Smarandache's Quantum Chromodynamics Formula:

In order to save the colorless combinations prevailed in the Theory of Quantum Chromodynamics (QCD) of quarks and antiquarks in their combinations when binding, we devise the following formula:

$$
\begin{equation*}
\mathbf{Q}-\mathbf{A} \in \pm \mathbf{M} \mathbf{3} \tag{1}
\end{equation*}
$$

where $M 3$ means multiple of three, i.e. $\pm M 3=\{3 \cdot k \mid k \in Z\}=\{\ldots,-12,-9,-6,-3,0,3,6,9,12, \ldots\}$, and $\mathrm{Q}=$ number of quarks, $\mathrm{A}=$ number of antiquarks.
But (1) is equivalent to:

$$
\begin{equation*}
\mathbf{Q} \equiv \mathbf{A}(\bmod 3) \tag{2}
\end{equation*}
$$

(Q is congruent to A modulo 3).

To justify this formula we mention that 3 quarks form a colorless combination, and any multiple of three (M3) combination of quarks too, i.e. $6,9,12$, etc. quarks. In a similar way, 3 antiquarks form a colorless combination, and any multiple of three (M3) combination of antiquarks too, i.e. $6,9,12$, etc. antiquarks. Hence, when we have hybrid combinations of quarks and antiquarks, a quark and an antiquark will annihilate their colors and, therefore, what's left should be a multiple of three number of quarks (in the case when the number of quarks is bigger, and the difference in the formula is positive), or a multiple of three number of antiquarks (in the case when the number of antiquarks is bigger, and the difference in the formula is negative).

Quark-Antiquark Combinations.
Let's note by q = quark $\in\{$ Up, Down, Top, Bottom, Strange, Charm $\}$, and by a $=$ antiquark $\in\left\{\mathrm{Up}^{\wedge}\right.$, Down^, Top^, Bottom^, Strange ${ }^{\wedge}$, Charm^ $\}$.
Hence, for combinations of n quarks and antiquarks, $n \geq 2$, prevailing the colorless, we have the following possibilities:

- if $\mathrm{n}=2$, we have: qa (biquark - for example the mesons and antimessons);
- if $\mathrm{n}=3$, we have qqq, aaa (triquark - for example the baryons and antibaryons);
- if $\mathrm{n}=4$, we have qqaa (tetraquark);
- if $\mathrm{n}=5$, we have qqqqa, aaaaq (pentaquark);
- if $n=6$, we have qqqaaa, qqqqqq, aaaaaa (hexaquark);
- if $\mathrm{n}=7$, we have qqqqqaa, qqaaaaa (septiquark);
- if $\mathrm{n}=8$, we have qqqqaaaa, qqqqqqaa, qqaaaaaa (octoquark);
- if $n=9$, we have qqqqqqqqq, qqqqqqaaa, qqqaaaaaa, aaaaaaaaa (nonaquark);
- if $\mathrm{n}=10$, we have qqqqqaaaaa, qqqqqqqqaa, qqaaaaaaaa (decaquark);
etc.

