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METHODOLOGIES AND APPLICATION

Single-valued neutrosophic similarity measures based
on cotangent function and their application in the fault diagnosis
of steam turbine

Jun Ye1
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Abstract Similarity measure is an important tool in pat-
tern recognition and fault diagnosis. This paper proposes
two cotangent similarity measures for single-valued neutro-
sophic sets (SVNSs) based on cotangent function. Then, the
weighted cotangent similarity measures are introduced by
considering the importance of each element. Moreover, by
the comparison between the cotangent similaritymeasures of
SVNSs and existing cosine similaritymeasure of SVNSs, the
developed cotangent similarity measures demonstrate their
advantages and rationality and in some cases can overcome
some disadvantages of the cosine similarity measure defined
in vector space. Finally, the cotangent similarity measures
are applied to the fault diagnosis of steam turbine. The pro-
posed fault diagnosis method demonstrates its effectiveness
and rationality by the comparative analysis with the cosine
similarity measure in the fault diagnosis of steam turbine.

Keywords Single-valued neutrosophic set · Cotangent
similarity measure · Fault diagnosis · Steam turbine

1 Introduction

Various new concepts of high-order fuzzy sets have been
proposed since Zadeh (1965) firstly presented fuzzy set the-
ory. Among them, intuitionistic fuzzy sets (IFSs) introduced
by Atanassov (1986) are the generalization of fuzzy sets.
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In IFS, two characteristic functions are expressed by the
membership degree and non-membership degree of elements
in the universe to the set, and the hesitation degree called
hesitation margin is defined as 1 minus the sum of member-
ship and non-membership degrees. Therefore, it provides a
flexible mathematical framework to incomplete and uncer-
tainty information. However, it can only handle incomplete
and uncertainty information but not the indeterminate and
inconsistent information which exists commonly in real sit-
uations. Therefore, Smarandache (1999) originally proposed
the concept of a neutrosophic set from philosophical point
of view. According to the definition of a neutrosophic set
given by Smarandache (1999), a neutrosophic set A in a
universal set X is characterized independently by a truth-
membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x).
The functions TA(x), IA(x), and FA(x) in X are real stan-
dard or nonstandard subsets of ]−0, 1+[, i.e., TA(x): X →
]−0, 1+[, IA(x): X → ]−0, 1+[, and FA(x): X → ]−0,
1+[. However, the defined range of the functions TA(x),
IA(x) and FA(x) in a neutrosophic set A is within the non-
standard unit interval ]−0, 1+[, which is indicated in the
definition of the neutrosophic set A (Smarandache 1999),
it is only used for philosophical applications, especially
when distinction is required between absolute and relative
truth/falsity/indeterminacy. To easily use in technical appli-
cations of the neutrosophic set, the defined range of TA(x),
IA(x) and FA(x) can be restrained to the normal standard
real unit interval [0, 1] (Wang et al. 2005, 2010). Thus,
Wang et al. (2005, 2010) introduced the concepts of a single-
valued neutrosophic set (SVNS) and an interval neutrosophic
set (INS), which are the subclasses of the neutrosophic set.
Then, SVNSs and INSs are the generalization of the con-
cepts of the classic sets, fuzzy sets, IFSs and interval-valued
intuitionistic fuzzy sets (IVIFSs) and can deal with incom-
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plete, indeterminate and inconsistent information. Therefore,
SVNSs and INSs have been applied to some engineering
fields, such as decision making (Ye 2014c; Liu et al. 2014;
Liu and Wang 2014; Peng et al. 2014), clustering analysis
(Ye 2014d) and image processing (Guo et al. 2014). How-
ever, till now, SVNSs and INSs have not been applied to fault
diagnosis field.

Similarity measure is an important topic in the neutro-
sophic theory.Many similarity measures have been proposed
by some researchers. Broumi and Smarandache (2013)
defined theHausdorff distancebetweenneutrosophic sets and
some similarity measures based on the distance, set theoretic
approach, and matching function to calculate the similarity
degree between neutrosophic sets. Majumdar and Samanta
(2014) introduced several similarity measures of SVNSs
based on distances, amatching function,membership grades,
and then proposed an entropy measure for a SVNS. Then, Ye
(2014a) introduced the Hamming and Euclidean distances
between INSs and the distance-based similarity measures
and applied them tomultiple attribute decision-making prob-
lems with interval neutrosophic information. Ye (2014b)
further put forward the distance-based similarity measure of
SVNSs and applied it to group decision-making problems
with single-valued neutrosophic information. Furthermore,
Ye (2014c) presented three vector similarity measures for
simplified neutrosophic sets (SNSs), including the Jaccard,
Dice and cosine similarity measures for SVNSs and INSs,
based on the extension of the Jaccard, Dice and cosine
similarity measures between vectors and applied them to
multicriteria decision-making problems under a simplified
neutrosophic environment.

Among various similarity measures, a type of similarity
measures based on trigonometric functions has been intro-
duced and applied to science and engineering areas. For
example, (Ye 2011, 2014c) put forward some cosine similar-
ity measures for IFSs, SVNSs and INSs and applied them to
pattern recognition, medical diagnosis and decision making.
Tian (2013) developed the cotangent similarity measure of
IFSs and applied it tomedical diagnosis. However, the cosine
similaritymeasures defined in vector space (Ye 2011, 2014c)
have some drawbacks in some situations. For instance, in
some cases, they produce undefined (unmeaningful) phe-
nomena or some results calculated by the cosine similarity
measures are not reasonable in some real cases (details given
in Sects. 2 and 4).As the cotangentmeasure can overcome the
aforementioned drawbacks of the cosine measure, we should
extend the cotangent measure to the similarity measure of
SVNSs. Motivated by the cotangent similarity measure of
IFSs, this paper proposes two cotangent similarity measures
of SVNSs and apply them to the fault diagnosis of steam
turbine. To do so, the rest of the article is organized as fol-
lows. Section 2 introduces somebasic concepts and similarity
measures of IFSs and SVNSs. Section 3 put forward two sim-

ilarity measures of SVNSs based on cotangent function and
investigates their properties. In Sect. 4, we give the compara-
tive analysis between the developed cotangent measures and
existing cosinemeasure for SVNSs. Section 5 applies the two
cotangent similarity measures to the fault diagnosis of steam
turbine and gives the comparative analysis with the cosine
similarity measure in the fault diagnosis of steam turbine.
Conclusions and further research are contained in Sect. 6.

2 Some concepts and similarity measures of IFSs
and SVNSs

2.1 IFS and its cotangent similarity measure

Atanassov (1986) presented an IFS concept as an extension
of the concept of a fuzzy set (Zadeh 1965) and gave the
following definition.

Definition 1 (Atanassov 1986) An IFS A in the universe of
discourse X is defined as A = {〈x, μA(x), νA(x)〉|x ∈ X},
where μA(x): X → [0, 1] and νA(x): X → [0, 1] are
themembership degree and non-membership degree, respec-
tively, of the element x to the set A with the condition 0 ≤
μA(x) + νA(x) ≤ 1 for x ∈ X .

Then m A(x) = 1 −μA(x) − νA(x) is called Atanassov’s
intuitionistic index or a hesitancy degree of the element x in
the set A. Obviously, there is 0 ≤ m A(x) ≤ 1 for x ∈ X.

Similarity measures have the following definition (Tian
2013).

Definition 2 (Tian2013)A real-valued function S: IFS(X)×
IFS(X ) → [0, 1] is called a similarity measure on IFS(X ), if
it satisfies the following axiomatic requirements:

(S1) 0 ≤ S (A, B) ≤ 1;
(S2) S(A, B) = 1 if and only if A = B;
(S3) S(A, B) = S(B, A);
(S4) If A ⊆ B ⊆ C , then S(A, C) ≤ S(A, B) and

S(A, C) ≤ S(B, C).

Assume that there are two IFSs A = {〈x j , μA(x j ),

νA(x j )〉|x j ∈ X} and B = {〈x j , μB(x j ), νB(x j )〉|x j ∈ X}
in the universe of discourseX = {x1, x2,…, xn}. Tian (2013)
proposed the following cotangent similarity measure of the
IFSs A and B:

C S(A, B)= 1
n

n∑

j=1
cot

[
π
4 + π

4 max

(∣
∣μA(x j )−μB(x j )

∣
∣ ,∣

∣νA(x j )−νB(x j )
∣
∣

)]

.

(1)
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2.2 Some concepts and cosine measure of SVNSs

Smarandache (1999) firstly gave the definition of a neutro-
sophic set from philosophical point of view.

Definition 3 (Smarandache 1999) Let X be a space of
points (objects) with a generic element in X denoted by
x . A neutrosophic set A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x),
respectively. The functions TA(x), IA(x), FA(x) in X are
real standard or nonstandard subsets of ]−0, 1+[, such that
TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[ and FA(x):
X → ]−0, 1+[. Then, the sum of TA(x), IA(x) and FA(x)

has no restriction. Hence, there is the condition −0 ≤ sup
TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

To easily apply the neutrosophic set to science and engi-
neering areas, Wang et al. (2010) introduced the concept of
SVNS, which is a subclass of the neutrosophic set and gave
the following definition.

Definition 4 (Wang et al. 2010) Let X be a universal set. A
SVNS A in X is characterized by a truth-membership func-
tion TA(x), an indeterminacy-membership function IA(x),
and a falsity-membership function FA(x). Then, a SVNS A
can be denoted by the following symbol:

A = {〈x, TA(x), IA(x), FA(x)〉 |x ∈ X} ,

where TA(x), IA(x), FA(x) ∈ [0, 1] for each x in X .
Therefore, the sum of TA(x), IA(x) and FA(x) satisfies the
condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For two SVNSs A = {〈x, TA(x), IA(x), FA(x)〉 |x ∈ X}
and B = {〈x, TB(x), IB(x), FB(x)〉 |x ∈ X}, there are the
following relations (Wang et al. 2010):

(1) Complement

Ac = {〈x, FA(x), 1 − IA(x), TA(x)〉 |x ∈ X} ;

(2) Inclusion
A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x),
FA(x) ≥ FB(x) for any x in X ;

(3) Equality
A = B if and only if A ⊆ B and B ⊆ A;

(4) Union

A ∪ B =
⎧
⎨

⎩

〈 x, TA(x) ∨ TB(x),

IA(x) ∧ IB(x),

FA(x) ∧ FB(x)

〉

|x ∈ X

⎫
⎬

⎭
;

(5) Intersection A∩B =
⎧
⎨

⎩

〈 x, TA(x) ∧ TB(x),

IA(x) ∨ IB(x),

FA(x) ∨ FB(x)

〉

|x ∈ X

⎫
⎬

⎭
.

Assume that there are two SVNSs A = {〈x j , TA(x j ),
IA(x j ), FA(x j )〉|x j ∈ X} and B = {〈x j , TB(x j ), IB(x j ),
FB(x j )〉|x j ∈ X} in the universe of discourse X = {x1, x2,
…, xn}. Ye (2014c) presented the cosine similarity measure
of SVNSs in vector space:

Cos(A, B) = 1

n

n∑

j=1

⎛

⎝
TA(x j )TB(x j )+
IA(x j )IB(x j )+
FA(x j )FB(x j )

⎞

⎠

⎛

⎜
⎝

√
T 2

A(x j ) + I 2A(x j ) + F2
A(x j )

√
T 2

B(x j ) + I 2B(x j ) + F2
B(x j )

⎞

⎟
⎠

.

(2)

However, one can find some drawbacks of Eq. (2) as follows:

(1) For twoSVNSs A and B, if TA(x j ) = IA(x j )= FA(x j ) =
0 and/or TB(x j ) = IB(x j ) = FB(x j ) = 0 for any x j in
X ( j = 1, 2,…, n), Eq. (2) is undefined or unmeaningful.
In this case, one cannot utilize it to calculate the cosine
similarity measure between A and B.

(2) If TA(x j ) = 2TB(x j ), IA(x j ) = 2IB(x j ) and FA(x j ) =
2FB(x j ) or 2TA(x j ) = TB(x j ), 2IA(x j ) = IB(x j ) and
2FA(x j ) = FB(x j ) for any x j in X ( j = 1, 2, …, n), the
measure value of Eq. (2) is as follows:

Cos(A, B)

= 1
n

n∑

j=1

⎛

⎜
⎜
⎝

2TA(x j )TB(x j )+
2IA(x j )IB(x j )+
2FA(x j )FB(x j )

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

2
√

T 2
A(x j ) + I 2A(x j ) + F2

A(x j )
√

T 2
B(x j ) + I 2B(x j ) + F2

B(x j )

⎞

⎟
⎟
⎟
⎠

.

= 1
n

n∑

j=1

T 2
A(x j )+I 2A(x j )+F2

A(x j )

T 2
A(x j )+I 2A(x j )+F2

A(x j )
= 1

Since A = B, the measure value of Cos(A, B) is equal to
1. Thismeans that it only satisfies the necessary condition
of the property (S2) in Definition 2, but not the sufficient
condition. Therefore, in this case, it is unreasonable to
apply to pattern recognition and fault diagnosis.

To overcome these disadvantages, we shall propose two
cotangent similarity measures of SVNSs in the following
section.

3 Cotangent similarity measures of SVNSs

Based on cotangent function, the section proposes two cotan-
gent similarity measures between SVNSs and investigates
their properties.
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Definition 5 Let A = {< x j , TA(x j ), IA(x j ), FA(x j ) >

|x j ∈ X} and B = {< x j , TB(x j ), IB(x j ), FB(x j ) > |x j ∈
X} be any two SVNSs in X = {x1, x2, …, xn}. Then, we
define two cotangent similarity measures between A and B,
respectively, as follows:

Cot1(A, B)

= 1

n

n∑

j=1

cot

⎡

⎣π

4
+ π

4
max

⎛

⎝

∣
∣TA(x j ) − TB(x j )

∣
∣ ,∣

∣IA(x j ) − IB(x j )
∣
∣ ,∣

∣FA(x j ) − FA(x j )
∣
∣

⎞

⎠

⎤

⎦, (3)

Cot2(A, B)

= 1

n

n∑

j=1

cot

⎡

⎣π

4
+ π

12

⎛

⎝

∣
∣TA(x j ) − TB(x j )

∣
∣+∣

∣IA(x j ) − IB(x j )
∣
∣ +∣

∣FA(x j ) − FB(x j )
∣
∣

⎞

⎠

⎤

⎦. (4)

Proposition 1 For two SVNSs A and B in X= {x1, x2, …,
xn}, the cotangent similarity measure Cotk(A, B) (k = 1, 2)
should satisfy the axiomatic requirements (S1–S4) in Defin-
ition 2.

Proof (S1) Since the truth-membership, indeterminacy-
membership, and falsity-membership functions in
SVNS and the cotangent function within the interval
[π /4, π /2] lie between 0 and 1, the similarity measures
based on cotangent function also lie between 0 and 1.
Hence, there is 0 ≤ Cotk(A, B) ≤ 1 for k = 1, 2.

(S2) For the two SVNSs A and B, if A = B, this implies
TA(x j ) = TB(x j ), IA(x j ) = IB(x j ), FA(x j ) =
FB(x j ) for j= 1, 2, …, n and x j ∈ X. Hence∣
∣TA(x j ) − TB(x j )

∣
∣ = 0,

∣
∣IA(x j ) − IB(x j )

∣
∣ = 0, and∣

∣FA(x j ) − FB(x j )
∣
∣ = 0. Thus Cotk(A, B) = 1 for k =

1, 2.
If Cotk(A, B) = 1 for k = 1, 2, this implies∣
∣TA(x j ) − TB(x j )

∣
∣ = 0,

∣
∣IA(x j ) − IB(x j )

∣
∣ = 0, and∣

∣FA(x j ) − FB(x j )
∣
∣ = 0 since cot(π /4) is equal to 1.

Then, these equalities indicate that TA(x j ) = TB(x j ),
IA(x j ) = IB(x j ), and FA(x j ) = FB(x j ) for j= 1, 2,
…, n and x j ∈ X . Hence A = B.

(S3) The proof is straightforward.
(S4) If A ⊆ B ⊆ C,then this implies TA(x j ) ≤ TB(x j ) ≤

TC (x j ), IA(x j ) ≥ IB(x j ) ≥ IC (x j ), and FA(x j ) ≥
FB(x j ) ≥ FC (x j ) for j= 1, 2, …, n and x j ∈ X . Then,
we have

∣
∣TA(x j ) − TB(x j )

∣
∣ ≤ ∣

∣TA(x j ) − TC (x j )
∣
∣ ,

∣
∣TB(x j ) − TC (x j )

∣
∣ ≤ ∣

∣TA(x j ) − TC (x j )
∣
∣ ,

∣
∣IA(x j ) − IB(x j )

∣
∣ ≤ ∣

∣IA(x j ) − IC (x j )
∣
∣ ,

∣
∣IB(x j ) − IC (x j )

∣
∣ ≤ ∣

∣IA(x j ) − IC (x j )
∣
∣ ,

∣
∣FA(x j ) − FB(x j )

∣
∣ ≤ ∣

∣FA(x j ) − FC (x j )
∣
∣ ,

and
∣
∣FB(x j ) − FC (x j )

∣
∣ ≤ ∣

∣FA(x j ) − FC (x j )
∣
∣ .

Hence, Cotk(A, C) ≤ Cotk(A, B) and Cotk(A, C) ≤
Cotk(B, C) for k = 1, 2 since the cotangent function is
a decreasing function within the interval [π /4, π /2].

Therefore, the proofs of these axiomatic requirements are
completed. ��

Usually, one takes the weight of each element x j for x j ∈
X into account. Assume that the weight of an element x j is
w j ( j = 1, 2, …, n) with w j ∈ [0, 1] and

∑n
j=1 w j = 1.

Thus, we can introduce the following weighted cotangent
similarity measures of SVNSs:

WCot1(A, B)=
n∑

j=1
w j cot

⎡

⎣ π
4 + π

4 max

⎛

⎝

∣
∣TA(x j ) − TB(x j )

∣
∣ ,∣

∣IA(x j ) − IB(x j )
∣
∣ ,∣

∣FA(x j ) − FA(x j )
∣
∣

⎞

⎠

⎤

⎦,

(5)

WCot2(A, B)=
n∑

j=1
w j cot

⎡

⎣π
4 + π

12

⎛

⎝

∣
∣TA(x j ) − TB(x j )

∣
∣+∣

∣IA(x j ) − IB(x j )
∣
∣ +∣

∣FA(x j ) − FA(x j )
∣
∣

⎞

⎠

⎤

⎦.

(6)

Especially when w j = 1/n for j = 1, 2, …, n, Eqs. (5) and
(6) reduce to Eqs. (3) and (4).

4 Comparative analysis

To compare the proposed cotangent measures with the cosine
measure in Ye (2014c) in single-valued neutrosophic setting,
we provide an example to demonstrate the effectiveness and
rationality of the proposed two cotangent similaritymeasures
of SVNSs.

Example 1 We consider any two SVNSs A1 and A2 and
compare the proposed cotangent similarity measures with
existing cosine similarity measure in Ye (2014c) by the fol-
lowing cases:

Case 1 Assume that there are two SVNSs in X = {x}:
A1 = {< x , 0.1, 0.2, 0.2> |x ∈ X} and A2 = {< x , 0.2,
0.4, 0.4> |x ∈ X}.

Then, using Eqs. (2)–(4), we can obtain Cos(A1, A2) =
1, Cot1(A1, A2) = 0.7265 and Cot2(A1, A2) = 0.7673. The
measure value of Cos(A1, A2) is equal to 1, which is not
reasonable since A1 = A2. In this case, it is also unrea-
sonable in the applications of pattern recognition and fault
diagnosis. Furthermore, this also means that it only satisfies
the necessary condition of the axiomatic requirement (S2)
in Definition 2, but not the sufficient condition. Then, the
results of the cotangent similarity measures Cot1(A1, A2)

and Cot2(A1, A2) are reasonable.
Case 2 Assume that there are two SVNSs in X = {x}:

A1 = {< x , 0.1, 0.2, 0.3> |x ∈ X} and A2 = {< x , 0.0, 0.0,
0.0> |x ∈ X}.
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Then, by applying Eq. (2) the cosine similarity measure
Cos(A1, A2) is undefined or unmeaningful. In this case, one
cannot utilize it to calculate the cosine similarity measure
between A1 and A2. However, by applying Eqs. (3)–(4) we
get Cot1(A1, A2) = 0.6128 and Cot2(A1, A2) = 0.7265. The
results show that the two cotangent similarity measures are
effective and reasonable.

The example demonstrates that the proposed two cotan-
gent similarity measures of SVNSs are effective and reason-
able and in some cases can overcome the disadvantages of the
cosine similaritymeasure defined in vector space (Ye 2014c).

5 Application in the fault diagnosis of steam
turbine

The vibration of huge steam turbine generator sets is usually
a typical fault type, which suffers the influence of a lot of fac-
tors like the mechanical structure, load, vacuum degree, hot
inflation of cylinder body and rotor, fluctuation of network
load, temperature of lubricant oil, ground, and so on. In steam
turbine, interaction effects in these factors show the vibration
of steam turbine. In the vibration fault diagnosis of steam tur-
bine, the relation between the cause and the fault phenomena
of steam turbine has been investigated in Ye (2009). For the
vibration fault diagnosis problem of steam turbine, the fault
diagnosis of the turbine realized by the frequency features,
which are extracted from the vibration signals of steam tur-
bine, is a simple and effective method. However, a volume of
fault feature informationobtained frommodemmeasurement
technologies usually contains a lot of incomplete, uncertain
and inconsistent information. In some practical situations,
the frequency features may include incomplete and indeter-
minate information, which is expressed suitably by SVNSs.
Here, we apply the cotangent similarity measures of SVNSs
to the vibration fault diagnosis of steam turbine.

In the fault diagnosis problem of the turbine, we consider
a set of ten fault patterns A= {A1 (Unbalance), A2 (Pneu-
matic force couple), A3 (Offset center), A4 (Oil-membrane
oscillation), A5 (Radial impact friction of rotor), A6 (Sym-
biosis looseness), A7 (Damage of antithrust bearing), A8

(Surge), A9 (Looseness of bearing block) and A10(Non-
uniform bearing stiffness)} as the fault knowledge and a set
of nine frequency ranges for different frequency spectrum
C = {C1(0.01–0.39 f ), C2(0.4–0.49 f ), C3(0.5 f ), C4(0.51–
0.99 f ), C5( f ), C6(2 f ), C7(3–5 f ), C8 (Odd times of f ) and
C9 (High frequency > 5 f )} under operating frequency f as
a characteristic set (attribute set). Then, the information of
the fault knowledge Ai (i = 1, 2, …, 10) with respect to
the frequency range (attribute)C j ( j = 1, 2, …, 9) can be
introduced from Ye (2009), which is shown in Table 1 (Ye
2009). Here, assume that the weight of each characteristic Ta
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C j is w j = 1/9 for j = 1, 2, …, 9. To show the effectiveness
of the fault diagnosis method using the cotangent similarity
measures of SVNSs, each vague value [Ti j , 1−Fi j ] (basic
element) in a vague set Ai (i = 1, 2, …, 10; j = 1, 2, …,
9) in Table 1 can be transformed it into a single-valued neu-
trosophic value denoted by 〈Ti j , Ii j , Fi j 〉, which is shown in
Table 2.

In the vibration fault diagnosis of steam turbine, two real
testing samples are introduced from Ye (2009), which are
represented by the form of two single-valued neutrosophic
sets: B1 = {〈0, 0, 1〉, 〈0, 0, 1〉, 〈0.1, 0, 0.9〉, 〈0.9, 0, 0.1〉,
〈0, 0, 1〉, 〈0, 0, 1〉, 〈0, 0, 1〉, 〈0, 0, 1〉, 〈0, 0, 1〉} and B2 =
{〈0.39, 0, 0.61〉, 〈0.07, 0, 0.93〉, 〈0, 0, 1〉, 〈0.06, 0, 0.94〉, 〈0,
0, 1〉, 〈0.13, 0, 0.87〉, 〈0, 0, 1〉, 〈0, 0, 1〉, 〈0.35, 0, 0.65〉}.
Then, ranking all faults according to the cotangent similarity
measure values between Ai (i = 1, 2, …, 10) and Bs (s =
1, 2) in a decreasing order, we can give the diagnosis results,
which are described as follows.

5.1 Fault diagnosis of the first testing sample B1

The cotangent similarity measures between Ai (i = 1, 2, …,
10) and B1 are calculated by Eq. (5) as follows:

WCot1(A1, B1) = 0.7487, WCot1(A2, B1) = 0.8811,
WCot1(A3, B1) 0.7108,WCot1(A4, B1) = 0.7755,WCot1
(A5, B1) = 0.7505,WCot1(A6, B1) = 0.7216,WCot1(A7,
B1) = 0.9816,WCot1(A8, B1) = 0.8978,WCot1(A9, B1) =
0.7572, and WCot1(A10, B1) = 0.7509.

Therefore, the ranking order of all faults is A7 → A8 →
A2 → A4 → A9 → A10 → A5 → A1 → A6 → A3.

Or using Eq. (6), we can also calculate the cotangent sim-
ilarity measures between Ai (i = 1, 2, …, 10) and B1 as
follows:

WCot2(A1, B1) = 0.8180,WCot2(A2, B1) = 0.9164,
WCot2(A3, B1) = 0.7908,WCot2(A4, B1) = 0.8372,WCot2
(A5, B1) = 0.8243,WCot2(A6, B1) = 0.8011,WCot2(A7,
B1) = 0.9876,WCot2(A8, B1) = 0.9277,WCot2(A9, B1) =
0.8238, and WCot2(A10, B1) = 0.8195.

Therefore, the ranking order of all faults is A7 → A8 →
A2 → A4 → A5 → A9 → A10 → A1 → A6 → A3.

According to above two kinds of fault ranking orders, the
vibration faults of the turbine are firstly resulted fromdamage
of antithrust bearing (A7), next surge (A8), and then pneu-
matic force couple (A2), and so on. By actual checking, we
discover that one of antithrust bearings is damage, which is
in accordance with the actual fault. Thus, it causes the violent
vibration of the turbine.

5.2 Fault diagnosis of the second testing sample B2

The cotangent similarity measures between Ai (i = 1, 2, …,
10) and B2 are calculated by Eq. (5) as follows:

WCot1(A1, B2) = 0.7387, WCot1(A2, B2) = 0.7530,
WCot1(A3, B2) = 0.7183, WCot1(A4, B2) = 0.7900, WCot1
(A5, B2) = 0.8017, WCot1(A6, B2) = 0.8030, WCot1(A7,
B2) 0.7466, WCot1(A8, B2) = 0.7499, WCot1(A9, B2) =
0.8205, and WCot1(A10, B2) = 0.7574.

Therefore, the ranking order of all faults is A9 → A6 →
A5 → A4 → A10 → A2 → A8 → A7 → A1 → A3.

Or using Eq. (6), the cotangent similarity measures
between Ai (i = 1, 2, …, 10) and B2 are also calculated
as follows:

WCot2(A1, B2) = 0.8133, WCot2(A2, B2) = 0.8245,
WCot2(A3, B2) = 0.7991,WCot2(A4, B2) = 0.8499,WCot2
(A5, B2) = 0.8623, WCot2(A6, B2) = 0.8613, WCot2(A7,
B2) = 0.8189, WCot2(A8, B2) = 0.8224, WCot2(A9, B2) =
0.8733, and WCot2(A10, B2) = 0.8269.

Hence, the ranking order of all faults is A9 → A5 →
A6 → A4 → A10 → A2 → A8 → A7 → A1 → A3.

According to above two kinds of fault ranking orders, we
can see that the vibration fault of the turbine is firstly resulted
from the looseness of bearing block (A9), then either symbio-
sis looseness (A6) and radial impact friction of rotor (A5) or
radial impact friction of rotor (A5) and symbiosis looseness
(A6), and so on. By actual checking, we discover the fric-
tion between the rotor and cylinder body in the turbine, and
then the vibration values of four ground bolts of the bearing
between the turbine and the gearbox are very difference. We
also discover that the gap between the nuts and the bearing
block is oversize. Thus, the looseness of the bearing block
causes the violent vibration of the turbine, which is in accor-
dance with the actual fault.

Obviously, the results of all fault diagnoses based on the
two cotangent similarity measures are the same as the actual
faults of the turbine. The fault diagnosis results of the tur-
bine show that the fault diagnosis method not only indicates
the main fault types of the turbine, but also provides useful
information for multi-fault analyses and fault trend.

5.3 Comparative analysis with the cosine similarity
measure

To show the advantages and rationality of the fault diagnosis
method of steam turbine proposed in this paper, we compare
the proposed cotangent similarity measures with the cosine
similarity measure proposed by Ye (2014c) in the fault diag-
nosis of steam turbine.

For the fault diagnosis of the testing sample B1, the cosine
similarity measures between Ai (i = 1, 2, …, 10) and B1 are
calculated by Eq. (2) as follows:

Cos(A1, B1) = 0.7891, Cos(A2, B1) = 0.9799, Cos(A3,
B1) = 0.8282, Cos(A4, B1) = 0.8236, Cos(A5, B1) =
0.9057, Cos(A6, B1) = 0.8714, Cos(A7, B1) = 0.9995,
Cos(A8, B1) = 0.9773, Cos(A9, B1) = 0.7979, andCos(A10,
B1) = 0.8099.
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Therefore, the ranking order of all faults is A7 → A2 →
A8 → A5 → A6 → A3 → A4 → A10 → A9 → A1.

For the fault diagnosis of the testing sample B2, the cosine
similarity measures between Ai (i = 1, 2, …, 10) and B2 are
calculated by Eq. (2) as follows:

Cos(A1, B2) = 0.8568, Cos(A2, B2) = 0.9128, Cos(A3,
B2) = 0.9066, Cos(A4, B2) = 0.8953, Cos(A5, B2) =
0.9738, Cos(A6, B2) = 0.9567, Cos(A7, B2) = 0.8720,
Cos(A8, B2) = 0.9201,Cos(A9, B2) = 0.9403, andCos(A10,
B2) = 0.8938.

Thus, the ranking order of all faults is A5 → A6 → A9 →
A8 → A2 → A3 → A4 → A10 → A7 → A1.

By the comparison between the cotangent similarity mea-
sures and the cosine similarity measure in the fault diagnosis
of the turbine, themain fault of the testing sample B1 obtained
by the cotangent and cosine similarity measures is the dam-
ageof antithrust bearing (A7),which is in accordancewith the
actual fault; while for the testing sample B2, the main faults
obtained by the cotangent and cosine similarity measures
indicate different diagnosis results. The main fault obtained
based on the cosine similarity measure is the radial impact
friction of rotor (A5), which is not in accordance with the
actual fault of the looseness of the bearing block, and then
the main fault obtained based on the two cotangent similar-
ity measures is the looseness of bearing block (A9), which
is in accordance with the actual fault. Therefore, the fault
diagnosis results show that the cotangent similarity measures
outperform the cosine similarity measure in Ye (2014c) and
demonstrate the effectiveness and rationality in the fault diag-
nosis of steam turbine.Asmentioned before, the advantage of
the cotangent similarity measures is that they can overcome
the drawbacks such as undefined and unreasonable phenom-
ena, which the cosine similarity measure implies in some
cases.

However, the comparative analysis demonstrates that the
proposed cotangent similarity measures for the fault diagno-
sis of steam turbine not only are effective and reasonable,
but also can overcome the drawbacks of the cosine similarity
measure defined in vector space. Therefore, the cotangent
similarity measures provide a new method for the fault diag-
nosis of steam turbine under a single valued neutrosophic
environment.

6 Conclusion

This paper proposed two new cotangent similarity mea-
sures for SVNSs based on the cotangent function. Then, the
weighted cotangent similarity measures were introduced by
considering the importance of each element. By the compar-
ison between the cotangent similarity measures and existing
cosine similarity measure under single-valued neutrosophic

environment, the developed two cotangent measures demon-
strated their advantages and can overcome the drawbacks of
the cosine similarity measure in some cases. Finally, the pro-
posed cotangent similarity measures of SVNSs were applied
to the fault diagnosis of steam turbine. The comparative
analysis demonstrated the effectiveness and rationality of the
proposed fault diagnosis method. The fault diagnosis method
based on the cotangent similarity measures not only provides
a new way for the fault diagnosis of steam turbine under
a single-valued neutrosophic environment but also extends
existing fault diagnosis methods for steam turbine.

In further work, it is necessary and meaningful to extend
the cotangent similarity measures of SVNSs to interval
neutrosophic cotangent measures and their applications,
such as decision making, pattern recognition, and medical
diagnosis.
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