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Abstract. 
In this paper we present the Smarandache’s Concurrent Lines Theorem in the geometry 

of the triangle. 
 
Smarandache’s Concurrent Lines Theorem. 
Let’s consider a polygon (which has at least 4 sides) circumscribed to a circle, and D  the 

set of its diagonals and the lines joining the points of contact of two non-adjacent sides. Then D  
contains at least 3 concurrent lines. 

 
Proof. 
Let n  be the number of sides. If 4n = , then the two diagonals and the two lines joining 

the points of contact of two adjacent sides are concurrent (according to Newton's Theorem). 
The case 4n >  is reduced to the previous case: we consider any polygon 1... nA A  (see the 

figure)  
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circumscribed to the circle and we choose two vertices ,  i jA A  ( i j≠ ) such that 
   1 1  j j i iA A A A P− + =∩  
and 
   1 1  j j i iA A A A R+ − =∩ . 

Let { },  1, 2,3, 4hB h∈ the contact points of the quadrilateral j iPA RA  with the circle of 
center O . Because of the Newton’s theorem, the lines 1 3 ,  i jA A B B  and 2 4B B  are concurrent. 

 
 
Open Problems related to the Smarandache Concurrent Lines Theorem. 



2.1.  In what conditions there are more than three concurrent lines? 
2.2.  What is the maximum number of concurrent lines that can exist (and in what 

conditions)? 
2.3.  What about an alternative of this problem: to consider instead of a circle an ellipse, 

and then a polygon ellipsoscribed (let’s invent this word, ellipso-scribed, meaning a polygon 
whose all sides are tangent to an ellipse which inside of it): how many concurrent lines we can 
find among its diagonals and the lines connecting the point of contact of two non-adjacent sides? 

2.4.  What about generalizing this problem in a 3D-space: a sphere and a polyhedron 
circumscribed to it? 

2.5.  Or instead of a sphere to consider an ellipsoid and a polyhedron ellipsoido-scribed 
to it? 

 
Comments. 
Of course, we can go by construction reversely: take a point inside a circle (similarly for 

an ellipse, a sphere, or ellipsoid), then draw secants passing through this point that intersect the 
circle (ellipse, sphere, ellipsoid) into two points, and then draw tangents to the circle (or ellipse), 
or tangent planes to the sphere or ellipsoid) and try to construct a polygon (or polyhedron) from 
the intersections of the tangent lines (or of tangent planes) if possible. 
 
For example, a regular polygon (or polyhedron) has a higher chance to have more concurrent 
such lines. 
 
In the 3D space, we may consider, as alternative to this problem, the intersection of planes 
(instead of lines). 
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