part, they can
be proved by using the mathematical induction on n.

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q

tp
ai

tq
a j

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q


1
p+q

≥



n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q

tp
bi

tq
b j

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q


1
p+q

;



Z.-p. Tian et al. / Filomat xx (yyyy), zzz–zzz 17

1 −



n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q (

1 − (1 − iai )
p(1 − ia j )

q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q



1
p+q

≤

1 −



n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q (

1 − (1 − ibi )
p(1 − ib j )

q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q



1
p+q

;

1 −



n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q (

1 − (1 − fai )
p(1 − fa j )

q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hai )

)p( f ∗(ha j )
)q



1
p+q

≤

1 −



n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q (

1 − (1 − fbi )
p(1 − fb j )

q
)

n∑
i, j=1
i, j

ωiω j

1−ωi

(
f ∗(hbi )

)p( f ∗(hb j )
)q



1
p+q

.

(3) Comparing SNLNWBp,q
ω (a1, a2, · · · , an) with SNLNWBp,q

ω (b1, b2, · · · , bn)
Let a =

⟨
ha, (ta, ia, fa)

⟩
= SNLNWBp,q

ω (a1, a2, · · · , an) and b =
⟨
hb, (tb, ib, fb)

⟩
= SNLNWBp,q

ω (b1, b2, · · · , bn).
Because ha ≥ hb, ta ≥ tb, ia ≤ ib and fa 6 fb, then a ≥ b.

Thus, SNLNWBp,q
ω (a1, a2, · · · , an) ≥ SNLNWBp,q

ω (b1, b2, · · · , bn).
Theorem 7 (boundedness). Let ai =

⟨
hai , (tai , iai , fai )

⟩
(0, 1, 2, · · · ,n) be a collection of SNLNs, and

a =
⟨
min

i
{hai},

(
min

i
{tai},max

i
{iai},max

i
{ fai}
)⟩

, b =
⟨
max

i
{hai},

(
max

i
{tai},min

i
{iai},min

i
{ fai}
)⟩

.

Then a ≤ SNLNWBp,q
ω (a1, a2, · · · , an) ≤ b.

Proof. Since hai ≥ min
i
{hai}, tai ≥ min

i
{tai}, iai ≤ max

i
{iai} and fai ≤ max

i
{ fai }, then based on Theorem 5 and

Theorem 6, the following inequality can be obtained.

a = SNLNWBp,q
ω (a, a, · · · , a) ≤ SNLNWBp,q

ω (a1, a2, · · · , an).

Similarly, the following inequality can also be obtained.

SNLNWBp,q
ω (a1, a2, · · · , an) ≤ SNLNWBp,q

ω (b, b, · · · , b) = b.

Thus, a ≤ SNLNWBp,q
ω (a1, a2, · · · , an) ≤ b.

In the following, some special cases of the SNLNWBM operator will be discussed.
(1) If q = 0, then Eq. (3) reduces to the simplified neutrosophic linguistic generalized weighted average
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(SNLGWA) operator as below.

SNLNWBp,0
ω (a1, a2, · · · , an) =

 n⊕
i=1

ωia
p
i


1
p

=

⟨
f ∗−1


 n∑

i=1

ωi
(

f ∗(hθi )
)p

1
p
 ,



n∑
i, j=1
ωi
(

f ∗(hθi )
)ptp

i

n∑
i=1
ωi
(

f ∗(hθi )
)p


1
p

,

1 −

1 −
n∑

i=1
ωi
(

f ∗(hθi )
)p (1 − (1 − ii)p)

n∑
i=1
ωi
(

f ∗(hθi )
)p


1
p

, 1 −

1 −
n∑

i=1
ωi
(

f ∗(hθi )
)p (1 − (1 − fi)p)

n∑
i=1
ωi
(

f ∗(hθi )
)p


1
p

⟩
.

(2) If p = 1 and q = 0, then Eq. (3) reduces to the simplified neutrosophic linguistic weighted arithmetic
average (SNLWAA) operator.

SNLNWB1,0
ω (a1, a2, · · · , an) =

n⊕
i=1

ωiai

=

⟨
f ∗−1

 n∑
i=1

ωi f ∗(hθi )

 ,


n∑
i=1
ωi f ∗(hθi )ti

n∑
i=1
ωi f ∗(hθi )

,

n∑
i=1
ωi f ∗(hθi )ii

n∑
i=1
ωi f ∗(hθi )

,

n∑
i=1
ωi f ∗(hθi ) fi

n∑
i=1
ωi f ∗(hθi )


⟩
.

(3) If p→ 0 and q = 0, then Eq. (3) reduces to the simplified neutrosophic linguistic weighted geometric
average (SNLWGA) operator.

lim
p→0

SNLNWBp,0
ω (a1, a2, · · · , an) =

n⊗
i=1

aωi
i

=

⟨
f ∗−1

 n∏
i=1

(
f ∗(hθi )

)ωi

 ,
 n∏

i=1

tωi
i , 1 −

n∏
i=1

(1 − ii)ωi , 1 −
n∏

i=1

(1 − fi)ωi

⟩ .
(4) If p→ +∞ and q = 0, then Eq. (3) reduces to the following form.

lim
p→+∞

SNLNWBp,0
ω (a1, a2, · · · , an)

=
⟨

f ∗−1
(
max

i

{
f ∗(hθi )

})
,
(
max

i
{ti},min

i
{ii}, min

i
{ fi}
)⟩
.

4.3. MCDM approach based on SNLNWBM operator
In this subsection, the SNLNWBM operator will be applied to solve MCDM problems with simplified

neutrosophic linguistic information.
For MCDM problems with simplified neutrosophic linguistic information, let A = {a1, a2, · · · , am} be a

discrete set consisting of m alternatives and let C = {c1, c2, · · · , cn} be a set consisting of n criteria. Assume
that the weight of criterion c j ( j = 1, 2, · · · , n) is ω j, where ω j ∈ [0, 1] and

∑n
j=1 ω j = 1. And the weight vector

of criteria can be expressed as ω = (ω1, ω2, · · · , ωn). Let B =
[
bi j

]
m×n
=
[⟨

hθi j ,
(
ti j, ii j, fi j

)⟩]
m×n

be the decision

matrix, where
⟨
hθi j ,
(
ti j, ii j, fi j

)⟩
takes the form of the SNLN and represents the assessment information of

each alternative ai (i = 1, 2, · · · ,m) on criterion c j ( j = 1, 2, · · · , n) with respect to the linguistic term hθi j . Then
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the ranking of alternatives is required.
In a word, the main procedures of the above MCDM approach are listed as below.

Step 1. Normalize the decision matrix.
In general, there are two types of criterion called maximizing criteria and minimizing criteria. In order to

uniform criterion types, minimizing criteria need to be transformed into maximizing criteria. Suppose the
standardized matrix is expressed as R =

[
ri j

]
m×n

. The original decision matrix B =
[
bi j

]
m×n

can be converted

to R =
[
ri j

]
m×n

by using the negation operator in Definition 6. For convenience, the normalized criterion

values of ai (i = 1, 2, · · · ,m) with respect to c j ( j = 1, 2, · · · ,n) are also expressed as
⟨
hθi j ,
(
ti j, ii j, fi j

)⟩
.

Step 2. Calculate the comprehensive evaluation values for each alternative.
Use Eq. (3) to calculate the comprehensive evaluation values, denoted by ri (i = 1, 2, · · · ,m) for each

alternative ai.
Step 3. Calculate the score values, accuracy values and certainty values of ri (i = 1, 2, · · · ,m).

Use equations described in Definition 7 to calculate the score values, accuracy values and certainty
values, denoted by S(ri), A(ri) and C(ri) of ri (i = 1, 2, · · · ,m), respectively.
Step 4. Rank all the alternatives and select the best one(s).

Use the comparison method described in Definition 8 to rank all the alternatives and select the best
one(s) according to S(ri), A(ri) and C(ri) (i = 1, 2, · · · ,m).

5. Illustrative example

In this section, an investment appraisal project is employed to demonstrate the application of the
proposed decision-making approach, as well as the validity and effectiveness of the proposed approach.

5.1. Background
The following case is adapted from [29].
ABC Nonferrous Metals Co. Ltd. is a large state-owned company whose main business is producing

and selling nonferrous metals. It is also the largest manufacturer of multi-species nonferrous metals in
China, with the exception of aluminum. To expand its main business the company is always engaged in
overseas investment, and a department which consists of executive managers and several experts in the
field has been established specifically to make decisions on global mineral investment.

Recently, the overseas investment department decided to select a pool of alternatives from several for-
eign countries based on preliminary surveys. After thorough investigation, five countries (alternatives) are
taken into consideration, i.e., {a1, a2, · · · , a5}. There are many factors that affect the investment environment
and four factors are considered based on the experience of the department personnel, including c1: resources
(such as the suitability of the minerals and their exploration); c2: politics and policy (such as corruption and
political risks); c3: economy (such as development vitality and the stability); and c4: infrastructure (such as
railway and highway facilities). And the weight vector of the factors is ω = (0.25, 0.22, 0.35, 0.18).

The decision-makers, including experts and executive managers, have gathered to determine the deci-
sion information. The linguistic term set H = {h0, h1, h2, · · · , h6} = {very poor, poor, slightly poor, fair, sightly
good, good, very good} is employed here and the evaluation information is given in the form of SNLNs.
Consequently, following a heated discussion, they come to a consensus on the final evaluations which are
expressed by SNLNs in Table 1.
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Table 1: The evaluation values given by the decision-maker
c1 c1 c1 c1

a1 ⟨h4, (0.6, 0.6, 0.1)⟩ ⟨h5, (0.6, 0.4, 0.3)⟩ ⟨h4, (0.8, 0.5, 0.1)⟩ ⟨h2, (0.8, 0.3, 0.1)⟩
a2 ⟨h2, (0.7, 0.5, 0.1)⟩ ⟨h4, (0.6, 0.4, 0.2)⟩ ⟨h3, (0.6, 0.2, 0.4)⟩ ⟨h4, (0.7, 0.4, 0.3)⟩
a3 ⟨h3, (0.5, 0.1, 0.2)⟩ ⟨h4, (0.6, 0.5, 0.3)⟩ ⟨h6, (0.7, 0.6, 0.1)⟩ ⟨h2, (0.5, 0.5, 0.2)⟩
a4 ⟨h2, (0.4, 0.5, 0.3)⟩ ⟨h3, (0.5, 0.3, 0.4)⟩ ⟨h4, (0.6, 0.8, 0.2)⟩ ⟨h5, (0.9, 0.3, 0.1)⟩
a5 ⟨h5, (0.6, 0.4, 0.4)⟩ ⟨h5, (0.8, 0.3, 0.1)⟩ ⟨h3, (0.7, 0.5, 0.1)⟩ ⟨h4, (0.6, 0.5, 0.2)⟩

5.2. An illustration of the proposed approach
In the following the main procedures of obtaining the optimal ranking of alternatives are presented.

Step 1. Normalize the decision matrix.
Considering all the criteria are maximizing type, the performance values of alternatives ai (i = 1, 2, 3, 4, 5)

do not need to be normalized, i.e., R = B.
Step 2. Calculate the comprehensive evaluation values for each alternative.

Use Eq. (3) to calculate the comprehensive evaluation values, denoted by ri (i = 1, 2, 3, 4, 5) for each
alternative ai (here let p = q = 1 and f ∗1 (hi) = i

2t ).
r1 = ⟨h3.8132, (0.7161, 0.4783, 0.1584)⟩, r2 = ⟨h3.1391, (0.6408, 0.3592, 0.2710)⟩, r3 = ⟨h3.8766, (0.6011, 0.4606, 0.1886)⟩,

r4 = ⟨h3.4043, (0.6159, 0.5370, 0.2358)⟩ and r5 = ⟨h4.1215, (0.6771, 0.4215, 0.2083)⟩.
Step 3. Calculate the score values, accuracy values and certainty values of ri (i = 1, 2, 3, 4, 5).

Use equations described in Definition 7 to calculate the score values, accuracy values and certainty
values, denoted by S(ri), A(ri) and C(ri) of ri (i = 1, 2, 3, 4, 5), respectively.

S(r1) = 1.3215, A(r1) = 0.3545, C(r1) = 0.4551;
S(r2) = 1.0519, A(r2) = 0.1935, C(r2) = 0.3353;
S(r3) = 1.2611, A(r3) = 0.2665, C(r3) = 0.3884;
S(r4) = 1.0457, A(r4) = 0.2156, C(r4) = 0.3494;
S(r5) = 1.4063, A(r5) = 0.3220, C(r5) = 0.4651.

Step 4. Rank all the alternatives and select the best one(s).
Use the comparison method described in Definition 8 to rank all the alternatives and select the best

one(s) according to S(ri), A(ri) and C(ri) (i = 1, 2, 3, 4, 5).
a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 and a5 is the best one.

5.3. Comparison analysis and discussion
In order to illustrate the influence of the linguistic scale function f ∗ and parameters p and q on decision-

making result of this example, different f ∗ and values of p and q are taken into consideration. The results
are shown in Table 2.

It is shown that the ranking results of alternatives may be different with respect to different linguistic
scale function f ∗ or parameters p and q in the SNLNWBM operator. The best alternative is always a5 except
for one situation where p = 1 and q = 0 by using f ∗2 . And the worst alternative is always a2 except for
the situations where p → 0 and q = 0, p = q = 0.5 and p = q = 1. Furthermore, the ranking may vary
as the linguistic scale function f ∗ changes. In the special cases where at least one of the two parameters p
and q take the value of zero, the SNLNWBM operator cannot capture the interrelationship of individual
arguments and the ranking results are different. When p = 1 and q = 0, the SNLNWBM operator reduces to
the SNLWAA operator. When p→ 0 and q = 0, the SNLNWBM operator reduces to the SNLWGA operator.
The optimal alternative and the sequence are different by the two methods as it is shown in Table 2.

To further illustrate the advantages of the proposed approach under a simplified neutrosophic linguistic
environment, the methods in Ref. [55] are used to solve the same illustrative example given above. In Ref.
[55], an INLWAA operator and an INLWGA operator were developed to aggregate interval neutrosophic
linguistic information. In order to use the INLWAA operator and INLWGA operator, the evaluation
values of this paper need to be transformed into interval neutrosophic linguistic information. That is,
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Table 2: The evaluation values given by the decision-maker
p and q Ranking results by using f ∗1 Ranking results by using f ∗2 Ranking results by using f ∗3
p = 1, q = 0 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a3 ≻ a5 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p→ 0, q = 0 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4
p = q = 0.5 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4
p = q = 1 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4 a5 ≻ a1 ≻ a3 ≻ a2 ≻ a4
p = 1, q = 2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = 2, q = 1 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 3 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 4 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 5 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 6 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 7 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 8 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a4 ≻ a1 ≻ a2 a5 ≻ a1 ≻ a3 ≻ a4 ≻ a2
p = q = 9 a5 ≻ a3 ≻ a1 ≻ a4 ≻ a2 a5 ≻ a3 ≻ a4 ≻ a1 ≻ a2 a5 ≻ a1 ≻ a4 ≻ a3 ≻ a2
p = q = 10 a5 ≻ a3 ≻ a4 ≻ a1 ≻ a2 a5 ≻ a3 ≻ a4 ≻ a1 ≻ a2 a5 ≻ a1 ≻ a4 ≻ a3 ≻ a2

⟨
hθi j ,
(
ti j, ii j, fi j

)⟩
is replaced as

⟨
hθi j ,
(
[ti j, ti j], [ii j, ii j], [ fi j, fi j]

)⟩
, where the lower and upper bounds are equal.

The ranking result by using INLWAA operator: a3 ≻ a1 ≻ a5 ≻ a2 ≻ a4 and the ranking result by using
INLWGA operator: a1 ≻ a3 ≻ a5 ≻ a2 ≻ a4.

Obviously, the ranking sequences are inconsistent with the results when p = 1 and q = 0 and p→ 0 and
q = 0, respectively, in Table 2. This may be caused by different operations and comparison methods. The
operations and comparison method for INLNs in Ref. [55] process the linguistic information and interval
neutrosophic numbers separately, which may cause information distortion in some situations. And the
limitations are discussed in detail in Subsection 3.2. In addition, methods in Ref. [55] consider only one
semantic situation, while different linguistic scale functions f ∗ utilized in this paper are applicable and
effective under different semantic environment.

According to the above analysis, the proposed approach for MCDM problems with SNLNs has the
following advantages. Firstly, it is flexible to express the evaluation information with SNLNs, which can
depict the fuzzy, incomplete and inconsistent information more accurately and retain the completeness of
original data. So it can guarantee the accuracy of final result to some extent. Secondly, the operations
of SNLNs in this paper are defined on the basis of linguistic scale functions, which can harvest different
results when a different linguistic function f ∗ is involved. Thus, decision-makers can flexibly select the f ∗

depending on their preferences and actual semantic environment. In addition, the SNLNWBM operator
proposed in this paper has the unique characteristic that can capture the interrelationship of the input
arguments. In general, the values can be set as p = q = 1 or p = q = 2, which is not only simple and
convenient but also allowing the interrelationship of criteria. Thus, decision-makers can properly select the
desirable alternative in accordance with the certain situations and their interests.

6. Conclusion

Linguistic variables can effectively describe qualitative information and SNSs can flexibly express un-
certain, imprecise, incomplete and inconsistent information that widely exist in scientific and engineering
situations. So it of great significance to study MCDM methods with SNLSs. Consider the limitations
in the existing literature, new operations of SNLNs are introduced. Then based on the related research
achievements in predecessors, the BM operator is extended to the simplified neutrosophic linguistic envi-
ronment. Thus, a MCDM approach based on the SNLNWBM aggregation operator is proposed. Finally, an
illustrative example is given to demonstrate the application of the proposed approach.

The advantages of this study are that the approach can accommodate situations where decision-making
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problems involve qualitative variables. In addition, the SNLNWBM operator has a significant advantage
that can capture the interrelationship of individual arguments. Whats more, the results may change using
different linguistic scale functions and the input parameters p and q may also affect the results. Decision-
makers can select the most appropriate linguistic scale function f ∗ and input parameters according to
their interests and actual semantic situations. In a word, this approach has much application potential in
deal with MCDM problems in simplified neutrosophic linguistic environment, in which the assessment
information of criterion values take the form of SNLNs and criterion weights are known information.
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