Smarandache's Cevians Theorem (I)

Edited by Dr. M. Khoshnevisan
Neuro Intelligence Center, Australia
E-mail: $\underline{\text { mkhoshnevisan@neurointelligence-center.org }}$

Abstract.

We present the Smarandache's Cevians Theorem in the geometry of the triangle.

Smarandache's Cevians Theorem (I).

In a triangle $\triangle A B C$ let's consider the Cevians $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ that intersect in P.
Then:

$$
E(P)=\frac{\|P A\|}{\left\|P A^{\prime}\right\|}+\frac{\|P B\|}{\left\|P B^{\prime}\right\|}+\frac{\|P C\|}{\left\|P C^{\prime}\right\|} \geq 6
$$

and

$$
F(P)=\frac{\|P A\|}{\left\|P A^{\prime}\right\|} \cdot \frac{\|P B\|}{\left\|P B^{\prime}\right\|} \cdot \frac{\|P C\|}{\left\|P C^{\prime}\right\|} \geq 8
$$

where $A^{\prime} \in[B C], B^{\prime} \in[C A], C^{\prime} \in[A B]$.

Proof:

We'll apply the theorem of Van Aubel three times for the triangle $\triangle A B C$, and it results:

$$
\begin{aligned}
& \frac{\|P A\|}{\left\|P A^{\prime}\right\|}=\frac{\left\|A C^{\prime}\right\|}{\| C^{\prime} B^{\|}}+\frac{\left\|A B^{\prime}\right\|}{\left\|B^{\prime} C\right\|} \\
& \frac{\|P B\|}{\left\|P B^{\prime}\right\|}=\frac{\left\|B A^{\prime}\right\|}{\left\|A^{\prime} C\right\|}+\frac{\left\|B C^{\prime}\right\|}{\left\|C^{\prime} A\right\|} \\
& \frac{\|P C\|}{\left\|P C^{\prime}\right\|}=\frac{\left\|C A^{\prime}\right\|}{\left\|A^{\prime} B\right\|}+\frac{\left\|C B^{\prime}\right\|}{\left\|B^{\prime} A\right\|}
\end{aligned}
$$

If we add these three relations and we use the notation

$$
\frac{\left\|A C^{\prime}\right\|}{\left\|C^{\prime} B\right\|}=x>0, \frac{\left\|A B^{\prime}\right\|}{\left\|B^{\prime} C\right\|}=y>0, \frac{\left\|B A^{\prime}\right\|}{\left\|A^{\prime} C\right\|}=z>0
$$

then we obtain:

$$
E(P)=\left(x+\frac{1}{y}\right)+\left(x+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right) \geq 2+2+2=6
$$

The minimum value will be obtained when $x=y=z=1$, therefore when P will be the gravitation center of the triangle.

When we multiply the three relations we obtain

$$
F(P)=\left(x+\frac{1}{y}\right) \cdot\left(x+\frac{1}{y}\right) \cdot\left(z+\frac{1}{z}\right) \geq 8
$$

Open Problems related to Smarandache's Cevians Theorem (I)

1. Instead of a triangle we may consider a polygon $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ and the lines $\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\prime}, \mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}$, $\ldots, \mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}$, that intersect in a point P .
Calculate the minimum value of the expressions:

$$
\begin{gathered}
E(P)=\frac{\left\|P A_{1}\right\|}{\left\|P A_{1}{ }^{\prime}\right\|}+\frac{\left\|P A_{2}\right\|}{\left\|P A_{2}{ }^{\prime}\right\|}+\ldots+\frac{\left\|P A_{n}\right\|}{\left\|P A_{n^{\prime}}\right\|} \\
F(P)=\frac{\left\|P A_{1}\right\|}{\left\|P A_{1}\right\|} \cdot \frac{\left\|P A_{2}\right\|}{\left\|P A_{2}{ }^{\prime}\right\|} \cdot \ldots \cdot \frac{\left\|P A_{n}\right\|}{\left\|P A_{n}{ }^{\prime}\right\|}
\end{gathered}
$$

2. Then let's generalize the problem in the 3D space, and consider the polyhedron $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ and the lines $\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\prime}, \mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}{ }^{\prime}$ that intersect in a point P . Similarly, calculate the minimum of the expressions $\mathrm{E}(\mathrm{P})$ and $\mathrm{F}(\mathrm{P})$.

References:

[1] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.
[2 F. Smarandache, Problèmes avec et sans... problèmes!, pp. 49 \& 54-60, Somipress, Fés, Morocoo, 1983.

