Smarandache's codification used in computer programming

Since Venn diagram is very hard to draw and to read for the cases when the number of sets becomes big (say $\mathrm{n}=8,9,10,11, \ldots$), Smarandache has proposed a generalization of Venn diagram through an algebraic representation for the intersection of sets. Let $n \geq 1$ be the number of sets $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$, that are to be intersected in all possible ways in a Venn diagram. Let $1 \leq \mathrm{k} \leq \mathrm{n}$ be an integer.
He noted by: $\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{k}}$ the Venn diagram region that belongs to the sets Si_{1} and Si_{2} and \ldots and Si_{k} only, for all k and all n .
The part which is outside of all sets (i.e. the complement of the union of all sets) is noted by 0 (zero).
Each Venn diagram will have $2^{\wedge} \mathrm{n}$ disjoint parts, and each such disjoint part (except the above part 0) will be formed by combinations of k numbers from the numbers: $123 \ldots \mathrm{n}$. Let see an example of Smarandache's codification, for $n=3$, for sets S_{1}, S_{2}, and S_{3}.

Therefore, part 12 means that part which belongs to S_{1} and S_{2} only; part 3 means that part which belongs to S_{3} only.
This helps to the construction of a base formed by all these disjoint parts, and implementation in a computer program of each set from the power set $\mathscr{G}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{n}}\right)$ by a unique combination of numbers $1,2, \ldots, n$.
When $\mathrm{n} \geq 10$, one uses one space in between numbers: for example, if we want to represent the disjoint part which is the intersection of S_{3}, S_{10}, and S_{27} only, he used the notation [3 10 27], with blanks in between set indexes.

Smarandache's codification is user friendly in algebraically doing unions and intersections in a simple way. Union of sets $S_{a}, S_{b}, \ldots, S_{v}$ is formed by all disjoint parts that have in their index either the number a, or the number b, \ldots, or the number v. While intersection of $\mathrm{S}_{\mathrm{a}}, \mathrm{S}_{\mathrm{b}}, \ldots, \mathrm{S}_{\mathrm{v}}$ is formed by all disjoint parts that have in their index all numbers a, b, \ldots, v.
For $\mathrm{n}=3$ and the diagram above:
$S_{1} \cup S_{23}=\{1,12,13,23,123\}$, i.e. all disjoint parts that include in their indexes either the number 1, or the number 23.
$\mathrm{S}_{1} \cap \mathrm{~S}_{2}=\{12,123\}$, i.e. all disjoint parts that have in their index the numbers 12 .

