Smarandache's Cevians Theorem (I)

Edited by Dr. M. Khoshnevisan Neuro Intelligence Center, Australia E-mail: <u>mkhoshnevisan@neurointelligence-center.org</u>

Abstract.

We present the Smarandache's Cevians Theorem in the geometry of the triangle.

Smarandache's Cevians Theorem (I).

In a triangle $\triangle ABC$ let's consider the Cevians AA', BB' and CC' that intersect in P. Then:

$$E(P) = \frac{\|PA\|}{\|PA'\|} + \frac{\|PB\|}{\|PB'\|} + \frac{\|PC\|}{\|PC'\|} \ge 6$$

and

$$F(P) = \frac{\|PA\|}{\|PA'\|} \cdot \frac{\|PB\|}{\|PB'\|} \cdot \frac{\|PC\|}{\|PC'\|} \ge 8$$

where $A' \in [BC]$, $B' \in [CA]$, $C' \in [AB]$.

Proof:

We'll apply the theorem of Van Aubel three times for the triangle $\triangle ABC$, and it results:

$\ PA\ $	AC'	AB'
$\ PA'\ $	$- \left\ C'B \right\ ^{-1}$	B'C
	BA'	BC'
PB'	$= \ A'C\ ^{-1}$	$\ C'A\ $
PC	(CA'	
$\ PC'\ $	$= \ A'B\ $	$\ B'A\ $

If we add these three relations and we use the notation

$$\frac{\|AC'\|}{\|C'B\|} = x > 0, \ \frac{\|AB'\|}{\|B'C\|} = y > 0, \ \frac{\|BA'\|}{\|A'C\|} = z > 0$$

then we obtain:

$$E(P) = \left(x + \frac{1}{y}\right) + \left(x + \frac{1}{y}\right) + \left(z + \frac{1}{z}\right) \ge 2 + 2 + 2 = 6$$

The minimum value will be obtained when x = y = z = 1, therefore when *P* will be the gravitation center of the triangle.

When we multiply the three relations we obtain

$$F(P) = \left(x + \frac{1}{y}\right) \cdot \left(x + \frac{1}{y}\right) \cdot \left(z + \frac{1}{z}\right) \ge 8$$

Open Problems related to Smarandache's Cevians Theorem (I)

 Instead of a triangle we may consider a polygon A1A2...An and the lines A1A1', A2A2', ..., AnAn' that intersect in a point P. Calculate the minimum value of the expressions:

$$E(P) = \frac{\|PA_1\|}{\|PA_1'\|} + \frac{\|PA_2\|}{\|PA_2'\|} + \dots + \frac{\|PA_n\|}{\|PA_n'\|}$$
$$F(P) = \frac{\|PA_1\|}{\|PA_1'\|} \cdot \frac{\|PA_2\|}{\|PA_2'\|} \cdot \dots \cdot \frac{\|PA_n\|}{\|PA_n'\|}$$

2. Then let's generalize the problem in the 3D space, and consider the polyhedron $A_1A_2...A_n$ and the lines A_1A_1 ', A_2A_2 ', ..., A_nA_n ' that intersect in a point P. Similarly, calculate the minimum of the expressions E(P) and F(P).

References:

[1] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.

[2 F. Smarandache, *Problèmes avec et sans... problèmes!*, pp. 49 & 54-60, Somipress, Fés, Morocoo, 1983.