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Abstract

A graph structure is a generalization of undirected graph which is quite useful in studying some structures,

including graphs and signed graphs. In this research paper, we apply the idea of single-valued neutrosophic

sets to graph structure, and explore some interesting properties of single-valued neutrosophic graph structure.

We also discuss the concept of φ-complement of single-valued neutrosophic graph structure.
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1 Introduction

Fuzzy set theory was introduced by Zadeh [14] to solve problems with uncertainties. At present, in modeling and
controlling unsure systems in industry, society and nature, fuzzy sets and fuzzy logic are playing a vital role. In
decision making, they can be used as power full mathematical tools which facilitate for approximate reasoning.
They play a significant role in complex phenomena which is not easily described by classical mathematics.
Atanassov [3] illustrated the extension of fuzzy sets by adding a new component, called, intuitionistic fuzzy
sets. The intuitionistic fuzzy sets have essentially higher describing possibilities than fuzzy sets. The idea of
intuitionistic fuzzy set is more meaningful as well as inventive due to the presence of degree of truth, degree of
false and the hesitation margin. The hesitation margin of intuitionistic fuzzy set is its indeterminacy value by
default. Samrandache [10] submitted the idea of neutrosophic set (NS)by combining the non-standard analysis,
a tricomponent logic/set/probability theory and philosophy. “It is a branch of philosophy which studies the
origin, nature and scope of neutralities as well as their interactions with different ideational spectra” [11]. A
NS has three components: truth membership, indeterminacy membership and falsity membership, in which
each membership value is a real standard or non-standard subset of the nonstandard unit interval ]0−, 1 + [
([10]). To apply NSs in real-life problems more conveniently, Wang et al. [12] defined single-valued neutrosophic
sets (SVNSs). A SVNS is a generalization of intuitionistic fuzzy sets [3]. In SVNS three components are not
dependent and their values are contained in the standard unit interval [0, 1].
Fuzzy graphs were narrated by Rosenfeld [8] in 1975. Dinesh and Ramakrishnan [5] introduced the notion of
a fuzzy graph structure and discussed some related properties. Akram and Akmal [1] introduced the concept
of bipolar fuzzy graph structures. Broum et al. [4] portrayed single-valued neutrosophic graphs. Akram and
Shahzadi [2] introduced the notion of neutrosophic soft graphs with applications. In this research paper, we
apply the idea of single-valued neutrosophic sets to graph structure, and explore some interesting properties of
single-valued neutrosophic graphs. We also discuss the concept of φ-complement of single-valued neutrosophic
graph structure.

2 Single-Valued Neutrosophic Graph Structures

Definition 2.1. Ǧn = (Q,Q1, Q2, ..., Qn) is called a single-valued neutrosophic graph structure (SVNSGS) of a
graph stucture Ǧ = (S, S1, S2..., Sn) if Q =< (m,n), T (m,n), I(m,n), F (m,n) > is a single-valued neutrosophic
(SVNS) set on S and Qi =< n, Ti(n), Ii(n), Fi(n) > is a single-valued neutrosophic set on Si such that

Ti(m,n) ≤ min{T (m), T (n)}, Ii(m,n) ≤ min{I(m), I(n)}, Fi(m,n) ≤ max{F (m), F (n)}, ∀m,n ∈ S.
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Note that Ti(m,n) = 0 = Ii(m,n) = Fi(m,n) for all (m,n) ∈ S × S − Si and
0 ≤ Ti(m,n) + Ii(m,n) + Fi(m,n) ≤ 3 ∀(m,n) ∈ Si , where S and Si (i = 1,2,...,n ) are underlying vertex and
underlying i-edge sets of Ǧn respectively.

Definition 2.2. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS of Ǧ. If Ȟn = (Q′, Q′
1, Q

′
2, ..., Q

′
n) is a SVNSGS

of Ǧ such that

T ′(n) ≤ T (n), I ′(n) ≤ I(n), F ′(n) ≥ F (n) ∀n ∈ S,

T ′
i (m,n) ≤ Ti(m,n), I ′i(m,n) ≤ Ii(m,n), F ′

i (m,n) ≥ Fi(m,n), ∀mn ∈ Si, i = 1, 2, ..., n.

Then Ȟn is called a SVNS subgraph structure of SVNSGS Ǧn.

Definition 2.3. A SVNSGS Ȟn = (Q′, Q′
1, Q

′
2, ..., Q

′
n) is called a SVNS induced subgraph structure of Ǧn by

a subset R of S if

T ′(n) = T (n), I ′(n) = I(n), F ′(n) = F (n) ∀n ∈ R,

T ′
i (m,n) = Ti(m,n), I ′i(m,n) = Ii(m,n), F ′

i (m,n) = Fi(m,n), ∀m,n ∈ R, i = 1, 2, ..., n.

Definition 2.4. A SVNSGS Ȟn = (Q′, Q′
1, Q

′
2, ..., Q

′
n) is called a SVNS spanning subgraph structure of Ǧn if

Q′ = Q and

T ′
i (m,n) ≤ Ti(m,n), I ′i(m,n) ≤ Ii(m,n), F ′

i (m,n) ≥ Fi(m,n), i = 1, 2, ..., n.

Example 2.5. Consider a GS Ǧ = (S, S1, S2) and Q, Q1,Q2 be SVNS subsets of S, S1, S2 respectively, such that
Q = {(n1, .5, .2, .3), (n2, .7, .3, .4), (n3, .4, .3, .5), (n4, .7, .3, .6)}, Q1 = {(n1n2, .5, .2, .4), (n2n4, .7, .3, .6)}, Q2 =
{(n3n4, .4, .3, .6), (n1n4, .5, .2, .6)}.
Direct calculations show that Ǧn = (Q,Q1, Q2) is a SVNSGS of Ǧ as shown in Fig. 2.1.
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Figure 2.1: A single-valued neutrosophic graph structure

Example 2.6. SVNSGS Ǩn = (Q′, Q11, Q12) is a SVNS subgraph structure of Ǧn as shown in Fig. 2.2.
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Figure 2.2: A SVNS subgraph structure Ǩn

Definition 2.7. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS of Ǧ. Then mn ∈ Si is called a SVNS Qi-edge
or simply Qi-edge, if Ti(m,n) > 0 or Ii(m,n) > 0 or Fi(m,n) > 0 or all three conditions hold. Consequently,
support of Qi; i=1,2,...,n is:

supp(Qi) = {mn ∈ Qi : Ti(m,n) > 0} ∪ {mn ∈ Qi : Ii(m,n) > 0} ∪ {mn ∈ Qi : Fi(m,n) > 0}.

Definition 2.8. Qi-path in a SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is a sequence of distinct vertices n1, n2, ..., nm

(except choice that nm = n1) in S, such that nj−inj is a SVNS Qi-edge ∀j = 1, 2, ...,m.
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Definition 2.9. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is called Qi-strong for some i ∈ {1, 2, ..., n} if
Ti(m,n) = min{T (m), T (n)}, Ii(m,n) = min{I(m), I(n)}, Fi(m,n) = max{F (m), F (n)}, ∀mn ∈ supp(Qi).
SVNSGS Ǧn is called strong if it is Qi-strong for all i ∈ {1, 2, ..., n}.

Example 2.10. Consider SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig. 2.3. Then Ǧn is a strong SVNSGS
since it is both Q1− and Q2 − strong.
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Figure 2.3: A strong SVNSGS Ǧn = (Q,Q1, Q2)

Definition 2.11. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is called complete or Q1Q2...Qn-complete, if Ǧn is a
strong SVNSGS, supp(Qi) 6= φ for all i=1,2,...,n and for every pair of vertices m,n ∈ S, mn is an Qi − edge for
some i.

Example 2.12. Let Ǧn = (Q,Q1, Q2) be a SVNSGS of graph structure Ǧ = (S, S1, S2) such that S =
{n1, n2, n3}, S1 = {n1n2}, S2 = {n2n3, n1n3} as shown in Fig. 2.4. by simple calculations, it can be seen that
Ǧn is a strong SVNSGS.
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Figure 2.4: A complte SVNSGS

Moreover, supp(Q1) 6= φ, supp(Q2) 6= φ and each pair of vertices in S, is either a Q1-edge or an Q2-edge.
So Ǧn is a complete, i.e., Q1Q2-complete SVNSGS.

Definition 2.13. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS. Then truth strength, indeterminacy strength
and falsity strength of a Qi-path PQi

=n1, n2, ..., nm are denoted by T.PQi
, I.PQi

and F.PQi
respectively and

defined as

T.PQi
=

m∧

j=2

[TP
Qi
(nj−1nj)], I.PQi

=
m∧

j=2

[IPQi
(nj−1nj)], F.PQi

=
m∨

j=2

[FP
Qi

(nj−1nj)].

Example 2.14. Consider a SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig. 2.4. We found that
PQ2 = n2, n1, n3 is a Q2-path. So T.PQ2= 0.4, I.PQ2= 0.4 and F.PQ2= 0.8.

Definition 2.15. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS. Then

Qi-truth strength of connectedness betweenm and n is defined by T∞
Qi
(mn) =

∨

j≥1

{T j
Qi
(mn)}, such that T j

Qi
(mn)

= (T j−1
Qi

◦ T 1
Qi
)(mn) for j ≥ 2 and T 2

Qi
(mn) = (T 1

Qi
◦ T 1

Qi
)(mn) =

∨

z

(T 1
Qi
(mz) ∧ T 1

Qi
)(zn).

Qi-indeterminacy strength of connectedness between m and n is defined by I∞Qi
(mn) =

∨

j≥1

{IjQi
(mn)}, such that

I
j
Qi
(mn) = (Ij−1

Qi
◦ I1Qi

)(mn) for j ≥ 2 and I2Qi
(mn) = (I1Qi

◦ I1Qi
)(mn) =

∨

z

(I1Qi
(mz) ∧ I1Qi

)(zn).
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Qi-Falsity strength of connectedness between m and n is defined by F∞
Qi
(mn) =

∧

j≥1

{F j
Qi
(mn)}, such that

F
j
Qi
(mn) = (F j−1

Qi
◦ F 1

Qi
)(mn) for j ≥ 2 and F 2

Qi
(mn) = (F 1

Qi
◦ F 1

Qi
)(mn) =

∧

z

(F 1
Qi
(mz) ∨ F 1

Qi
)(zn).

Definition 2.16. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is aQi-cycle if (supp(Q), supp(Q1), supp(Q2), ..., supp(Qn))
is a Qi − cycle.

Definition 2.17. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is a SVNS fuzzy Qi-cycle (for some i) if Ǧn is a Qi-cycle,
no unique Qi-edge mn is in Ǧn such that
TQi

(mn) = min{TQi
(rs) : rs ∈ Si = supp(Qi)} or IQi

(mn) = min{IQi
(rs) : rs ∈ Si = supp(Qi)} or

FQi
(mn) = max{FQi

(rs) : rs ∈ Si = supp(Qi)}.

Example 2.18. Consider a SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig. 2.3. Then Ǧn is a Q1-cycle and SVNS
fuzzy Q1 − cycle, since (supp(Q), supp(Q1), supp(Q2)) is a Q1-cycle and there is no unique Q1-edge satisfying
above condition.

Definition 2.19. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS and p be a vertex in Ǧn. Let (Q
′, Q′

1, Q
′
2, ..., Q

′
n)

be a SVNSGS induced by S \ {p} such that ∀v 6= p, w 6= p

TQ′(p) = 0 = IQ′(p) = FQ′(p), TQ′

i
(pv) = 0 = IQ′

i
(pv) = FQ′

i
(pv) ∀ edges pv ∈ Ǧn. TQ′(v) = TQ(v),

IQ′(v) = IQ(v), FQ′ (v) = FQ(v), ∀v 6= p. TQ′

i
(vw) = TQi

(vw), IQ′

i
(vw) = IQi

(vw), FQ′

i
(vw) = FQi

(vw),
Then p is SVNS fuzzy Qi-cut vertex for any i, if
T∞
Qi
(vw) > T∞

Q′

i
(vw), I∞Qi

(vw) > I∞Q′

i
(vw) and F∞

Qi
(vw) > F∞

Q′

i
(vw), for some v, w ∈ S \ {p}.

Note that p is a Qi − T SVNS fuzzy cut vertex if T∞
Qi
(vw) > T∞

Q′

i
(vw), Qi − I SVNS fuzzy cut vertex if

I∞Qi
(vw) > I∞Q′

i
(vw) and Qi − F SVNS fuzzy cut vertex if F∞

Qi
(vw) > F∞

Q′

i
(vw).

Example 2.20. Consider the SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig.2.5 and Ǧ′
n = (Q′, Q′

1, Q
′
2) be SVNS

subgraph structure of SVNSGS Ǧn found by deleting vertex n2. Deleted vertex n2 is a SVNS fuzzy Q1-I cut
vertex since I∞Q1

(n2n5) = 0.4 > 0.3 = I∞Q′

1
(n2n5), I

∞
Q1

(n3n4) = 0.7 = I∞Q′

1
(n3n4),

I∞Q1
(n3n5) = 0.4 > 0.3 = I∞Q′

1
(n3n5).

Definition 2.21. Suppose Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS and mn be Qi − edge.
Let (Q′, Q′

1, Q
′
2, ..., Q

′
n) be a SVNS fuzzy spanning subgraph structure of Ǧn, such that ∀ edges mn 6= rs,

TQ′

i
(mn) = 0 = IQ′

i
(mn) = FQ′

i
(mn), TQ′

i
(rs) = TQi

(rs), IQ′

i
(rs) = IQi

(rs), FQ′

i
(rs) = FQi

(rs).
Then mn is a SVNS fuzzy Qi-bridge if
T∞
Qi
(vw) > T∞

Q′

i
(vw), I∞Qi

(vw) > I∞Q′

i
(vw) and F∞

Qi
(vw) > F∞

Q′

i
(vw), for some v, w ∈ S.

Note that mn is a Qi − T SVNS fuzzy bridge if T∞
Qi
(vw) > T∞

Q′

i
(vw), Qi − I SVNS fuzzy bridge if I∞Qi

(vw) >

I∞Q′

i
(vw) and Qi − F SVNS fuzzy bridge if F∞

Qi
(vw) > F∞

Q′

i
(vw).

Example 2.22. Consider the SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig. 2.5 and Ǧ′
n = (Q′, Q′

1, Q
′
2) be SVNS

spanning subgraph structure of SVNSGS Ǧn found by deleting Q1-edge (n2n5).
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Figure 2.5: A SVNSGS Ǧn = (Q,Q1, Q2)

Edge (n2n5) is a SVNS fuzzy Q1-bridge. Since T∞
Q1

(n2n5) = 0.4 > 0.3 = T∞
Q′

1
(n2n5),

I∞Q1
(n2n5) = 0.4 > 0.3 = I∞

Q′

1
(n2n5) and F∞

Q1
(n2n5) = 0.5 > 0 = F∞

Q′

1
(n2n5).
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Definition 2.23. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is aQi-tree if (supp(Q), supp(Q1), supp(Q2), ..., supp(Qn))
is a Qi − tree. In other words, Ǧn is a Qi-tree if a subgraph of Ǧn induced by supp(Qi) generates a tree.

Definition 2.24. A SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is a SVNS fuzzy Qi-tree if Ǧn has a SVNS fuzzy
spanning subgraph structure Ȟn = (Q′′, Q′′

1 , Q
′′
2 , ..., Q

′′
n) such that ∀Qi-edges mn not in Ȟn,

Ȟn is a Q′′
i -tree, TQi

(mn) < T∞
Q′′

i
(mn), IQi

(mn) < I∞Q′′

i
(mn), FQi

(mn) < F∞
Q′′

i
(mn).

Inparticular, Ǧn is a SVNS fuzzy Qi-T tree if TQi
(mn) < T∞

Q′′

i
(mn), a SVNS fuzzy Qi-I tree if

IQi
(mn) < I∞Q′′

i
(mn) and a SVNS fuzzy Qi-F tree if FQi

(mn) > F∞
Q′′

i
(mn).

Example 2.25. Consider the SVNSGS Ǧn = (Q,Q1, Q2) as shown in Fig.2.6, which is a Q2-tree. It is not a
Q1-tree but a SVNS fuzzy Q1-tree since it has a single-vlaued neutrosophic fuzzy spanning subgraph (Q′, Q′

1, Q
′
2)

as a Q′
1-tree, which is obtained by deleting Q1-edge n2n5 from Ǧn. Moreover,

TQ1(n2n5) = 0.2 < 0.3 = T∞
Q′

1
(n2n5), IQ1(n2n5) = 0.1 < 0.3 = I∞Q1

′(n2n5 and

FQ1(n2n5) = 0.6 > 0.5 = F∞
Q1

′(n2n5).
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Figure 2.6: A single-valued neutrosophic fuzzy Q1-tree

Definition 2.26. A SVNSGS Ǧs1 = (Q1, Q11, Q12, ..., Q1n) of graph structure Ǧ1 = (S1, S11, S12, ..., S1n) is
isomorphic to SVNSGS Ǧs2 = (Q2, Q21, Q22, ..., Q2n) of graph structure Ǧ2 = (S2, S21, Q22, ..., S2n) if we have
(f, φ) where f : S1 → S2 is a bijection and φ is a permutation on set {1, 2, ..., n} and following relations are
satisfied;

TQ1(m) = TQ2(f(m)), IQ1(m) = IQ2 (f(m)), FQ1(m) = FQ2(f(m)), ∀m ∈ S1 and
TQ1i(mn) = TQ2φ(i)

(f(m)f(n)), IQ1i (mn) = IQ2φ(i)
(f(m)f(n) FQ1i (mn) = FQ2φ(i)

(f(m)f(n)),

∀mn ∈ S1i, i=1,2,...,n.

Example 2.27. Let Ǧn1 = (Q,Q1, Q2) and Ǧn2 = (Q′, Q′
1, Q

′
2) be two SVNSGSs as shown in Fig. 2.7.
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Figure 2.7: Isomorphic SVNS graph structures

Ǧn1 is isomorphic Ǧn2 under (f, φ) where f : S → S′ is a bijection and φ is a permutation on set {1, 2}
defined as φ(1) = 2, φ(2) = 1 and following relations are satisfied;
TQ(ni) = TQ′(f(ni)), IQ(ni) = IQ′(f(ni)), FQ(ni) = FQ′(f(ni)), ∀ni ∈ S and TQi

(ninj) = TQ′

φ(i)
(f(ni)f(nj)),

IQi
(ninj) = IQ′

φ(i)
(f(ni)f(nj)), FQi

(ninj) = FQ′

φ(i)
(f(ni)f(nj)), ∀ninj ∈ Si, i=1,2.
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Definition 2.28. A SVNSGS Ǧs1 = (Q1, Q11, Q12, ..., Q1n) of graph structure Ǧ1 = (S1, S11, S12, ..., S1n) is
identical to SVNSGS Ǧs2 = (Q2, Q21, Q22, ..., Q2n) of graph structure Ǧ2 = (S2, S21, Q22, ..., S2n) if f : S1 → S2

is a bijection and following relations are satisfied;
TQ1(m) = TQ2(f(m)), IQ1 (m) = IQ2 (f(m)), FQ1(m) = FQ2 (f(m)), ∀m ∈ S1 and TQ1i(mn) = TQ2i(f(m)f(n)),
IQ1i(mn) = IQ2i(f(m)f(n)), FQ1i(mn) = FQ2(i)

(f(m)f(n)), ∀mn ∈ S1i, i=1,2,...,n.

Example 2.29. Let Let Ǧn1 = (Q,Q1, Q2) and Ǧn2 = (Q′, Q′
1, Q

′
2) be two SVNSGSs of GSs

Ǧ1 = (S, S1, S2), Ǧ2 = (S′, S′
1, S

′
2) respectively as shown in Fig. 2.8 and Fig. 2.9.

b

b

b

b

b

b

b

b
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n1(0.2, 0.3, 0.4)

n8(0.4, 0.6, 0.3)Q
1(0.3, 0.2, 0.5) Q2(0.4

, 0.3, 0
.6)

Q1
(0
.4,

0.5
, 0
.4)

Q
2(0.6, 0.5, 0.5)

Q1
(0.

4, 0
.4,

0.3
)

Q2(0.5
, 0.4, 0

.5)

Q2(0.1
, 0.3, 0

.5)
Q

1(0.3, 0.4, 0.2)

Q
1(0.2, 0.2, 0.4)

Q2(0.
1, 0.2

, 0.3)

Q1(0.2
, 0.3, 0

.4)

Figure 2.8: A SVNSGS Ǧn1

b

b

b

b

b

b

b

b
m7(0.5, 0.3, 0.6)
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m
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m4
(0.

5, 0
.4,

0.3
)

m1(0.3, 0.4, 0.5)
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1 (0.3, 0.2, 0.5)
Q
′

2
(0.4

, 0.3
, 0.6

)

Q
′

1 (0.4, 0.5, 0.4)

Q ′

2 (0.6, 0.5, 0.5)

Q
′
1 (0.4, 0.4, 0.3)

Q
′

2
(0.5

, 0.4
, 0.5

)

Q
′

2
(0.1

, 0.
3, 0

.5) Q ′

1 (0.3, 0.4, 0.2)
Q ′

1 (0.2, 0.2, 0.4) Q
′

2
(0.1

, 0.
2, 0

.3)

Q
′

1
(0
.2
, 0
.3
, 0
.4
)

Figure 2.9: A SVNSGS Ǧn2

SVNGS Ǧn1 is identical with Ǧn2 under f : S → S′ defined as ;
f(n1) = m2, f(n2) = m1, f(n3) = m4, f(n4) = m3, f(n5) = m5, f(n6) = m8, f(n7) = m7, f(n8) = m6, TQ(ni)
= TQ′(f(ni)), IQ(ni) = IQ′(f(ni)), FQ(ni) = FQ′ (f(ni)), ∀ni ∈ S and TQi

(ninj) = TQ′

i
(f(ni)f(nj)), IQi

(ninj)
= IQ′

i
(f(ni)f(nj)), FQi

(ninj) = FQ′

i
(f(ni)f(nj)), ∀ninj ∈ Si, i=1,2.

Definition 2.30. Suppose Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS and φ be a permutation on {Q1, Q2, ..., Qn}
and on {1, 2, ..., n} that is φ(Qi) = Qj iff φ(i) = j ∀i. If mn ∈ Qi for any i and
T
Q

φ

i

(mn) = TQ(m) ∧ TQ(n)−
∨

j 6=i

Tφ(Qj)(mn), I
Q

φ

i

(mn) = IQ(m) ∧ IQ(n)−
∨

j 6=i

Iφ(Qj)(mn),

F
Q

φ

i

(mn) = FQ(m) ∨ FQ(n)−
∧

j 6=i

Tφ(Qj)(mn), i = 1, 2, ..., n, then mn ∈ Q
φ
k , where k is selected such that;

T
Q

φ

k

(mn) ≥ T
Q

φ

i

(mn), I
Q

φ

k

(mn) ≥ I
Q

φ

i

(mn), F
Q

φ

k

(mn) ≥ F
Q

φ

i

(mn) ∀i.

And SVNSGS (Q,Q
φ
1 , Q

φ
2 , ..., Q

φ
n) is named as φ-complement of SVNSGS Ǧn and symbolized as Ǧφc

n .

Example 2.31. Let Ǧn = (Q,Q1, Q2, Q3) be a SVNSGS shown in Fig. 2.10, φ(1) = 2, φ(2) = 3, φ(3) = 1. As

a result of simple calculations, n1n3 ∈ Q
φ
3 , n2n3 ∈ Q

φ
1 , n1n2 ∈ Q

φ
2 So, Ǧφc

n =(Q,Q
φ
1 , Q

φ
2 , Q

φ
3 ) is

φ-complement of SVNSGS Ǧn as showm in Fig. 2.10.

b

b b b b

b

n3(0.7, 0.5, 0.3)n2(0.5, 0.6, 0.4)n3(0.7, 0.5, 0.3)n2(0.5, 0.6, 0.4)

n1(0.3, 0.4, 0.7)n1(0.3, 0.4, 0.7)

Q2(0.5, 0.4, 0.3)

Q
1(0.3, 0.4, 0.3)Q3

(0.3
, 0.3

, 0.4
)

Q
φ
2
(0.3

, 0.4
, 0.7

)

Q
φ
1
(0.5, 0.5, 0.4)

Q φ
3 (0.3, 0.4, 0.7)

Figure 2.10: SVNSGSs Ǧn, Ǧ
φc
n
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Proposition 2.32. A φ-complement of a SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is always a strong SVNSGS.

Moreover, if φ(i) = k, where i, k ∈ {1, 2, ..., n}, then all Qk-edges in SVNSGS (Q,Q1, Q2, ..., Qn) become Q
φ
i -

edges in (Q,Q
φ
1 , Q

φ
2 , ..., Q

φ
n).

Proof. According to the definition of φ-complement,
T
Q

φ

i

(mn) = TQ(m) ∧ TQ(n)−
∨

j 6=i

Tφ(Qj)(mn), I
Q

φ

i

(mn) = IQ(m) ∧ IQ(n)−
∨

j 6=i

Iφ(Qj)(mn),

F
Q

φ

i

(mn) = FQ(m) ∨ FQ(n)−
∧

j 6=i

Fφ(Qj)(mn), for i ∈ {1, 2, ..., n}.

For expression of truthness in φ-complement requirements are shown as:
Since TQ(m) ∧ TQ(n) ≥ 0,

∨

j 6=i

Tφ(Qj)(mn) ≥ 0 and TQi
(mn) ≤ TQ(m) ∧ TQ(n) ∀Qi.

⇒
∨

j 6=i

Tφ(Qj)(mn) ≤ TQ(m) ∧ TQ(n) ⇒ TQ(m) ∧ TQ(n)−
∨

j 6=i

Tφ(Qj)(mn) ≥ 0.

Therefore, T
Q

φ

i

(mn) ≥ 0 ∀i. Moreover, T
Q

φ

i

(mn) achieves its maximum value when
∨

j 6=i

Tφ(Qj)(mn) is zero. It

is obvious that when φ(Qi) = Qk and mn is a Qk-edge then
∨

j 6=i

Tφ(Qj)(mn) gets zero value. So,

T
Q

φ

i

(mn) = TQ(m) ∧ TQ(n), for (mn) ∈ Qk, φ(Qi) = Qk. Similarly,

I
Q

φ

i

(mn) = IQ(m) ∧ IQ(n), for (mn) ∈ Qk, φ(Qi) = Qk.

In the similar way for expression of falsity in φ-complement requirements are shown as:
Since FQ(m) ∨ FQ(n) ≥ 0,

∧

j 6=i

Fφ(Qj)(mn) ≥ 0 and FQi
(mn) ≤ FQ(m) ∨ FQ(n) ∀Qi.

⇒
∧

j 6=i

Fφ(Qj)(mn) ≤ FQ(m) ∨ FQ(n) ⇒ FQ(m) ∨ FQ(n)−
∧

j 6=i

Fφ(Qj)(mn) ≥ 0.

Therefore, F
Q

φ

i

(mn) is non-negative for all i. Moreover, F
Q

φ

i

(mn) attains its maximum value when
∧

j 6=i

Fφ(Qj)(mn)

becomes zero. It is clear that when φ(Qi) = Qk and mn is a Qk-edge then
∧

j 6=i

Fφ(Qj)(mn) gets zero value. So,

F
Q

φ

i

(mn) = FQ(m) ∨ FQ(n), for (mn) ∈ Qk, φ(Qi) = Qk. From these expressions of truthness, indeteminacy

and falsity required results are achieved.

Definition 2.33. Let Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS and φ a permutation on {1, 2, ..., n}. Then

(i) If Ǧn is isomorphic to Ǧφc
n , then Ǧn is said to be self-complementary.

(ii) If Ǧn is identical to Ǧφc
n , then Ǧn is said to be strong self-complementary.

Definition 2.34. Suppose Ǧn = (Q,Q1, Q2, ..., Qn) be a SVNSGS. Then

(i) If Ǧn is isomorphic to Ǧφc
n , ∀ permutations φ on {1,2,...,n}, then Ǧn is totally self-complementary.

(ii) If Ǧn is identical to Ǧφc
n , ∀ permutations φ on {1,2,...,n}, then Ǧn is totally self-complementary.

Example 2.35. All strong SVNSGSs are self-complementary or totally self-complementary SVNSGSs.

Example 2.36. SVNSGS Ǧn = (Q,Q1, Q2, Q3) in Fig.2.11 is totally strong self-complementary SVNSGS.
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b

b bb

b b

n7(0.2, 0.3, 0.4)

n6(0.4, 0.5, 0.6)
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n3(0.2, 0.3, 0.4)

n2(0.4, 0.5, 0.6)

n1(0.7, 0.4, 0.5)

Q 3
(0
.2,
0.3
, 0
.5)

Q
3
(0
.4
, 0
.4
, 0
.6
) Q

2 (0
.2
,0
.3
,0
.5
)

Q
2 (0.4, 0.4, 0.5)

Q
1 (0.2, 0.3, 0.5)

Q
1
(0
.4
, 0
.4
, 0
.6
)

Figure 2.11: A totally strong self-complementary SVNSGS
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Theorem 2.37. A SVNSGS is totally self-complementary if and only if it is strong SVNSGS.

Proof. Consider a strong SVNSGS Ǧn and a permutation φ on {1,2,..., n}. By proposition 2.32,
φ-complement of a SVNSGS Ǧn = (Q,Q1, Q2, ..., Qn) is always a strong SVNSGS.

Moreover, if φ(i) = k, where i, k ∈ {1, 2, ..., n}, then all Qk-edges in SVNSGS (Q,Q1, Q2, ..., Qn) become Q
φ
i -

edges in (Q,Q
φ
1 , Q

φ
2 , ..., Q

φ
n).

This leads TQk
(mn) = TQ(m) ∧ TQ(n) = T

Q
φ

i

(mn), IQk
(mn) = IQ(m) ∧ IQ(n) = I

Q
φ

i

(mn), FQk
(mn) =

FQ(m)∨FQ(n) = F
Q

φ

i

(mn). Hence under the mapping(identity mapping) f : S → S, Ǧn and Ǧφ
n are isomorphic

such that,

TQ(m) = TQ(f(m)), IQ(m) = IQ(f(m)), FQ(m) = FQ(f(m)) and TQk
(mn) = T

Q
φ

i

(f(m)f(n)) = T
Q

φ

i

(mn),

IQk
(mn) = I

Q
φ

i

(f(m)f(n)) = I
Q

φ

i

(mn) , FQk
(mn) = F

Q
φ

i

(f(m)f(n)) = F
Q

φ

i

(mn) ,

∀mn ∈ Sk, for φ
−1(k) = i; i,k = 1,2,...,n. All this is satisfied for every permutation φ on {1,2,..., n}. Hence Ǧn

is totally self-complementary SVNSGS. Conversely, let for every permutation φ on {1,2,..., n}, Ǧn and Ǧφ
n are

isomorphic. Then according to the definition of isomorphism of SVNSGSs and φ-complement of SVNSGS,

TQk
(mn) = T

Q
φ

i

(f(m)f(n)) = TQ(f(m)) ∧ TQ(f(n)) = TQ(m) ∧ TQ(n),

IQk
(mn) = I

Q
φ

i

(f(m)f(n)) = IQ(f(m)) ∧ IQ(f(n)) = TQ(m) ∧ IQ(n),

FQk
(mn) = F

Q
φ

i

(f(m)f(n)) = FQ(f(m)) ∨ TQ(f(n)) = FQ(m) ∧ TQ(n),

∀mn ∈ Sk, k = 1,2,...,n. Hence Ǧn is strong SVNSGS.

Remark 2.38. Every SVNSGS which is self-complementary is definitely totally self-complementary.

Theorem 2.39. If Ǧ = (S, S1, S2, ..., Sn) is a strong and totally self-complementary GS and
Q = (TQ, IQ, FQ) is a SVNS subset of S where TQ, IQ, FQ are constant valued functions then a strong SVNSGS
of Ǧ with SVNS vertex set Q is always a strong totally self-complementary SVNSGS.

Proof. Consider three constants p, q, r ∈ [0, 1], such that TQ(m) = p, IQ(m) = q, FQ(m) = r ∀m ∈ S Since Ǧ is
totally self-complementary strong GS, so there is a bijection f : S → S for any permutation φ−1 on {1,2,...,n},

such that for any Sk-edge (mn), (f(m)f(n)) [a Si-edge in Ǧ ] is a Sk-edge in Ǧφ−1c. Hence for every Qk-edge

(mn), (f(m)f(n)) [a Qi-edge in Ǧn ] is a Q
φ
k -edge in Ǧn

φ−1c
.

Moreover Ǧn is strong SVNSGS, so

TQ(m) = p = TQ(f(m)), IQ(m) = q = IQ(f(m)), FQ(m) = r = FQ(f(m)) ∀m ∈ S and
TQk

(mn) = TQ(m) ∧ TQ(n) = TQ(f(m)) ∧ TQ(f(n)) = T
Q

φ

i

(f(m)f(n)),

IQk
(mn) = IQ(m) ∧ IQ(n) = IQ(f(m)) ∧ IQ(f(n)) = I

Q
φ

i

(f(m)f(n)),

FQk
(mn) = FQ(m) ∨ IQ(n) = FQ(f(m)) ∨ FQ(f(n)) = F

Q
φ

i

(f(m)f(n)),

∀mn ∈ Si, i = 1, 2, ..., n. This shows Ǧn is seif-complementary strong SVNSGS. Every permutation φ, φ−1 on
{1,2,...,n} satisfies above expressions, thus Ǧn is strong totally self-complementary SVNSGS. Hence required
result is obtained.

Remark 2.40. Converse of theorem 2.39 may not be true, as a SVNSGS shown in Fig. 2.39 is strong totally
self-complementary, it is strong and its underlying GS is a strong totally self-complementary but TQ, IQ, FQ

are not constant functions.
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