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PREFACE 

In this book authors for the first time introduce the notion 

of strong neutrosophic graphs. They are very different from the 

usual graphs and neutrosophic graphs.  

Using these new structures special subgraph topological 

spaces are defined. Further special lattice graph of subgraphs of 

these graphs are defined and described.  

Several interesting properties using subgraphs of a strong 

neutrosophic graph are obtained.  

Several open conjectures are proposed. These new class 

of strong neutrosophic graphs will certainly find applications in 

NCMs, NRMs and NREs with appropriate modifications.  
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These new notions are interesting and researchers can 

find lots of applications where neutrosophic graphs find their 

applications. Apart from some open conjectures several 

problems at research level are also suggested for the readers. 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

W.B.VASANTHA KANDASAMY 
ILANTHENRAL K 

FLORENTIN SMARANDACHE 



Chapter One 

INTRODUCTION 

 In this chapter we just indicate the books which are used for 
the basic notions used in this book.  The concept of neutrosophy 
can be had from [6-8]. For the basic properties about 
neutrosophic graphs please refer [59]. 

 The basics of graph theory can be had from [1].  The main 
notion dealt here is the notion of subset vertex graphs. We have 
defined in chapter II, two types of subset vertex graphs. 
However for a given graph G there exists one and only one 
special subset vertex graph of type I but there are many special 
subset vertex graphs of type II for a given the set of vertices. 
By this method one gets several subset vertex graphs of type II. 
This is elaborately discussed in chapter two of this book. 
Several nice properties associated with them are defined, 
described and developed in this chapter.  Next for the first time 
we introduce the notion of strong neutrosophic graphs.   

Infact one can say the net working of the brain is more close 
to strong neutrosophic graphs only. The concept of neutrosophic 
graphs can be had in [59] and so on.  For a systematic analysis 
and study of neutrosophic graphs one can refer [59].  However 
strong neutrosophic graphs and specialty associated has been 
systematically studied in chapter III of this book. 
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 Also associated with these graphs we define the special 
concept of neutrosophic complement and so on and discuss 
them in this chapter.  Certainly we will use these new notions in 
several applications.  These notions are very unique and will 
find lots of practical applications.  
 
 We prove several interesting features associated with them.  
Infact for a given set of n-vertices we have several strong 
neutrosophic graphs. We see even for a graph with two vertices 
we have the following graphs. 
 
 
 
 
 
 
 
 
 
 

We have infact 9 such strong neutrosophic graphs with just 
two vertices. Thus this new notions gives one with abundant 
choices.  The dotted circle and dotted lines denote the graphs 
with indeterminate vertices and edges respectively.   

 
The fourth chapter is very different and innovative.  For we 

get the collection of subgraphs of a graph G denote it by S(G) 
which includes also the empty graph  we define two operation 
 and  and show S(G) is a topological space.  Further we see 
these S(G) power set subgraph of the graph G always contains 
as a substructure a Boolean algebra of appropriate order.  

 
Further we see if the neutrosophic graph is disjoint then the 

adjacency matrix associated with it will be a super diagonal 
matrix.  Several interesting properties associated with them are 
discussed.  

 
v1 

 
v2 

 
v1 v2 v1 v2 

 
v1 

 
v2 

 
v1 v2 v1 v2 

   



Chapter Two 

SPECIAL SUBSET VERTEX GRAPHS 

 In this chapter authors for the first time introduce the notion 
of subset vertex graphs.  Subset vertex graphs are of two types. 
One given a graph G with V = {v1, …, vn} vertex sets obtain all 
the subsets of this vertex set V and only get edges which are in 
the graph G.   

This will be known as type I subset vertex graph.  Type II 
subset vertex graph is a graph obtained by collecting all subsets 
of graphs and obtaining graphs using these subsets of vertices. 
Type I graph of a graph G is unique.   

However for type II vertex subset graph one gets many 
graphs for the given set of vertices.   

First we will illustrate these situations by some examples. 

Example 2.1:  Let G be the graph with only one vertex v1 and 
zero edges.   

We see {v1} is a subset and {v1} is also a point subset 
graph,   v1.   
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When V = {v1} we have both the graph and the subset 
vertex graph are identical as subset vertex graph is also         . 

 
 
It is interesting to note that in case the number of vertices is 

one both subset vertex graph of type I and type II are the same. 
 
Example 2.2:  Let G = {{v1, v2} = V, e1} be the graph given in 
the following  

 
  
 
    Figure 2.1 

 
 The subset vertices of are {v1, v2}, {v1} and {v2}.  The 
subset vertex graph of G is as follows: 
 
 
 
 
 
 
 
 
 
         Figure 2.2 
 
Gv is the type I vertex subset graph of G. 
 
 Suppose G is just the graph    
 
 
     Then Gv =  
 
 
 
    

    Figure 2.3 
 
is the vertex subset type I graph. 

 
v1 { } 

 
v1 

 
v2 

e1 

 {v1}  {v2} 

 
{v1 , v2} 

 
v1 

 
v2 

 
{v1,v2} 

 
{v1} 

 
{v2} 
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  On the other hand suppose we have V = {v1, v2} a vertex set 
of order two and no graph is given.   
 

To find all vertex subset graphs using V. 
 
 The subsets of V are {{v1, v2}, {v1}, {v2}} = SP (V). 
 
 
 
 
     
 
 
       Figure 2.4 
 

v
1G  is a type II vertex subset graph. 

 
 

v
2G   

 
 
 
 
      Figure 2.5 
 
is another  type II vertex subset graph. 
 
 
 

 v
3G   

 
 
 
 
     Figure 2.6 
 
is a type II vertex subset graph. 
 

 
{v1} 

 
{v2} 
  

{v1 ,v2} 
 

 
{v1,v2} 

 
{v1} 
  

{v2} 
 

 
{v1,v2} 

 {v1} 
 

 {v2} 
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v
4G   

 
 
 
 
     Figure 2.7 
 
is a type II vertex subset graph. 
 
 

v
5G   

 
 
 
 
     Figure 2.8 
 
is a type II vertex subset graph. 
 
 

v
6G   

 
 
 
 
     Figure 2.9 
 
is a type II vertex subset graph. 
 

v
7G   

 
 
 
 
 
     Figure 2.10 

 
{v1,v2} 

 {v1} 
 

 {v2} 
 

 
{v1,v2} 

 {v2} 
 

 {v1} 
 

 
{v1,v2} 

 {v1} 
 

 {v2} 
 

 
{v1,v2} 

 
{v1} 
  

{v2} 
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 is a type II vertex subset graph. 
 

 
v
8G   

 
 
 
 
     Figure 2.11 
 
is a type II vertex subset graph. 
 
 Thus when no basic graph is given and we have only two 
vertices we can get eight different vertex subset type II graphs. 
 
 We now make the following official definition. 
 
DEFINITION 2.1:  Let G be a graph with n vertices and m edges.  
Then the vertex subset graph of type I; Gv will have 2n – 1 
number of subset vertices and more than m-edges.  
 
 Thus Gv will denote all subset vertex graphs of type I. 
 
 We will first illustrate this situation by some examples.  
 
 
Example 2.3:  Let G be the graph given in the following. 
 
 
 
 
 
 
 
 
 
          Figure 2.12 
 
 

 
{v1,v2} 

 {v1} 
 

 {v2} 
 

 
{v3} 

 
{v1} 
  

{v2} 
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The subset vertex of G is  
{{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}. 

 
 The subset vertex graph Gv of G of type I is as follows: 
 

 
 
 
 
 
 
 
 
 
 
 
      Figure 2.13 
 

 We have Gv the one and only subset vertex graph of 
type I. 
 
 Now we proceed onto define the notion of vertex 
subset graphs Gi of type II, i  N.   
 

However if we are not given any graph but only the 
three vertices {v1, v2, v3}.  Using the subsets of the vertex 
subsets we have the following graphs Gv of type II. 
 
DEFINITION 2.2:  Let V = {v1, v2, …, vn} be n vertices 
where the graph is not given.  Clearly using V we have  
2n–1 number of subsets.  Using these 2n–1 subsets we can 
draw the graphs Gv of type II defined as subset graphs of 
type II. 
 
 When n = 1 we have only one subset vertex graph of 
type II. When n = 2 we have 8 subset vertex graphs of type 
II given by v

1G , v
2G , …, v

8G . 

 

  

 

 

 

 

{v3} 

{v2} 

{v1,v2} 

{v1,v2,v3} 

{v1,v3} 

{v1} 

{v3v2} 
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  Infact we leave it as a open conjecture to find the number of 
subset vertex graphs Gv of type II when we have n vertices.  
 

We see the number of subset vertex graphs Gv of type II. 
 
 When n = 3,  
V = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}. 

 
 The graphs of subset vertex graphs of type II are very many 
even if o(V) = 3. 
 
  
 
     
 
 
 
 
 
 
      Figure 2.14 
 
is a vertex subset graph v

1G  with no edges.   
 
 We have 21 number of vertex subset graphs with only one 
edge.  
 
 

v
2G  =  

 
 
 
 
 
       Figure 2.15 
 
 
and so on. 

 
{v1} 

 
{v3} 

 
{v2}  

{v1,v2}  
{v1,v3} 

 
{v2,v3}  

{v1,v2,v3} 

 {v1}  {v3} 

 {v2}  
{v1,v2}  

{v1,v3} 

 
{v2,v3}  

{v1,v2,v3} 
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  v

19G     
 
 
 
 
 
 
 
 
      Figure 2.16 
 
 
 

v
20G  

 
 
 
 
 
 
 
      Figure 2.17 
 
 

v
21G  

 
 
 
 
 
 
 
 
 
      Figure 2.18 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 {v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 {v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 {v1,v2,v3} 
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 There are how many subset vertex graphs of type II?   This 
a open conjecture. 
  
 Number of subset vertex graphs of type II having two edges 
with only one edge adjacent to each vertex. 
 
 
 

v
22G  

 
 
 
 
 
 
 
 
 
      Figure 2.19 
 
 
 
  v

23G  
  
 
 
 
 
 
 
 
 
 
      Figure 2.20 
 
 
and so on. 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 

{v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2} 

 
{v1,v3} 

 
{v2,v3} 

 
{v1,v2,v3} 
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  v

tG  
 
 
 
 
 
 
 
 
 
      Figure 2.21 
 
 
 

v
t 1G   

 
 
 
 
 
 
 
 
      Figure 2.22 
and so on. 
 
 
  

v
t rG   

 
 
 
 
 
 

 
       Figure 2.23 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v3}  
{v1,v2} 

 
{v2,v3} 

 

{v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v3} 

 
{v1,v2} 

 
{v2,v3} 

 

{v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v3}  

{v1,v2} 
 

{v2,v3} 

 {v1,v2,v3} 
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v
t r sG    

 
 
 
 
 
 
   
            Figure 2.24 
 
 Next we can find 3 edges graphs using the seven vertices. 
 
 
 

v
t r s 1G     

 
 
 
 
 
 
 
      Figure 2.25 
and so on. 
 
 

v
t r s mG     

 
 
 
 
 
 
 
 
      Figure 2.26 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 {v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v3}  
{v1,v2} 

 
{v2,v3} 

 
{v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2} 

 
{v1,v3} 

 
{v2,v3} 

 {v1,v2,v3} 
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and so on. 
 
 
 
 

v
t r s m 1G      

 
 
 
 
 
 
 
 
 

Figure 2.27 
 
and so on. 
 
 
 
 

v
t r s m aG      

 
 
 
 
 
 
 
 
 
 

Figure 2.28 
 
and so on. 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v2}  
{v1,v3} 

 
{v2,v3} 

 {v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 
{v1,v2,v3} 
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v
t r s m a 1G       

 
 
 
 
 
 
 
 
 
 

Figure 2.29 
 
 
and so on. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 2.30 
 
 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  

{v1,v3} 
 

{v2,v3} 

 
{v1,v2,v3} 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v3}  
{v1,v2} 

 
{v2,v3} 

 
{v1,v2,v3} 
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v
t r s m a bG       

 
 
 
 
 
 
 
 
 

Figure 2.31 
 

and so on. 
 
 We can have 7 edges, 8 edges, 9 edges and so on. 
 
 Now this study leads to the following conjectures. 
 
Conjecture 2.1:  Let V = {v1, v2, v3} be the set of vertices. 
 
 SP(V) = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, 
v2, v3}} be the vertex subsets of type II. 
 
 How many distinct subset vertex graphs of type II can be 
constructed using SP(V)? 
 
Conjecture 2.2:  Let V = {v1, v2, …, vn} be the subset vertex 
graph of type II. 
 
 How many distinct subset vertex graphs of type II can be 
constructed using SP(V)? 
 
Conjecture 2.3:  How many one edge subset vertex graphs of 
type II can be constructed using 2n–1 subset vertices. 
 

 
{v1} 

 
{v2} 

 
{v3} 

 
{v1,v2}  {v1,v3}  {v2,v3} 

 
{v1,v2,v3} 
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 Conjecture 2.4:  How many two edge subset vertex graphs of 
type II can be constructed using 2n–1 subset vertices? 
 
Conjecture 2.5:  How many three edge subset vertex graphs of 
type II can be got using 2n – 1 subset vertices? 
 
Conjecture 2.6:  How many r edge subset vertex graphs of type 
II can be got using these 2n – 1  subset vertices. 
 
Conjecture 2.7:  Give the maximum number of edges that can 
be had for the subset vertex graphs of type II using 2n – 1 subset 
vertices. 
 
Example 2.4:  Let V = {v1, v2, v3} be the vertices.  
 

SP(V) = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v1, v2, v3}} be 
the subset of vertices.   

 
To find the maximum number of edges the subset vertex 

graph of type II can be got from  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 2.32 
 
 We can have several types.   
 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v2}  
{v1,v3} 

 {v2,v3} 

 {v1,v2,v3} 
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However we can say the maximum number of edges 
adjacent to any of the subset vertex of a n number of vertices.   
 

V = {v1, v2, …, vn} have 2n–2 edges for a subset vertex 
graph of type II.  SP(V) = 2n–1. 
 
 The natural question is; can we have meaningful subset 
vertex graph type II trees?   
 

For this first we have to fix the root.  We always as a 
convention fix the whole set V = {v1, v2, …, vn} as the root.  
 
 We will represent this by the following examples. 
 
Example 2.5:  Let V = {v1, v2, v3} be the vertices.   
 

SP(V) = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, 
v2, v3}} be the subset vertices of V. 
 
 There can be many subset vertex trees of type II which will 
be described in the following. 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
           Figure 2.33 
 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v2}  
{v1,v3}  {v2,v3} 

 
{v1,v2,v3} 
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      Figure 2.34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.35 
 

 
{v1} 
  

{v2} 
  

{v3} 
 

 
{v1,v2} 
 

 {v2,v3} 
 

 
{v1,v2,v3} 
 

 
{v1.v3} 
 

 
{v1} 

 
{v2} 

 
{v3} 

 {v1,v2}  {v1,v3}  {v2,v3} 

 
{v1,v2,v3} 
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Figure 2.36 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 2.37 
 
  

How many distinct meaningful subset vertex trees of type II 
can be constructed using  
 

SP(V) = {{v1}, {v2}, {v3}, {v1,v2}, {v1, v3}, {v2, v3},  
{v1, v2, v3}} where o(V) = 3? 

 
{v1} 
  

{v3} 
  

{v2} 
 

 
{v1,v2} 
 

 
{v2,v3} 
 

 
{v1,v2,v3} 
 

 {v1,v3} 
 

 
{v1} 
  

{v2} 
  

{v3} 
 

 
{v1,v2} 
 

 
{v1,v3} 
 

 
{v1,v2,v3} 
 

 {v2,v3} 
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 If V = {v1, v2, …, vn} find the number of subset vertex trees 
of type II using SP(V). 
 
 Using SP(V) of V = {v1, v2, …, vn}, how many complete 
subset vertex graph of type II can be obtained?   
 

Next we proceed onto find the subset vertex graph of type I 
of a graph G which is a tree. 
 
Example 2.6:  Let G be the tree graph given in the following. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.38 
 
 

V = {v1, v2, v3, v4, v5} be the vertices of the tree. 
 
 
 S(P(V)) = {{v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2}, {v1, v3}, 
{v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5},  {v3, v4}, {v3, v5}, 
{v4, v5}, {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5}, {v1, v3, v5}, {v1, 
v3, v4}, {v1, v4, v5}, {v2, v3, v4}, {v2, v3, v5}, {v2, v4, v5}, {v3, v4, 
v5}, {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v4, v5}, {v1, v3, v4, 
v5}, {v2, v3, v4, v5}, {v1, v2, v3, v4, v5}}. 
 

 {v2} 
 

 {v1} 
 

 {v4} 
 

 {v3} 
 

 
{v5} 
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Figure 2.39 
 
 
 

However the graph is not complete.   
 
But infact it is very complicated.   
 
However the subset vertex graph Gv of type I is not a subset 

vertex graph tree even if the given graph G is a tree. 
 
 

 
{v1,v2,v3,v4,v5} 
 

 {v1,v2,v3,v4} 
 

 
{v1,v2,v3,v5} 
 

 {v1,v2,v3} 
 

 
{v1,v2,v4} 
 

 {v1,v4,v5} 
 

   {v2,v3,v4,v5} 
 

 
{v1,v2,v5} 
  

{v1,v3,v4} 
 

{v1,v3,v4,v5} 
 {v1,v2,v4,v5} 

 

 
{v1,v3,v5} 
 

 {v2,v3,v4} 
 

 
{v2,v3,v5} 
  

{v2,v4,v5} 
  

{v3,v4,v5} 
  

       {v1} 
 

 {v1,v2} 
 

 
{v1,v3} 
  

{v1,v4} 
  

{v1,v5} 
  

{v2,v3} 
 

 
{v5} 
  

{v4} 
  

{v3} 
 

 {v2} 
 

 
{v2,v4} 
  

{v2,v5} 
  

{v3,v4} 
  

{v3,v5} 
  

{v4,v5} 
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 Example 2.7:  Let G be the tree 
 
 
 
 
 
 
 
 
         Figure 2.40 
 
 V = {v1, v2, v3}, S(P(V)) = {{v1}, {v2}, {v3}, {v1, v2}, {v1, 
v3}, {v2, v3}, {v1, v2, v3}}.   
 

We find the vertex subset graph (tree) of  type I. Gv is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.41 
 
Clearly this not a subset graph tree of type I. 
 
 It is observed that in general a tree does not lead to a subset 
vertex tree of type I.   
 

However one finds it difficult to get trees using subset 
vertices leading to graph Gv of type I.   
 

 {v1} 
 

 {v2} 
 

 {v3} 
 

 
{v1,v2,v3} 
 

 {v1} 
 

 
{v2} 
 

 {v1,v2} 
 

 {v2,v3} 
 

 {v1,v3} 
 

 
{v3} 
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But if {v1, v2, …, vn} are n vertices one can easily get many 
subset vertex tree of type II; Gv.    

 
This is the main advantage of using type II  subset vertex 

graph Gv. 
 
 Let V = {v1, v2, v3} be the vertex set.   
 

S(P(V)) = {{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3},  
{v1, v2, v3}}.   

 
The following graph v

1G  is a tree of type II.  
 
 
 
 
 
 
 
 
 
 
 

Figure 2.42 
 

Already different graphs of type II tree are discussed.   
 
Next we proceed onto use the set of vertices. 
 
 V = {v1, v2, v3, v4}.   
 
S(P(V)) = {{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v1, 

v4}, {v2, v3}, {v2, v4}, {v3, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, 
v4}, {v2, v3, v4}, {v1, v2, v3, v4}}. 

 
 
The following is one of the subset vertex tree of type II.  
 
 

 {v1,v2} 
 

 
{v1,v2,v3} 
 

 {v1} 
 

 {v3} 
 

 
{v2} 
 

 {v1,v3} 
 

 {v2,v3} 
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Figure 2.43 
 
This is again another example of the subset vertex graph of 

type II which is a tree is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.44 
 
Next we proceed onto express a subset vertex graph of type 

II which is a tree is as follows using the set of vertices. 
 
V = {v1, v2, v3, v4, v5}, SP(V)) = {{v1}, {v2}, {v3}, {v4}, 

{v5}, {v1,v5}, {v1,v2}, {v1,v3}, {v1,v4}, {v2,v3}, {v2,v4}, {v2,v5}, 

 
{v1,v2,v3,v4} 
 

 {v1} 
 

 
{v3} 
  

{v2} 
 

 {v1,v2,v3} 
 

 {v2,v3,v4} 
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{v3} 
  

{v2} 
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 {v2,v3,v4} 
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 {v1,v2} 
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{v1,v4} 
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{v4} 
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{v3,v4}, {v3,v5}, {v4,v5}, {v1,v2,v3},{v1,v2,v4}, {v1,v2,v5}, 
{v1,v3,v4}, {v1,v5,v3}, {v1,v4,v5}, {v2,v3,v4}, {v2,v3,v5}, 
{v2,v4,v5}, {v3,v4,v5}, {v1,v2,v3, v4}, {v1,v2,v3, v5}, {v1,v2,v4, v5}, 
{v1,v3,v4, v5}, {v2,v3,v4, v5}, {v1,v2,v3,v4, v5}} is a subset vertex 
set.   

 
We give the subset vertex graph of type II which is tree is as 

follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.45 
 
This is tree of type II. 
 
 Infact we can get several such trees of type II.  
 

 
{v1,v2,v3,v4,v5} 
 

 {v1,v2,v3,v4} 
 

 
{v1,v2,v3,v5} 
 

 {v1,v2,v3} 
 

 
{v1,v2,v4} 
 

 {v1,v3,v5} 
 

 
{v1} 
 

   {v2,v3,v4,v5} 
 

 
{v1,v2,v5} 
 

 
{v1,v3,v4} 
 

{v1,v2,v4,v5} 
 

{v1,v3,v4,v5} 
 

 {v1,v4,v5} 
 

 {v1,v2} 
 

 
{v2,v3,v4} 
 

 {v3,v4,v5} 
 

 
{v2,v3,v5} 
 

 
{v2,v4,v5} 
 

 
{v1,v3} 
  

{v1,v4} 
  

{v2,v5} 
  {v2,v5} 

 

 {v2,v4} 
 

 
{v2,v5} 
  

{v3,v4} 
  

{v3,v5} 
  {v4,v5} 

 

 
{v2} 
  

{v3} 
  

{v4} 
  

{v5} 
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 So for practical problems finding any suitable tree 
depending on the problem is at the choice of the researcher.   
For instance even preferable subsets can be selected from 
SP(V).   
 

This is illustrated by the following example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.46 
 
 This can certainly be used in data mining.   
 

For from a full collection a restricted collection can be taken 
and the goal is reached and getting the subset vertex tree.  This 
is the way essential subset vertex tree of type II is carried out. 
 
 However one of the factors is can we the notion of merged 
graphs in case of subset vertex graphs of both type I and type II.   
 

Here we do merging not of the whole subset vertex graph 
but only subgraphs of the graphs.   
 

To this end we first proceed onto study the subgraphs of 
subset vertex graphs of type I and type II.   

 
{v1,v2,v3,v4,v5} 
 

 {v1,v2,v3,v4} 
 

 {v1,v2,v3,v5} 
 

 {v1,v2,v3} 
 

 
{v1,v2,v4} 
 

 {v2,v3,v5} 
 

 
{v1} 
 

 {v2,v4} 
 

 
{v2} 
  

{v5} 
 

 {v3,v5} 
 

 {v3} 
 

 {v2,v5} 
 

 
{v4} 
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It is infact important to keep on record that these subgraphs 
may be just graphs in some cases and in most cases subset 
vertex subgraphs of type I or type II according as Gv or Gv is 
taken. 
 
 First we will illustrate this situation by some examples. 
 
Example 2.8:  Let Gv be the vertex subset graph of type I of the 
graph G given by the following figure. 
 
 G =  
 
 
 
 
 
 
 

     Figure 2.47 
 

Let S(P(V)) = {{v1}, {v2}, {v3}, {v4}, {v5}, {v1,v2},{v1,v3}, 
…,  {v4,v5}, {v1,v2,v3}, {v1,v2,v4}, …, {v3,v4,v5}, {v1,v2,v3,v4}, 
{v1,v2,v3,v5}, …, {v2,v3,v4,v5}, {v1,v2,v3,v4, v5}}. 

 
 Clearly o(S(P(V)) = 25 – 1.   
 

We see we can have several such vertex subset graphs of 
type I using the subset vertex set S(P(V)).   
 

We give some of the subset vertex subgraphs of Gv.  
 
 
 
 
 
 
 
 

Figure 2.48 

  

  
{v1,v3} 

{v4,v2,v5} {v1,v2,v3} 

{v1,v2,v3,v4} 

 {v4,v5} 

 {v3} 
 

 {v5} 
 

 {v4} 
 

 {v1} 
 

 {v2} 
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Figure 2.49 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.50 
 

 It is interesting to note that this subset subgraph of Gv is 
unique for it a complete graph.   

 
{v1,v3,v4} 
  

{v1, v4, v2} 
 

   

  

  

{v1,v4,v5} 
 

{v1,v2,v5} 
 

{v1,v2,v3} 
 

{v1,v3,v5} 
 

{v2,v3,v4} 
 

{v3,v4,v5} 
 

{v1,v3,v4} 
 

  

  

 

{v5} {v1} 

{v2,v4} 

{v1,v2,v3,v4,v5} 

{v1,v3} 
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Each subset vertex is adjacent with 8 of the vertices.  We 
next describe the vertex subset subgraph of Gv.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.51 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 2.52 

 
{v1} 
  

{v2} 
 

 {v3,v4} 
 

 {v5,v1} 
 

 {v1,v5,v4} 
 

 {v2,v3,v4} 
 

 
{v1,v2,v3,v5} 
 

 
{v1,v2} 
  

{v1,v3} 
  

{v1,v4} 
 

 {v2,v4} 
 

 {v1,v5} 
 

 {v3,v4} 
 

 {v4,v5} 
 

 
{v3,v5} 
 

 
{v5,v2} 
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 Each of the subset vertex has different sets of edges 
adjacent to it.   

 
The vertex set {v1, v2, v3, v4} has six edges adjacent to it. 
 
The vertex {v2, v3, v4} has only four edges adjacent to it.  

Clearly the vertex {v1} and {v2} have only three edges adjacent 
to it.   

 
Next the vertex {v3, v4} is also important for 5 edges are 

adjacent to it.   
 
Next consider the vertex subset subgraph with vertices {v3} 

{v2, v1} and {v4, v5}; 
 
  
 
 
 
 
 
 

 
Figure 2.53 

 
 
 
 
 
 
  P1 
 
  
 
 
 

Figure 2.54 

 
{v1, v2} 
 

 {v3} 
 

 {v4, v5} 
 

 {v3} 
 

 {v4} 
 

 {v1} 
 

 {v2} 
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Figure 2.55 

P2 
 
 

Figure 2.56 

Now we see the two subset vertex graphs which are trees. 

 

Figure 2.57 

 {v3}

 
{v4, v5} 

{v2,v4} 

 {v1}

 {v1,v2,v3,v4} 

 {v1,v4,v5} 

 
{v1,v2} 

 {v1}

 {v1,v2,v3,v4}

 
{v2,v4} 

 
{v1,v4,v5} 

 
{v1} 

 {v3} 

 {v4} 

 
{v1} 

 
{v2} 
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 We try to merge these subset vertex trees. 
 
 
 
 
   M1 = 
 
 
 
 
 
 

Figure 2.58 
 
  

We see the merged graph of P1 and P2 is not a tree.   
 

We call this the meshed tree for we get a very different 
structure which is not a tree.  
 
Consider  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.59 
 
 
is again a subset vertex tree. 
 

 {v3} 
 

 
{v1,v2,v3,v4} 
 

 {v1} 
 

 {v2} 
 

 {v1,v4,v5} 
 

 {v2,v4} 
 

 {v3, v4} 
 

 {v5} 
 

 {v1} 
 

 {v2} 
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Let 
T2 = 

 Figure 2.60 

be another subset vertex tree.  

We merge both T1 and T2 

M2 

 Figure 2.61 

This is not a tree not even a meshed tree. 

So M1 and M2 are distinctly different. 

 
{v5} 

 
{v4,v3,v2} 

 
{v2} 

 
{v1} 

 
{v5} 

 
{v4,v3,v2} 

 
{v2} 

 
{v1} 

 {v3,v4} 



Chapter Three 

STRONG NEUTROSOPHIC GRAPHS 

 In this chapter we define yet a new class of graphs  called 
strong neutrosophic graphs. The notion of neutrosophic graphs 
was recently introduced by the authors in  [59].  

 In case of neutrosophic graphs we had the vertices to be real 
and not indeterminates.  But in case of strong neutrosophic 
graphs we take some of the vertices to be also indeterminates 
that is neutrosophic.   

We now proceed onto define the notion of strong 
neutrosophic graphs. 

DEFINITION 3.1: Let G = (V, E) be a graph with n number of 
vertices V = {v1, v2, …, vn} where k of the vertices are real and 
n–k of the vertices are neutrosophic or indeterminates (k  1); 
t of the edges are usual and p–t of the edges  are neutrosophic 
(t  1).  We define the graph G = (V, E) to be the strong 
neutrosophic graph.  
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  We will illustrate this situation by some examples. 

Example 3.1:  Let G be a strong neutrosophic graph which  is as 
follows: 

Figure 3.1 

 Clearly     denotes the neutrosophic vertex and     denotes 
the usual vertex. 

We know 

denotes usual edge and 

denotes the neutrosophic edge. 
  Figure 3.2 

Example 3.2:  We give strong neutrosophic graph G = (V, E) 
where o(V) = 3. 

 G1  G2  G3 
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 G4  G5  G6 

G7 G8 G9 

 G10  G11  G12 

 G13 

Figure 3.3 

We see G5 is not a strong neutrosophic graph. 

We call edge weak neutrosophic graph.  G8 is a strong pure 
neutrosophic graph G11 is also an edge weak neutrosophic graph.  

 G9 and G12 are complements of each other cannot be called 
as strong neutrosophic graphs. 
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 Example 3.3:  We see G = (V, K), V = {v0, v1} and K = {e}. 

Figure 3.4 

We see we have 6 different graphs with two vertices and 
one edge.  

Example 3.4:   Let us consider G = {V, E} where V = {v0, v1, 
v2, v3} and E = {e0, e2, e1, e3}  

 G1  G2 

 v0 v1
e0 

 v3 v2e2 

e1e3 

 v0 v1

 v3 v2 

 v0 v1

 v3 v2 

 v0 v1

 v3 v2 

 v0 v1

 v3 v2 

 v0 v1

 v3 v2 

  v0 v1 
e  v0 v1

e

v0 v1
e v0 v1 

e 

v0 v1 
e   v0 v1 

e 
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  v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

 v0 v1 

 v3 v2 

  v0 v1 

  v3 v2 

  v0 v1 

  v3 v2 

  v0 v1 

  v3 v2 

  v0 v1 

 v3 v2 
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v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

 v3 v2 

v0 v1 

v3 v2 

  v0 v1 

  v3 v2 



Strong Neutrosophic Graphs  47 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 
 
We see by including the usual graph, pure neutrosophic 

graph, semi strong neutrosophic, strong neutrosophic graphs 
and pure strong neutrosophic graphs we get a very large 
collection. 
 
Example 3.5:  Let us consider the graphs which are all types not 
connected and planar with four vertices.  Just G = {V, E}.   
 

V is not connected or non planar V = {v0, v1, v2, v3} and E 
can have edges less than or equal to four. 
 

     

      

     

  

v0 v1 

v3 v2 

v0 v1 

v3 v2 

v0 v1 

v3 v2 

v0 v1 

v3 v2 
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and so on. 
      Figure 3.6 
 
 Now we propose a few open problems. 
 
Problem 3.1:  Let G = (V, E) be a neutrosophic graph with n 
edges and n vertices such that G is planar. 
 

(a) Find the total number of neutrosophic graphs. 
(b) Find the total number of strong neutrosophic 

graphs.  
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 (c) Find the total number of semistrong edge 

neutrosophic graphs. 
(d) Find the total number of semistrong vertex 

neutrosophic graphs. 
 
 
Problem 3.2:  Let G = (V, E) be a connected non planar graph 
with n vertices and p edges.  
 
 1. Find the total number of complete graphs which are 
usual, pure neutrosophic, neutrosophic, strong neutrosophic 
semistrong edge neutrosophic and semistrong vertex 
neutrosophic. 
 

ii. How many graphs are strong neutrosophic? 
iii. How many graphs are neutrosophic? 
iv. Find the number of graphs which are semi 

strong edge neutrosophic. 
v. Find the number of graphs which are semi 

strong vertex neutrosophic. 
 

We give some example of strong neutrosophic trees and 
adjoint strong neutrosophic graphs. 
 
Example 3.6:  Let G be a strong neutrosophic graph which is 
disjoint. 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 3.7 

  

  

   



Strong Neutrosophic Graphs  55 
 

 
 

 
 
    
 
Example 3.7:  Let G be a strong neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
      Figure 3.8 
 
Example 3.8:  Let G be a strong neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 
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 Example 3.9:  Let G be a strong neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.10 
 
Example 3.10:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 

Figure 3.11 
 
Example 3.11:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 

  

  

 
 

 

  

 

 

 

  

   

   

 

 

 
 

  



Strong Neutrosophic Graphs  57 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 3.12 
 
 Clearly G is a strong neutrosophic graph which is disjoint. 
 
Example 3.12 :  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 
 
Example 3.13:  Let G be a strong neutrosophic graph given in 
the following. 
 
 
 
 
 
 
 
 
 

Figure 3.14 
Clearly G is disjoint. 

  

  

  

  

  

  



58 Strong Neutrosophic Graphs and Subgraph … 
 
 
 Example 3.14:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 
 
Example 3.15:   Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 

Figure 3.16 
 
 We have several examples some of them connected some a 
strong neutrosophic path some disjoint and so on.   
 

Now we see by introducing the indeterminate vertices and 
indeterminate edges we get many graphs.  
 
 We get six strong graphs with two vertices and one edge. 
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Only two neutrosophic graphs 

Figure 3.17 

 One may be curious to know why the authors have 
introduced the notion of indeterminate vertex and already 
indeterminate edges exist [59]. 

 When some one works with a problem be it scientific or 
medical or social it is natural we at times are not in the position 
to spell about a vertex in such cases these graphs will play a 
vital role. 

 For instance in a social problem we many think about the 
existence of a node or not. 

For if we are interested in studying the students problems 
among the concepts his performance is an indeterminate if the 
teacher is a partial teacher, many a times the node is 
indeterminate. 

 The concept of indeterminate vertex will be vital in case of 
network. 

 Even our brain cell at times keeps certain nodes to be 
indeterminate while associating them.  So if we try to give the 
map by a graph we have the only appropriate graph is the strong 
neutrosophic graph.  All most all the working of the brain is 
only in the form of graphs for any sort of it only strong 
neutrosophic graphs can serve the real purpose.  For all the 
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 stimulai of the brain cannot and do not act simultaneously, 
several of them are in the indeterminate state only. 

 Thus authors feel, be it neutral networks or artificial 
intelligence it is strong neutrosophic graphs which is going to 
play a vital role. 

 For we are in the popular computer age where we view 
brain = computer (Kosko).   

As rightly said by Kosko 
“We shall explore machine intelligence from a dynamical 

systems view point brain = dynamical system.”  

 Thus it is doubly confirmed brain can be appropriately 
described only by strong neutrosophic graphs where at a given 
time for a particular problem or situation  the brain synapse may 
be a usual graph or a neutrosophic graph or a strong 
neutrosophic graph. 

 All the while we have been only working using a usual 
graph.  It is time to get sensitive results, one needs to work with 
neutrosophic graphs [59] and strong neutrosophic graphs.   

We have already used the concepts of neutrosophic graphs 
in NCMs, NRMs and NREs[25, 26].   

 We are yet to use the concept of strong neutrosophic graphs. 
Soon we shall construct many such in due course of time. 

Now we see yet other type of neutrosophic graphs. 

We may have the following type of graphs. 
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   G =  
 
 
 
 
 
 
 

Figure 3.18 
 
and so on.  We see only vertices are neutrosophic but all the 
edges are real. 
 
 Thus this may so happen in case all the vertices are 
indeterminate at one time. 
 
 This graph will be called or defined as only vertex strong 
neutrosophic graph. 
 
Example 3.16:  
 
 Consider 
 
 
   H =  
 
 
 
 
 
        Figure 3.19 
 
 
 H is a pure neutrosophic graph.  Clearly H is not strong 
neutrosophic graph as none of its vertices are neutrosophic. 
 
 We further observe that H is the quasi strong complement of 
G and G is the complement of H. 
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Example 3.17:  Let G be the strong neutrosophic graph 
 
 
 
    G =  
 
 
 
 The strong complement of G is  
 
 
 
 
   H = 
 
 
 
      Figure 3.20 
 
 Clearly H and G are quasi strong complements.  Infact G 
has no quasi strong complements. 
 
Example 3.18:  Let G be a strong neutrosophic graph the 
complement of G is H which is as follows: 
 
 
 
 
     G =  
 
 
 
 
 
       Figure 3.21 
 
 Now the strong complement of  H is as follows: 
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   H =  
 
 
 
 
 
 
      Figure 3.22 
 
 Clearly H is not a quasi strong complement of G.  Infact G 
has no quasi strong complements.  
 
Example 3.19:  Let G be a strong neutrosophic graph which is  
as follows.  
 
 
 
 
 
 
 
 

Figure 3.23 
 
 The strong neutrosophic complement of G is H which is as 
follows: 
 
 
 
 
 
 H = 
 
 
 

Figure 3.24 
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 Clearly H is a strong neutrosophic graph. 
 
Example 3.20:  Let G be a strong edge neutrosophic graph 
which is as follows: 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.25 
 
 
Let H be the strong complement of the neutrosophic graph H 
which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.26 
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 We see both G and H are neither neutrosophic nor strong 
neutrosophic graphs.  For we see in G all the edges are real but 
some vertices are neutrosophic and some vertices are real. 
 
 Similarly we see H is neither neutrosophic nor a strong 
neutrosophic graph. 
 
 However G is the complement of H and vice versa. 
 
 We call the graphs of this type as quasi strong vertices  
neutrosophic graph G and H as quasi strong pure neutrosophic 
edge graphs. 
 
 We have several types of graphs which are illustrated. 
 
 
 
 
 
   G1 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
       G2              G3 
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       G4          G5 
 
 
 
 
 
        
 
 
        G6 
 

Figure 3.27 
 
 G1 is neither neutrosophic nor pure neutrosophic or strong 
neutrosophic graph. 
 

G2 is also neither neutrosophic nor pure neutrosophic or a 
strong neutrosophic graph. 

 
G3 is pure neutrosophic.  
 
G5 is strong neutrosophic.  
 
G4 is also not neutrosophic or strong neutrosophic nor pure 

neutrosophic. 
 
G6 is strong pure neutrosophic.  Thus some of them are 

quasi strong vertex (edge) neutrosophic. 
 
We will give some more examples. 
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Example 3.21:  Let G be the graph which is as follows: 
 
 
 
 
 
 
 
 
 

Figure 3.28 
 
This graph is not neutrosophic and not strongly neutrosophic. 
 
 The strong complement of G is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 3.29 
 
 Clearly  H is a neutrosophic graph and not a strong 
neutrosophic graph. 
 
Example 3.22:  Let G be a strong neutrosophic graph. 
 
 
 
 
 
 
 

Figure 3.30 
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 The complement of G is as follows 
 
 
 
 
 
 
 
      Figure 3.31 
 
 
Example 3.23:  Let G be a strong neutrosophic graph.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.32 
 
 
 
 The complement of strong neutrosophic graph is as follows. 
 

H be the complement of G which is as follows: 
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Figure 3.33 
 
This tree is also a strong neutrosophic graph. 
 
Example 3.24:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.34 

 
 
 The strong neutrosophic complement of G be H.   
 

H is as follows: 
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Figure 3.35 
 
 
 
Example 3.25:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.36 
 
 
 
 The strong neutrosophic complement of G is as follows: 
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     Figure 3.37 
 
 We see H and G are identical.  So we call G to be a self 
complemented strong neutrosophic graph.   
 

We can have several self complemented strong 
neutrosophic graphs. 
 
Example 3.26:  Let G be strong neutrosophic graph which is as 
follows: 
 
 
 
 
 

Figure 3.38 
 
Let H be the complement of G which is as follows: 
 
 
 
 
 
 

 
Figure 3.39 
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We see G and H are identical.   

Thus G is a self complemented strong neutrosophic graph. 

Example 3.27:  Let G be a strong complemented graph which is 
as follows: 

Figure 3.40 

The complement H of G is as follows: 

Figure 3.41 

Clearly G is a self complement strong neutrosophic graph. 

 Now we define a new notion. 

DEFINITION 3.2:  Let G be a neutrosophic graph.  We have H 
the neutrosophic complement of G.  We define quasi vertex 
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strong neutrosophic complement of G in which all the vertices 
are indeterminate.  
 
 We will show this by some examples. 
 
Example 3.28:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
The complement H of G is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 3.42 
 
 The strong complement K of G is as follows: 
 
 
 
 
 
 
 
 

Figure 3.43 
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  Clearly K is not a strong neutrosophic graph. 
 
Example 3.29:  Let G be a neutrosophic graph which is follows: 
 
 
 
 
 
 
 
 

Figure 3.44 
 
 The neutrosophic complement K of G is as follows: 
 
 
 
 
 
 
 
 

Figure 3.45 
 
The strong neutrosophic complement H of G is as follows: 
 
 
 
 
 

H =  
 
 
 

Figure 3.46 
 
 
 Clearly H is not a strong neutrosophic graph. 
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 We see for a given neutrosophic graph we can have two 
distinct complements. 
 
Example 3.30:  Let G be a pure neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.47 
 
The complement of G is the usual graph H which is as follows: 
 
 
 
 
 
 
  H = 
 
 
 
 

Figure 3.48 
 
 We see the complement of pure neutrosophic graph is 
always a usual graph. 
 
 However the strong neutrosophic complement P of G is as 
follows: 
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Figure 3.49 
 

 
Example 3.31:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 

Figure 3.50 
 
 The complement H of G is as follows: 
 
 
 
 
 
 
 
 
  
 
 

Figure 3.51 
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 Clearly H is also a neutrosophic graph.  The strong 
neutrosophic complement of G be K.  K is as follows: 
 
 
 
 
 
      K = 
 
 
 
 
 

Figure 3.52 
 
 
 Clearly K is not a strong neutrosophic graph. 
 
 
 We see the complement of the usual graph is a pure strong 
doubly neutrosophic graph.   
 

We see the pure strong doubly neutrosophic graph is not in 
the class of strong neutrosophic graph.  We see G is a usual 
graph. 
 
 
 
    G = 
 
 
 
 
 
 
 
 

Figure 3.53 
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 The neutrosophic graph H is as follows: 
 
 
 
 
     H = 
 
 
 
 
 
 
 
 

Figure 3.54 
 
 
 Clearly H is  a pure neutrosophic graph. 
 
 Now we find the strong neutrosophic complement K of 
graph G which is as follows: 
 
 
 
 
 
 
     K =  
 
 
 
 
 
 
 
 
 

Figure 3.55 
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 We see K is not a strong neutrosophic pure graph. 
 
 We see under complements we cannot at all times accept 
the graph is in the collection.   
 

So to this end we define super strong neutrosophic graphs 
which contains the usual graph, pure neutrosophic graph semi 
strong vertex neutrosophic graph and semi strong edge 
neutrosophic graph.   
 

This for a given number of points and edges is analysed.  
 

For a given number of vertices and given number of edges 
we have one and only one usual graph and one and only one 
pure neutrosophic graph and one, only one semi strong vertex 
neutrosophic graph, one and only graph which semi strong edge 
neutrosophic graph and finally one and only pure strong 
neutrosophic graph. 

 
 However we have several neutrosophic graphs and several 
strong neutrosophic graph. 
 
 We will first illustrate this situation by some examples.  
 
 
 
 
     G = 
 
    
 
 
 
 
           Figure 3.56 
 
 G is a usual graph. 
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   G1 
 
 
 
 
 

     Figure 3.57 
 
 G1 is the pure neutrosophic graph. 
 
 G2 is the strong pure neutrosophic graph which is as follows 
 
 
 
 
     G2 = 
 
 
 

 
Figure 3.58 

 
 
 Let G3 be the semi strong neutrosophic vertex graph which 
is as follows: 
 
 
 
 
 
    G3  
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     G4              G5   
 
 
 
 
 
 
 
 
     G6              G7   
 
 
 
 
 
 
 
 
      G8         G9 

 
 
 

 
 
 
 
 
 G10              G11 
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 G12            G13 
 
 
 
 
  
 
 
 
 G14              G15 
 
 
 
 
 
 
 
 
 G16              G17 
 
 
 
 
 
 
 
 
 

G18           G19 
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     G20           G21 
  
 
 
 
 
 
 
 
    G22 
 
 
 
 
 

Figure 3.59 
and so on. 
 
 We see the class of super strong neutrosophic graphs has 
over 22 of them. 
 
Example 3.32:  We now give an example with three vertices 
and three edges. 
 
 
 
 
 
         G1         G2             G3     G4 
 
 
 
 
 
 
         G5         G6             G7     G8 
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    G9   G10             G11     G12 
 
 
 
 
 
 

    G13   G14             G15     G16 
 
 
 
 
 

  G17   G18             G19     G20 
 
 
 
 
 
      G21        G22 

 
Figure 3.60 

 
We have 22 graphs in class of super strong neutrosophic graphs.  
 
Example 3.33:  We now study the graph G with two vertices 
and two edges. 
 
 
 
 
     G1        G2     G3 
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     G4       G5      G6 
 

Figure 3.61 
 
 We have only 6 super strong neutrosophic graphs.  
 
Example 3.34:  Let us consider the strong neutrosophic graph 
G. 
 
 
 
 
 
 
 
 
 

Figure 3.62 
 
 We find the subgraphs of G. 
 
 
 
 
 
 
 
 
     S1            S2 
 
 
 
 
 
 
   S3      S4 
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      S5 

Figure 3.63 
 
 
 S1 is a usual subgraph, 
 S3 is a pure neutrosophic subgraph, 

S5 is not strong neutrosophic subgraph, 
S4 is a strong neutrosophic subgraph and  
S5 is not a strong neutrosophic subgraph. 
 
Thus S1, S2, …, S5 belong to the class of super strong 

neutrosophic graphs. 
 

Example 3.35:  Let G be a strong neutrosophic graph.  The 
subgraphs of G need not be a strong neutrosophic subgraphs. 
 
 However subgraphs of G is in the class of super strong 
neutrosophic subgraphs. 
 
 We want to illustrate this by some examples. 
 
Example 3.36:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.64 
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 We see this strong neutrosophic graphs has subgraphs 
which are not strong neutrosophic graphs.  
 
 
 
 
 
 
 
        S1 
 
 
 
 
 
 
 
          S2 
 
 
 
 
 
 
 
 

      S3 
 
 
 
 
 
 
 
 
 
        S4 
 

Figure 3.65 
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Of the four subgraphs only S4 is a strong neutrosophic 
graph. 
 

S1  is a usual graph.  
S2 is a pure neutrosophic graph. 
S3 is a neutrosophic graph.  

  
S3 has no neutrosophic vertices.   
 
So we see the subgraphs  general need not enjoy the 

properties of the graph. 
 
 So when we build structures on the collection of all 
subgraphs we accept this and make the class a larger one. 
 
 We can define connected path and walk in case of strong 
neutrosophic graphs also. 
 
 We will illustrate this situation by some examples. 
 

Let G be a strong neutrosophic graph which is as follows: 
 
 We define a strong neutrosophic walk is defined as a finite 
alternating sequence of vertices and edges which some of the 
vertices must be neutrosophic and some must necessarily be 
neutrosophic edges. 
 
 In a neutrosophic walk we have a sequence of vertices and 
edges where vertices are real and necessarily some of the edges 
are neutrosophic. 
 
 We will illustrate both the situations before we proceed to 
define more concepts in strong neutrosophic graphs. 
 
Example 3.37:  Let G be a strong neutrosophic graph. 
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Figure 3.66 
 

A walk is v1 e1 v2 e2 v3 e3 v4 e4 v5 e5 v6 e6 v7 e7 v8 e8 is a 
strong neutrosophic walk. 
 
 v6 e6 v7 e7 is a strong neutrosophic walk. 
 
 v4e4v5 is only a neutrosophic walk not a strong neutrosophic 
walk. 
 
 v8 e10 v10 e11 v11 is a usual walk.   
 

Thus a strong neutrosophic graph can have all types of 
graph. 
 
Example 3.38:  Let G be a strong neutrosophic graph which is 
as follows: 
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Figure 3.67 
 
 
 We see this strong neutrosophic graph has all types of types. 
 
 v0 e0 v1 e1 v2 e2 v3 e3 v4 e4 v5 is a usual walk. 
 
 v10  e10 v11 e11  v0 e0 v1 is a strong neutrosophic walk. 
 
 v7 e7 v8 e8 v9 e9 v10 e10 is a pure strong neutrosophic graph. 
 
 This strong neutrosophic graph has no neutrosophic walk. 
 
 
Example 3.39:  Let G be a strong neutrosophic graph which is 
as follows: 
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Figure 3.68 
 
 Consider v2 e2 e3 e10 v9 e9 v1 is a usual walk. 
 
 Consider v3 e3 v4 e4 e11 v7 is a strong pure neutrosophic 
walk. 
 
 v9 e9 v1 e1 v2 e2 v3 is a neutrosophic walk. 
 
 v3 e3 v4 e4 v5 e5 v6 e6 v7 e7 v8 is a strong neutrosophic graph. 
 
 Thus we have seen all types of walks is a strong 
neutrosophic graph. 
 
 A open walk in which no vertex appears more than once is a 
path. 
 
 We all several types of paths.   
 

Infact we have as many as number of distinct walks as 
distinct paths.   
 
 We will illustrate this by some examples.  
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Example 3.40:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.69 
 
 
 Consider p1 - v17 e17 v0 e0 v1 e1 v2 e2 v3 e3 v4 .  
 

p1 is a open strong neutrosophic walk and hence a open 
strong neutrosophic path. 
 
 Consider p2 : v5 e5 v6 is a pure strong neutrosophic open 
walk hence p2 is a pure strong neutrosophic path. 
 
 Let p3 : v8 e8 v9 e9 v10; p3 is a open usual walk which is also 
a usual path. 
 
 Let p4 : v11 e11 v12 e12 v13 e13 v14 e14 v15 is a open 
neutrosophic walk which is also a neutrosophic path. 
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Example 3.41:  Let G be a strong neutrosophic graph which 
also follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.70 
 
 
 Let p1 :  v0 e0 v1 e1 v2 e2 v3 e3 v4 is a open neutrosophic walk 
which is also a neutrosophic path. 
 
 Clearly p1 is not a strong neutrosophic(open walk) path. 
 
 Consider p2 : v4 e4 v5 v6 e6 v7 e7 v8 e8 v9 is a open strong 
neutrosophic walk which is also a strong neutrosophic path. 
 
 Consider p3 : v1 e1 v2 is also a open usual walk hence the 
usual path. 
 
 Let p4 :  v8 e8 v9 is a pure neutrosophic open walk which is a 
pure neutrosophic path. 
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  The number of edges correspond to the length of a path.   

In case of both neutrosophic and strong neutrosophic path 
we have some edges to be usual and some edges to be 
neutrosophic.   

 
Suppose we have n edges in a strong neutrosophic graph or 

a neutrosophic graph then certainly we must have n = s + t 
where s  1 and t  1 with s corresponding to neutrosophic 
edges and t corresponding to the usual edges.   
 
 In case of pure neutrosophic path or strong pure 
neutrosophic path of length n we have all the n-edges to be 
neutrosophic. 
 
 We will first illustrate this by some examples. 
 
Example 3.42:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.71 
 
 Consider p1 : v10 e9 v9 e8 v8 e7 v7 e6 v6; p1 is the usual path 
that is a open walk. 
 
 Length of the path is four. 
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 Let p2 : v10 e10 v11 e11 v12, p2 is a strong neutrosophic path or 
a strong neutrosophic open walk two e10 is real and e11 is 
neutrosphic.   
 
 p3 : v8 e7 v7 e6 v6 e5 v5 is a neutrosophic path or neutrosophic 
open walk of length three of which two edges are reals and one 
edge is neutrosophic. 
 
 Let p4 : v2 e2 v3 e3 v4 be a strong pure neutrosophic path or a 
pure neutrosophic open walk of length two both the edges are 
neutrosophic.   
 

Recall a closed walk in which no vertex repeats is a circuit. 
 
 We have four types of circuits.   
 

We will describe this by some examples. 
 
Example 3.43:  Let G be a strong neutrosophic path  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 3.72 
 
 p1 : v0 e1 v1 e2 v2 e3 v0 
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    Figure 3.73 
 
 p1  is a circuit which is neither neutrosophic  nor pure 
neutrosophic nor strong neutrosophic but only usual circuit. 
 
 p2 :  v8 e9 v9 e10 e11 v11 e12 v12 e13 v13 e8 
 
 p2 is a circuit which is a strong neutrosophic circuit. 
 
 
 
 
 
 
 
 
 
 
     Figure 3.74 
 
 p3 : v2 e7 v7 e6 v0 e5 v5 e19 v4 e4 v2. 
 
 p3 is a neutrosophic circuit which is not a strong 
neutrosophic circuit. 
 
 
 
 
 
 
 
 
 
     Figure 3.75 
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Let p4 :  
 
 

 
 
 
 
    Figure 3.76 
 
 
 p4 is a pure neutrosophic circuit. 
 
 p4 : v15 e15 v16 e16 v17 e17 v18 e18 v15. 
 
 
Example 3.44:  Let G be a strong neutrosophic graphs which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
      Figure 3.77 
 
 
  
We see G has no proper circuits.   
 

The only circuit is G itself which is a strong neutrosophic 
circuit.  
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 Example 3.45:  Let G be a strong neutrosophic path.  
 
 
 
 
 
 
 
 
 
 
 
      Figure 3.78 
 
 Clearly G has no closed usual circuits.  
 
 p1 : v0 e0 v1 e1 v2 e2 v3 e6 v0 strong neutrosophic circuit 
which as follows: 
 
 
 
 
 
 
 
 
 
 
      Figure 3.79 
 
 Consider p2 : v1 e7 v3 e3 v4 e8 v1; 
 a pure neutrosophic circuit. 
 
 
 
 
 
 

 
Figure 3.80 
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 Clearly G has no neutrosophic circuit. 
 
 Thus we see a given strong neutrosophic graph can in 
general need not have all the four types of circuits. 
 
Example 3.46:  Let G be a strong neutrosophic graph which is 
as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 3.81 
 
 Let p1 :   
 
 
 
 
 
 
 
 
       Figure 3.82 
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a pure neutrosophic circuit p1 : v7 e8 v5 e6 v6 e7 v7 
 
 
 p2 : v2 e2 v3 e3 v4 e4 v2 be a usual circuit which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
     Figure 3.83 
 
 
 p3 : v9 e11  v0 e0 v1 e1 v2 e12 v9 be a strong neutrosophic 
circuit which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 3.84 
 
 
 Clearly this graph has no neutrosophic circuit. 
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Example 3.47 :  Let G be a strong neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 
       
 

 
 
 

Figure 3.85 
 
 
 This strong neutrosophic graph has no circuits. 
 
Example 3.48:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.86 
 
 This is a strong neutrosophic unicursal graph.  
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  We can have several examples unicursal pure neutrosophic 
graphs and neutrosophic graphs also exist. 
 
Example 3.49:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.87 
 
 Check G is a unicursal graph.   
 

Now we can as in case of usual graphs have disconnected 
strong neutrosophic graph.   
 

We will give examples of them. 
 
Example 3.50:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

e0 

e7 

e6 

v0 v1 

v6 

v3 v4 

v5 

  

  

 

 
 

 
 



Strong Neutrosophic Graphs  103 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
       Figure 3.88 
 
 Clearly G is a disconnected. 
 
Example 3.51:  Let G be a strong neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 

Figure 3.89 
 
 Suppose we have a strong neutrosophic graph G of the form 
 
 
 
 
 
 
 
 
 

Figure 3.90 
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  We see G is a strong neutrosophic bipartite graph.  These 
graphs can be used in strong Neutrosophic Relational Models 
and Strong Neutrosophic Relation Equations.   
 
Example 3.52:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.91 
 
G is clearly a tripartite strong neutrosophic graph. 
 
Example 3.53:  Let G be a 4 partite graph which is strong 
neutrosophic. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.92 
 

This strong neutrosophic graph is a four partite graph.   
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We call a strong neutrosophic graph as k-neutrosophic 

partite if the vertex set {v1, …, vn} is partitioned into k subsets 
that no vertices joints in subsets and each of the sets contain 
either only real vertices or only neutrosophic vertices, that is 
thee is no mixed vertices in the subsets. 
 
 We will illustrate this situation by some examples. 
 
Example 3.54:  Let G be a strong neutrosophic graph which is 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.93 
 
 
 

 Clearly G is a strong 5-partite neutrosophic graph. 
 
 
Example 3.55:  Let G be a strong neutrosophic graph which is 
as follows: 
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Figure 3.94 
 
 Clearly G is 5-partite graph which is strong neutrosophic.  
But G is not a strong 5-neutrosophic partite graph. 
 
 Thus from these two graphs one easily sees the difference. 
 
Example 3.56:  Let G be a 3-partite strong neutrosophic graph 
which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.95 
 
Interested reader can obtain any number of such k-partite 

strong neutrosophic graph. 

 
   
  
 
 

                             

 
       

   
      

                  

     
       
          
 

 

              
          
      
    
      

                 



 
 
 
 
 
Chapter Four 
 
 

 
 
SPECIAL SUBGRAPH TOPOLOGICAL 
SPACES 
 
 
 
 
 In this chapter we for the first time define the notion of 
special subgraph topological spaces. 
          
 We know given a set of vertices {v1, v2} we can have the  
 
graphs          and           . 

            Figure 4.1 
 
  

Consider the set S(G) = {,           ,         ,   {v1    v2 }, 
 
 
                          }  we call the  empty set to be the least 

element and a complete graph with two vertices as the greatest 
element of G.   

 
We with these gradations we make S(G) a topological 

space.   

 v1,  v2 

 
v1 { }  

v2 { } 
  v1 v2 

 
v1   v1 v2 {      }  

v2 
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  Suppose we have G to be a complete graph with three 
vertices v1, v2 and v3 to find S(G) of v1, v2 and v3.   
 
S(G) = {,         ,          ,         ,                   ,                    ,  
 
 
                     ,      ,       ,       , 
 
 
{ v1,v2        v3},          ,       , 
 
 
       ,     ,        ,    , 
 
 
 
 
       . 
 
 
       Figure 4.2 
 

We see  is the least element of S(G) and       
 

         Figure 4.3 
is the greatest element. 
 
 However the number of elements in S(G) is 18. 
 
 Let S(G) be a collection of all subgraphs of the graph G  
 
 
 
 
 
 
      Figure 4.4 
 
with vertices {v1, v2, v3, v4}; 
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      ,         ,      , 
 
 
 
 
     ,            ,                                  , 
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     Figure 4.5 
 
 
 
 The greatest element of S(G) is          and the  
 
 
 
          Figure 4.6 
 
least element is .  Number of elements in S(G) is 46. 
 
 Suppose S(G) is a collection of all subgraphs with five 
vertices {v1, v2, v3, v4, v5}.  To find S(G). 
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                  ,            and so on 
 
 
 
        ,        ,            , 
 
 
 
 
        ,        ,            ,  
 
 
 
 
        ,        ,            , 
 
 
 
 
        ,        ,               . 
 
 
 

     Figure 4.7 
 
It is left for the reader as an open problem to find the 

number of elements in S(G). 
 

 Thus we leave it as a open conjecture.   
 
Conjecture 4.1:  Let V = {v1, …, vn}, be n vertices.  Let S(G) 
be the collection of all graphs constructed using V including 
{} and the complete graph with n vertices.  Find the number of 
elements in S(G). 
 
 Now we reformulate or redefine S(G) as follows. 
 
 Let G be any complete graph.   
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S(G) = {Collection of all subgraphs of G together with  
and G}. 
 
 If G has n vertices find the cardinality of S(G). 
 
 Thus we see S(G) can be defined in two ways and both are 
equivalent. 
 
 Now we can relax the condition for any graph G.  Let G be 
any graph  
 

S(G) = {Collection of all subgraphs of G including  and 
G}. 
 
 We give examples of this situation. 
 
Example 4.1:  Let G be a graph with 4 vertices. 
 
 
 
 
    Figure 4.8 
 

     S(G) = {,         ,         ,          ,         ,          , 
 
 
   ,          ,       ,         , 
 
 
            ,     ,           ,       
 
 
        ,       ,         , 
 
 
      ,           ,        , 
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       ,     ,                , 
 
 
 

   ,       , 
 
 
        ,            , G} 
 
 
 

     Figure 4.9 
 
Number of elements in S(G) is 26. 

 
Example 4.2:  Let G be the graph    .         . 
 
            Figure 4.10 
 
To find S(G) = {Collection of all subgraphs of G}  
 
= {,      ,   ,      ,    ,    ,       , 
 
 
             ,        , G}.        
 
 
    Clearly o(S(G)) = 10. 
 
 Now we define special lattice subgraphs of a graph G is a 
lattice drawn using all the subgraphs of G together with G and 
the empty set. 
 
Example 4.3:  Let G be the graph 
 

             Figure 4.11 
 

The subgraphs of G are {,        ,       , 
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         ,       ,     , 
 
 
 
        ,           . 
 
 
 
 
 Clearly  o(S(G)) = 25.  
 
 

We now give the lattice graph of G. 
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     Figure 4.12 
 
Now we give the special lattice graph of S(G) where  

 
 
 

G is     given in example. 
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      Figure 4.13 
 
Example 4.4: Now we give the special lattice graph of  
 
 
S(G) where G is   
     Figure 4.14 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.15 
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described in example. 
 

Clearly the subgraphs do not form a Boolean algebra.  It is 
pertinent to mention the following interesting problems are 
discussed by the following examples. 
 
Example 4.5:  Let G be a graph  v1      v2. 
        Figure 4.16 
 

  
S(G) = {, { v1}   { v2}           . 

 
 
 The special lattice graph is   
   
 
 
 
 
 
 
    Figure 4.17 
 
is a Boolean algebra of order four. 

 
Example 4.6:  Let G be the single vertex graph v1.   
 

S(G) = {,  
 
 

The special lattice graph is a Boolean algebra of order two. 
 
Example 4.7: Let G be the graph with no edges just three 
vertices  
 
     . 
 
 

Then S(G) = {, G,        ,         , 
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    ,         . 
 
 

The special lattice subgraph is as follows: 
 
 
 

 
 
 
 
 
 
 
 
 
 

    Figure 4.18 
 
Clearly the special lattice subgraph is a Boolean algebra of 

order 8. 
 

 In view of this we state the following theorem the proof of 
which is left as an exercise to the reader. 
 
THEOREM 4.1: Let G = {v1, v2, …, vn} ;   v1   v2 …  vn  be a n 
vertex graph  with no edges.  Then S(G) the collection of all 
subgraphs of G with G and  is a Boolean algebra of order 2n.   
 
 Now we see in general the special lattice subgraph of a 
graph G is not a Boolean algebra. 
 
Example 4.8:  Let G be the graph    . 
   
 
        Figure 4.19 
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The subgraphs of G are  
 
S(G) = {, G,           }.  
 
 
The special lattice of subgraph is as follows:   
 
 
 

 
 
 
 
 
 
 
 
     Figure 4.20 
 

Clearly S(G) is not a Boolean algebra but has a Boolean 
algebra of order 4 as a sublattice of the special lattice of 
subgraphs.  

 
 In view of this we give the following. 
 
THEOREM 4.2:  Let G be a graph which has at least one vertex 
S(G) the collection of subgraphs of G together with  and G.  
The special lattice subgraph of G is not a Boolean algebra.   
 

The proof is obvious hence left as an exercise to the reader. 
 
 Next we give yet another theorem which guarantees of a 
sublattice of a special graph which is a Boolean algebra. 
 
THEOREM 4.3:  Let G be a graph with n vertices and atleast an 
edge.  S(G) the subgraphs of G.  The special lattice of S(G) has 
a sublattice which a Boolean algebra of order 2n.   
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This proof is also direct and hence left as an exercise to the 
reader. 
 
 We will give some more examples. 
 
Example 4.9:  Let G be a graph which is as follows. 
 
 
 
 
 
     Figure 4.21 
 

Let S(G) = {collection of all subgraph of G together with G 
and }  

 
= {,         ,          ,         ,         ,                     , 

 
 
         ,           ,       ,    , 
 
 
     ,    ,          ,      , 
 
 
       ,     ,        , 
 
 
        ,            ,           
 
 

= G.   
 
 

The special lattice subgraph of G is as follows.  
 

Clearly o(S(G))= 20. 
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     Figure 4.22 
 
We see this has a sublattice which is a Boolean algebra of 

order 24 given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 4.23   

 v1 
  v2 

 
 v3 

 
  v4 

 
 

      

    

 

 
 

   

      

 

 

   

  

{v1} 

 

{v2} {v3} 
 
{v4} 

 

{v1,v2} 
{v1,v3} {v1,v4} 

{v2,v3} {v2,v4} 
{v3,v4} 

{     } 
 v1  v2 

{v1,v2,v3} {v1,v2,v4} {v1,v3,v4} {v2,v3,v4} 

{v1,v2,v3,v4} 

{v1,v2,v3,v4} 

{       } 
 v1  v2   v4 

{           } 
 v1     v2 v3  v4 
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DEFINITION 4.1:  Let G be a graph with n vertices and m edges.  
S(G) = {collection of all subgraphs of G and }; we define S(G) 
as the power subgraph set of G.   
 
 We have seen several examples of the power subgraph set 
of G.  
 
 We give an important result related with this power 
subgraph set.  
 
THEOREM 4.4:  Let G be a graph with n vertices and m edges  
(m  1).  S(G) the power subgraph set of G.  S(G) has a lattice 
structure with o(S(G)) points and the lattice of S(G) denoted by 
LS(G) contains a Boolean algebra of order 2n or if X = {v1, …, vn} 
then P(X)  S(G). 
 
 This proof is also direct hence left as an exercise to the 
reader. 
 
 Now we see this power subgraph set has several interesting 
properties which we enlist in the following as results. 
 
 S(G) denotes the power subgraph set of a graph G. 
 
Result 4.1:  G is the greatest element of S(G) and  is the least 
element of G. 
 
Result 4.2:  If G is a graph which has atleast one edge S(G) is 
not a Boolean algebra. 
 
Result 4.3:  On S(G) we have both operations ‘’ and ‘’ 
defined which makes S(G) a lattice. 
 
Result 4.4:  S(G) is a partially ordered set. 
 
Result 4.5:  If p and q are two subgraphs of G which is in S(G).  
We know p  q and p  q are in S(G).  
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Result 4.6:  S(G) can also in a way said to be all minors of G. 
 
Result 4.7:  is the complement of G. 
 

The following questions are of interest and are listed as 
open problems. 
 
Problem 4.1:  Given G is a graph with n vertices and p edges. 
Find the cardinality of S(G). 
 
Problem 4.2:  Can the lattice associated with S(G) be 
distributive? 
 
Example 4.10:  Let G be a graph given below. 
 
 
 
 
      Figure 4.24 
 
 
 To find S(G); S(G) = {, G,          ,          ,         , 
 
 
   ,       ,        ,              , 
 
 
 
   ,    ,         ,  ,             , 
 
 
 
   ,      ,     be the power subgraph  
 
set of G.  o(S(G)) = 13.   
 
 

The lattice associated with S(G) is as follows: 
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      Figure 4.25 
 
 
Example 4.11:  Let G be the graph 
 
 
 
 
 
   Figure 4.26 
 
 
S(G) denote the collection of all subgraphs of G. 
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 If H1 =      is a subgraph of G  
 
  Figure 4.27 
 
 
we see S(H1)  S(G).  H2 =  
 
 
       Figure 4.28 
 
 
be a subgraph of G. 
 

S(H2)  S(G) and clearly S(H1) is not isomorphic to S(H2).  
  
 

 
Consider H3 =   

 
 
      Figure 4.29 
 
a subgraph of G.   
 

S(H3)  S(G) and we see as special lattice subgraphs we see 
S(H3)  S(H1). 
 
 We have several properties about subgraphs as special 
sublattice subgraphs. 
 
Example 4.12:  Let G =  
 
      Figure 4.30 
 
    
be a graph. 
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 S(G) = {Collection of all subgraphs of G together with  
and G}.  One can have the special lattice subgraphs of S(G). 
 
 H =    is a subgraph of G. 
 
 
 Now S(H) = {Collection of all subgraphs of H with H and 
}  
 

= {, H,          ,        ,                      S(G).   
 

 
The special sublattice subgraph S(H) of S(G) is the special 

lattice of subgraphs. 
 
 
 
 
 
 
  
 
      Figure 4.31 
 

S(H) is a Boolean algebra of order four. 
 
 
Example 4.13:  Let G =      
 
 
 
 
 
 
 
      Figure 4.32 
 
be a graph.  To find the collection of subgraphs of G with G and 
.   
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S(G) = {,         ,        ,          ,         ,         ,                   , …,  
 

 
 
   , …,  
 
 
 

and so on}. 
 
 Now we see S(G) is closed under ‘’ and ‘’.   
 

Now S(G) can be given a topological we call S(G) as the 
special topology subgraphs of a graph.   

 
Given any graph G we define S(G) as the special 

topological subgraphs.  Thus even if vertices are same and 
edges are different we get distinct graphs. 
 
 We get for a given set of n-vertices we have many  special 
topological subgraphs depending on the edges. 
 
 Study of these new class of topologies using subgraphs 
happens to be one of the innovations both on graph theory and 
topologies. 
 
 It is left as an open problem which is as follows. 
 
Problem 4.3:  Let G be a graph with n vertices.  If G has p 
edges what is S(G)?  If G has m edges what is S(G) (p>m)? 
 
 Compare them. 
 
Example 4.14:  Let G be the graph  
 
 
 
       Figure 4.33 
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and H be the graph.  
 
 
      Figure 4.34 
 
To find S(G) and S(H). 
 
 S(H)= {,         ,         ,         ,         ,                     , 
 
 
    ,     ,      ,    , 
 
 
         ,         ,        ,      , 
 
 
       ,           ,        , 
 
 
            ,            ,     
 
= H}.  o(S(H)) = 20.  
 
 S(G) = {,          ,         ,         ,         ,                    ,  
 
 
 
    ,                    ,                    ,                     , 
 
 
 
     ,     ,        ,        , 
 
 
       ,     ,           , 
   
 
            ,          ,         , 
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        ,  
 
 
        ,               .  o(SG) = 25. 
 
  

We see S(H)  S(G).  Thus a graph with 4 vertices and two 
edges has 25 subgraphs and a graph H with 4 vertices and one 
edge  has 20 subgraphs. 

 
 Thus addition of edges gives more subgraphs.  Further if we 
have only 4 vertices graph K the S(K) will have 24 = 16  
subgraphs. 
 
 We see the special topological subgraphs depend on the 
number of edges of the graph. 
 
THEOREM 4.5:  All special lattice of graphs G are 
Smarandache lattices where G has more then or equal to two 
vertices. 
 
 Proof  follows from the simple fact if G as a graph with n 
vertices. 
 
 The special lattice of subgraphs associated with S(G) has a 
sublattice which is a Boolean algebra of order 2n (n  2).  Hence 
these lattices are Smarandache lattices.  
 
 It is important to notice that each subgraph of the graph G 
can be associated with a special graph topological space. 
 
 By this way we get a class of new special topological 
subgraph spaces which is very different from the usual 
topological spaces on subsets of a set. 
 
 Now if G has finite number of vertices certainly the special 
subgraph topological spaces are finite.   
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Further depending on the graph the special topological 

subgraph spaces will be different.  
 
 It is left for the reader to study the special topological 
subgraph spaces of a connected graph, tree,  Turan graph, 
Wagner graph, k-partile graph and stars. 
 
 However we illustrate for a few of them the rest is left as an 
exercise to the reader. 
 
 
Example 4.15:  Let G be the Turan graph.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
      Figure 4.35 
 
 S(G) = {Collection of all subgraph of G with G and }.   
 

The interested reader is expected to find o(S(G)).   
 
We call the special topological subgraph space as the Turan 

special topological subgraph space or special Turan topological 
subgraph spaces. 
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Example 4.16:  Let G be a graph 
 
 
 
 
 
 
 
 
 
 
     Figure 4.36 
      
 

The subgraphs of G denoted by S(G) = {, G,    ,        ,  
 
    ,       ,     ,   , … }.  
 
 
 Interested reader can find o(S(G)) and the special 
topological subgraph of G. 
 
Example 4.17:  Let G be a graph given in the following. 
 
 
 
 
 
 
 
 
     Figure 4.37 
 
 We see S(G) = {,          ,     ,         ,         ,  
 
 
 
   ,                  ,        ,      ,  
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       ,        ,      , G 
 
 
S(G) = 13. 
 
Example 4.18:  Consider the graph 
 
 
 
 
 
 
 

     Figure 4.38 
 
To find S(G) and the special topological subgraph 

associated with G. 
 

 S(G) = {,       ,    ,       ,         ,     ,    , 
 
 
       ,       ,         ,       ,            , 
 
 
 
      ,       ,       ,      ,  
 
 
    ,         ,         ,             , 
 
 
        ,         ,        ,        , 
 
 
         G   . 
 
 

 
v1 {      } 

v3 
 
v1 {            }  

v2 
 
v3 

 
v1 {            }  }  

v3 
 
v2 

  v0 

  v1 

  v2   v3 

 
v1 { }  

v2 { }  
v3 { }  

v0 {      } 
v1 

 
v0 { }  

v0 {      }  
v2 

 
v0 {      } 

v3 
 
v1 {      }  

v2 
 
v1 {      } 

v3 
 
v2 {      } 

v3 
 
v0 {      } 

v1 

 
v1 {      }  

v2 
 
v1 {      }  

v3 
 
v0 {          }  

v1 
 
v2 

 
v0 {          }  

v1 
 
v2 

 
v0 {          }  

v1 
 
v2 

 
v1 {          }  

v2 
 
v3 

 
v2 {          }  

v1 
 
v3 

 
v0 {          }  

v1 
 
v3 

 
v0 {          }  

v1 
 
v3 

 
v0 {          }  

v1 
 
v3 

 
v0 {          }  }  

V2 
 
v3 

 
v3 {          }  

v1 
 
v2 

 
v1 {          }  

v2 
 
v3 



136 Strong Neutrosophic Graphs and Subgraph … 
 
 
 
 
 This graph is a tree and S(G) can also be termed as the 
special topological subgraphs space of a tree. 
 
 Now we proceed on to discuss about neutrosophic graphs G 
and the S(G) associated with them. 
 
 It is pertinent to mention here if G is a pure neutrosophic 
graph then S(G) of it is the same as that of the usual graph G 
where the neutrosophic edges are replaced by usual edges.  The 
difference occurs only when some of the edges  are 
neutrosophic and other are ordinary or usual edges.   
 

We will proceed onto illustrate them. 
 
 Let       = G be the usual graph and H =        
  Figure 4.39                 Figure 4.40 
 
a neutrosophic graph S(G)  S(H) both as lattice graph as well 
as special topological subgraph. 
 
 
   Take G to be     and   
 
 
           Figure 4.41 
 
 
H to be 
    
 

Figure 4.42 
 

to be the usual graph and the neutrosophic graph 
respectively.   

 
We see S(H)  S(G) as lattice subgraph and special 

topological subgraph. 
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Let K =    we see S(K)  S(G) (or S(H)) as lattice  
 
   Figure 4.43 
 
 
graphs.  Also as topologies they are different.   
 

For if we want to speak of isomorphic graphs by no means 
we agree to map a     usual edge to a     

 
                Figure 4.44   
 

neutrosophic edge.   
 

Hence we see we cannot treat them as identical. 
 
Example 4.19:  Let us consider a graph with 3 vertices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 4.45 
 
 
and so on. 
 
 So we see we have 2 neutrosophic complete graphs with 3 
vertices and only one pure neutrosophic graph.   
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However,  
 
 
 
                  and  
 
            G        G         G 
 
       Figure 4.46 
 
are  treated as isomorphic.  That is S(G)  S(G)  S(G).   
 

But if K is a neutrosophic graph given by 
 
 
          and 
 
 
              K            K        K 
      Figure 4.47 
 
we see S(G)   S(K) or S(K) or S(K). 
 
 However S(K)  S(K)  S(K). 
 
 We see if T is the pure neutrosophic graph 
 
 
           Figure 4.48 
we see S(T)   S(K) or  S(G). 
 
 Thus we have by defining neutrosophic graphs for the 
complete graph with three vertices we have three neutrosophic 
graphs all of them different. 
 
                 and 
 
 
        Figure 4.49 
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 Now if we have a complete graph with four vertices planar 
how many distinct neutrosophic graphs do we get from them.  
We enlist them in the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 4.50 
 
Now we can have six topological spaces and they are not 
isomorphic.   
 
 Let G be a non planar complete graph with four vertices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  v1 

v3 

v0 

v2   

  v1 

v3 

v0 

v2   

  v1 

v3 

v0 

v2 

  

  v1 

v3 

v0 

v2   

  v1 

v3 

v0 

v2   

  v1 

v3 

v0 

v2 



140 Strong Neutrosophic Graphs and Subgraph … 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 4.51 
 
 
 We see we have 10 distinct special topological subgraphs 
spaces and 10 different lattice graphs.   
 

We call these special topological subgraph spaces as special 
neutrosophic topological subgraph spaces. 
 
 Now we see the number  distinct neutrosophic planar 
connected graphs with 5 vertices. 
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   G4         G5       G6 

 

 
 
 
 
 
 
 
 
   G7             G8 
  
      Figure 4.52 
 

We see the neutrosophic complement of G1 is G8.   
 
The neutrosophic complement of G2 is G7. The neutrosophic 

complement of G4 is G3.   
 
The neutrosophic complement of G5 is G6.  

 
 We call S(G1) the special complement of S(G8).  They S(G1) 
and S(G8) are not complement in usual sense.   
 
 We get 8 special topological neutrosophic subgraph spaces. 
  
Example 4.20:  Let G be the graph given in the following. 
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G 
      Figure 4.53 
 
 Then we have the following neutrosophic graphs. 
 
 
 
 
 
 
 
 
 
 
    G1     G2        G3  

Figure 4.54 
 

 G1 is the complement of G, G2 is the complement of G3. 
   
 
 
 
 
 
 
 
 
 

       
    G4     G5 

Figure 4.55 
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We see G4 is the neutrosophic complement of G5. 
 

 This is self complemented neutrosophically. 
 
 
 
 
 
 
 
 
 
 
 
 
       G6 
 
     Figure 4.56  
 
G7 is also a neutrosophically self complemented graph. 
 
 
 
 
 
 
 
 
 
 
 
 
          G7 
 
      Figure 4.57 
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 Consider 
 
 
 
 
 
 
 
 
 
          G8 
 

Figure 4.58 
 

then the neutrosophic complement of G8 is G9. 
 
 
 
 
 
 
 
 
 
 
 
           G9 
 

Figure 4.59 
 

 We say a neutrosophic graph is self complemented if it is 
symmetric about the neutrosophic edges and usual edges. 
 
 We will give examples of neutrosophic self complemented 
graphs.   
 
Example 4.21:  Let G be a neutrosophic graph. 
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Figure 4.60 
 
 Let H be the neutrosophic graph. 
 
 
 
 
 
 
 

Figure 4.61 
 G is the neutrosophic complement of H and vice versa. 
 
Example 4.22:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 
  
      Figure 4.62 
 
G is not a neutrosophic self complemented graph.  
  
 The neutrosophic complement graph of G is H which is as 
follows: 
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Figure 4.63 
       
Example 4.23:  Let G be the neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.64 
 
 The neutrosophic complement of G is H which is as 
follows: 
 
 
 
 
 
 
 
 
 

 
          H  Figure 4.65 
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Example 4.24:  Let G be the neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 

Figure 4.66 
 
 Is G a self neutrosophic graph?  Justify your answer. 
 
Example 4.25:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 

Figure 4.67 
 
 G is a self complemented neutrosophic graph. 
 
Example 4.26:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
  
       Figure 4.68 
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 G is a self complemented neutrosophic graph. 
 
 
 
 
 
 
  H =  
 
 
 

 
 
 This neutrosophic graph H is not self complemented. 
 
 The complement of H is as follows: 
 
 
 
 
 
 
 
 

 
Figure 4.69 

 
 Let G be a neutrosophic graph. 
 
 
 
 
 
 
  

 
        Figure 4.70 
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G is a self complemented graph. 
 
Let G be the neutrosophic graph 
 
 
 
 
 

 
  
 
 

Figure 4.70 
 
 This graph is not self complemented.  The neutrosophic  
 
 
 
 
 
 
 
 

Figure 4.71 
 
graph H is the neutrosophic complement of G. 
 
Example 4.27:  Let G be the neutrosophic graph with 7 vertices 
3 neutrosophic edges and 10 usual edges. 
 
 Will G be a self complemented neutrosophic graph?   
 
 We just propose some interesting problems. 
 
Problem 4.4:  Can a neutrosophic graph G with n neutrosophic 
edges and p usual edges p  n be a self complemented 
neutrosophic graph? 
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Problem 4.5:  Is it true a graph with n vertices which has equal 
number of usual edges and neutrosophic edges be a self 
complemented neutrosophic graph? 
 
Example 4.28:  Let G be a neutrosophic graph  
 
 
 
 
 
 
 
 
 
      Figure 4.72 
 
 Is G a self-complemented neutrosophic graph?    
 
 Now we proceed onto study the neutrosophic graph and the 
adjacency matrix. 
 
 Recall from Frank Harary if G is a graph, it can also be 
considered as a symmetric reflexive relation on a finite set of p 
points.   
 

This relation is called adjacency and it can be represented 
by a p  p binary matrix A = [aij].  In A, the ith row and column 
correspond to the ith point vi,  with aij = 1 if vi and vj are adjacent 
and aij = 0 otherwise. 
 
 This is called the adjacency matrix of a graph and there is 
clearly a one to one correspondence between labeled graphs 
with p points and p by p symmetric binary matrices with zero 
diagonal. 
 
 Now let G be a neutrosophic graph.  Then the adjacency 
matrix associated with G will be a neutrosophic matrix if vi and 
vj are neutrosphically adjacent then aij = I  
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           . 
 
       Figure 4.73 
 
 We  will illustrate this first by some examples.  
 
Example 4.29:  Let G be a  neutrosophic graph with four 
vertices. 
 
 
 
 
 
 
       Figure 4.74 
 
 The neutrosophic adjacency matrix A associated with G is 
as follows: 
 

A = 

0 I 1 1
I 0 1 I
1 1 0 I
1 I I 0

 
 
 
 
 
 

. 

 
 Clearly A is a symmetric neutrosophic matrix. 
 
Example 4.30:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 
     Figure 4.75 
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 The neutrosophic adjacency matrix A of G is as follows: 
 

A = 

0 1 I I 1
1 0 1 I 1
I 1 0 1 I
I I 1 0 1
0 1 I 1 0

 
 
 
 
 
 
  

. 

 
 
 
 Suppose G is the neutrosophic graph. 
 
 
 
 
 
 
 
 
 
 
     Figure 4.76 
 
 
 The neutrosophic adjacency matrix, A associated with is; 
 
 

A = 

0 1 0 0 1
1 0 1 0 0
0 1 0 I 0
0 0 I 0 1
1 0 0 1 0
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Example 4.31:  Let G be a neutrosophic matrix which is as 
follows: 
 
 
 
 
 
 
 
 
     Figure 4.77 
 
 The neutrosophic adjacency matrix A associated with G is, 
 

A = 

0 1 0 1 1
1 0 I 0 0
0 I 0 1 0
1 0 1 0 I
1 0 0 I 0

 
 
 
 
 
 
  

. 

 
 It is interesting to note if the neutrosophic matrix associated 
with a neutrosophic graph which has only one edge to be 
neutrosophic and the rest are all usual then the neutrosophic 
adjacency matrix A will have only two entries as I and all other 
entries will be 0 and 1. 
 
 Another observation is if G is a neutrosophic graph with 
only two neutrosophic edges then the associated neutrosophic 
adjacency matrix with have only 4 entries to be I’s and the rest 
0’s or 1’s. 
 
 In view of this we have the following theorem the proof of 
which is direct and hence left as an exercise to the reader. 
 
THEOREM 4.6:  Let G be a neutrosophic graph.  G has only one 
neutrosophic edge if and only if the neutrosophic adjancency 
matrix A of G has two neutrosophic entries and the rest are 0’s 
and 1’s. 
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 We give the generalized result in the following theorem. 
 
THEOREM 4.7:  Let G be neutrosophic graph.  G has s edges to 
be neutrosophic if and only if the adjacency neutrosophic 
matrix A associated with G has 2s neutrosophic entries (ie. A 
has totally 2s entries which are I) and the rest of the entries of A 
are either 0 or 1.   
 
 This proof is also direct and hence left as an exercise to the  
reader.   
 

We have the result of usual graph to be true in case of 
neutrosophic graphs also. 
 
THEOREM 4.8:  A neutrosophic graph G is disconnected if for 
some labeling the neutrosophic adjacency matrix A can be 
partitioned into neutrosophic submatrices A11, A12, A21 and A22 
where A11 and A22 are square neutrosophic matrices. 

 
 
 
  

11

22

A 0
0 A  

 
 We will proceed onto give some more examples before we 
proceed to give analogous theorems. 
 
Example 4.32:  Let G be a neutrosophic graph given in the 
following. 
 
 
 
 
 
 
 
 
 
                Figure 4.78 
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The adjacency neutrosophic matrix A associated with G is 
as follows: 
 

A = 

0 1 1 1 1 0 0 0
1 0 I 0 1 0 0 0
1 I 0 1 0 0 0 0
1 0 1 0 I 0 0 0
1 1 0 I 0 0 0 0
0 0 0 0 0 0 I 1
0 0 0 0 0 I 0 I
0 0 0 0 0 1 I 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 We see the neutrosophic graph is disconnected and the 
neutrosophic matrix takes the form. 
 

That is A = 11

22

A 0
0 A

 
 
  

. 

 
 We call A in this form as a super symmetric square diagonal 
matrix. 
 
 In view of this we give some more examples before we 
prove a few results.   
 
Example 4.33:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
  
      Figure 4.79 
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The neutrosophic adjacency matrix associated with G is as 
follows: 
 

A = 

0 1 I 1 0 0 0 0 0 0 0 0
1 0 1 I 0 0 0 0 0 0 0 0
I 1 0 1 0 0 0 0 0 0 0 0
1 I 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 I 0 0 0 0 0
0 0 0 0 1 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 I
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 I
0 0 0 0 0 0 0 I 0 0 I 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

= 
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

. 

 
 We see A is a super symmetric square diagonal 
neutrosophic matrix.  The main diagonal element has three 
matrices.  
 

We make the following observation the adjacency 
neutrosophic super matrix A of the graph G has three main 
diagonal elements and the graph G has 3 disjoint subgraphs.   
 

Further this super matrix is symmetric.   
 
So in view of this we give the following theorem. 
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THEOREM 4.9:  Let G be a neutrosophic graph.  If the 
adjacency neutrosophic matrix is a symmetric super 
neutrosophic square diagonal matrix of the form  

 

A = 

1

2

3

(0) ... ... (0)
(0) ... ... (0)
(0) (0) ... ...
(0) (0) (0) ... ...
(0) ... (0) ... n

A
A

A

A

 
 
 
 
 
 
 
 

 

 
where each An is a symmetric matrix.  Then G is a neutrosophic 
graph with n disjoint components. 
 
 We will illustrate this situation by an example or two. 
 
 Proof is direct and hence left as an exercise to the reader. 
 
Example 4.34:  Let G be a  neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 4.80 
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 Let A be the neutrosophic adjacency matrix associated with 
G. 
 
 

 

0 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 I 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 I 0 0 0 0 0 0 0

A
0 0 0 0 0 I 1 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 I 1
0 0 0 0 0 0



0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 
 

= 

1

2

3

4

5

A (0) (0) (0) (0)
(0) A (0) (0) (0)
(0) (0) A (0) (0)
(0) (0) (0) A (0)
(0) (0) (0) (0) A

 
 
 
 
 
 
 
 

. 

 
 
 Clearly A is a neutrosophic symmetric super diagonal 
square matrix with 5 main diagonal elements. 
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 Further the neutrosophic graph G has 5 disjoint components 
associated with it. 
 
Example 4.35:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
 
       Figure 4.81 
 
 The neutrosophic adjacency matrix A associated with G is 
as follows: 
 

A = 

0 1 I 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
I 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

= 
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

. 

 
 We see again A is a super neutrosophic symmetric square 
matrix. 
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 Almost all properties associated with usual graphs are true 
in case of these neutrosophic graphs also. 
 
 We will just state the results the proofs can be supplied by 
the interested reader. 
 
THEOREM 4.10:  Let G be a neutrosophic graph with 
neutrosophic adjacency matrix A.  Then (i, j) entry of An is the 
number of different walk of length n from vi to vj.  
 
 Now we illustrate these situations by some simple 
examples. 
 
Example 4.36:  Let G be a  neutrosophic graph with adjacency 
neutrosophic matrix A. 
 
 G =  
 
 
 
 
 
      Figure 4.82 
 

A =.

0 I 1 1
I 0 0 1
1 0 0 I
1 1 I 0

 
 
 
 
 
 

 

 
Now consider the neutrosophic subgraph H 

 
 
 
 
 
 
 

        Figure 4.83 
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The neutrosophic adjacency matrix A of the subgraph H is 
as follows: 

 

A =

0 0 1 1
0 0 0 1
1 0 0 I
1 1 I 0

 
 
 
 
 
 

. 

 
Let P be the neutrosophic subgraph of G. 
 
 
 
 
 
 

 
     Figure 4.84 

 
The adjacency neutrosophic matrix A of P is 
 

 A = 

0 0 1 0
0 0 0 1
1 0 0 I
0 1 I 0

 
 
 
 
 
 

 and so on.   

 
Next we give the definition of a incidence matrix of a 

neutrosophic graph G. 
 
Let G be a neutrosophic graph with n vertices and m edges 

(m edges is both neutrosophic edges as well as usual edges) and 
without self loop.   

 
The incidence neutrosophic matrix A of G is a m  n matrix 

A = [aij] whose n rows correspond to the n vertices and the m 
columns correspond to m edges as  

 
 

  

  v1 

v3 

v0 

v2 
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 aij = 

1 if jth edge is incidence on the ith vertex
I if jth edge is neutrosophic incidence on the ith vertex
0 otherwise.







 

 
 It is also called vertex edge incidence neutrosophic matrix 
and is denoted by A(G). 
 
 We will proceed onto give a few examples on them. 
 
Example 4.37:  Let G be a neutrosophic graph. 
 
 
 
 
 
 
 
 
 
     Figure 4.85 
 
 
 The neutrosophic incidence matrix of G is as follows:  
 

 A(G) = 

0 1 2 3 4 5 6

0

1

2

3

4

e e e e e e e
v I 0 0 1 0 I 0
v I 1 0 0 1 0 0
v 0 1 1 1 0 0 0
v 0 0 1 0 1 I 0
v 0 0 0 0 0 0 1

 
 
 
 
 
 
  

. 

 
 
 A(G) is clearly a neutrosophic matrix. 
 
 
Example 4.38:  Let G be a neutrosophic graph. 

  

  v1 

v3 

v0 

v2 

 v4 

e4 

e2 

e3 

e0 

e1 e5 

e6 



Special Subgraph Topological Spaces 163 
 

 
 
 
 
  
 
 
 
 
 
 
  
    Figure 4.86 
 
 The incidence neutrosophic matrix A(G) as follows: 
 

= 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

e e e e e e e e e e
v 1 1 0 0 0 0 0 0 0 0
v 0 0 0 1 I 1 0 0 0 0
v 1 0 1 0 0 1 1 0 1 0
v 0 0 0 0 0 0 1 I 0 0
v 0 0 0 0 0 0 0 0 1 I
v 0 0 0 0 I 1 0 0 0 0
v 0 0 0 1 0 0 0 0 0 0
v 0 0 0 0 0 0 0 I 0 0
v 0 1 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Example 4.39:  Let G be a neutrosophic graph.  Let A(G) be the 
incidence neutrosophic matrix. 
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         Figure 4.87 
 
 
 

A(G) = 

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

e e e e e e e
v 1 1 0 0 0 0 0
v 1 0 1 0 0 0 0
v 0 1 1 0 0 0 0
v 0 0 0 I 0 0 0
v 0 0 0 I I 0 0
v 0 0 0 I 0 1 0
v 0 0 0 0 0 1 0
v 0 0 0 0 0 0 1
v 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 We see if the neutrosophic graph is disjoint the incidence 
matrix is a neutrosophic diagonal matrix. 
 

A(G) =
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

. 

 
 
 Clearly this super neutrosophic incidence matrix is not 
symmetric or square only diagonal in general. 
 

Even if we have a disjoint graph G usual not necessarily be 
neutrosophic then also the adjacency matrix is a super diagonal 
symmetric square matrix and the incidence matrix is a super 
diagonal matrix non necessarily square or symmetric. 
 

  v7   v8 e7 
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 We will illustrate this situation by some examples. 
 
Example 4.40:  Let G be a graph which is as follows: 
 
 
 
 
 
 
 
 

Figure 4.88 
 
 The adjacency matrix A of G is as follows: 
 
 

A = 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

v v v v v v v v v v v v v v

v 0 1 1 0 0 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0 0 0
v 0 0 0 1 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 1 0 0 0 0 0 0 0
v 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 1 0 0 0 0 0
v 0 0 0 0 0 0 0 1 0 1 1 1 1 1
v 0 0 0 0 0 0 0 0 1 0
v
v
v
v

0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
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 = 

1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

. 

 
 It is clear A is a symmetric super diagonal square matrix. 
 
 Now we find the incidence matrix A(G) of G. 
 

 A(G) =

1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

e e e e e e e e e e e
v 1 1 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0
v 0 1 0 0 0 0 0 0 0 0 0
v 0 0 1 0 0 0 0 0 0 0 0
v 0 0 1 1 0 0 0 0 0 0 0
v 0 0 0 1 1 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0
v 0 0 0 0 0 1 0 0 0 0 0
v 0 0 0 0 0 1 1 1 1 1 1
v 0 0 0 0 0 0 0 0 0 0 1
v 0 0 0 0 0 0 0 0 0 1 0
v 0 0 0 0 0 0 0 0 1 0 0
v 0 0 0 0 0 0 0 1 0 0 0
v 0 0 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 A(G) is a diagonal super matrix which is not square.   
 

Thus A(G) = 
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

 

 
 
 Now we give yet another examples. 
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Example 4.41:  Let G be a graph which is as follows: 
 
 
 
 
 
 
 
 
       Figure 4.89 
 
 The incidence matrix A(G) associated with G is as follows: 
 
 

A(G) = 

1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

e e e e e e e e e e e e
v 1 1 1 0 0 0 0 0 0 0 0 0
v 0 1 0 0 0 0 0 0 0 0 0 0
v 0 0 1 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 1 1 1 1 0 0 0 0 0
v 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0
v 0 0 0 0 0 1 0 0 0 0 0 0
v 0 0 0 0 0 0 1 0 0 0 0 0
v 0 0 0 0 0 0 0 1 0 1 0 1
v 0 0 0 0 0 0 0 1 1 0 0 0
v 0 0 0 0 0 0 0 0 1 1 1 0
v 0 0 0 0 0 0 0 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

= 
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

. 
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 Clearly A(G) is a super diagonal matrix which is not square 
or symmetric. 
 
 Now we give the adjacency matrix A of G. 
 

 A =

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

v v v v v v v v v v v v v
v 0 1 1 1 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 0 1 1 1 1 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 0 0 1 1 1
v 0 0 0 0 0 0 0 0 0 1 0 1
v
v

0
0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

 = 
1

2

3

A (0) (0)
(0) A (0)
(0) (0) A

 
 
 
 
 

  

 
is a super symmetric square diagonal matrix. 

 
 We have the following results the proof of which is left as 
an exercise to the reader. 
 
THEOREM 4.11:  Let G be a graph which has m disjoint graphs.  

(i) Then the adjacency matrix A of G is a super symmetric 
diagonal square matrix.  
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(ii) The incidence matrix A(G) of G is a super diagonal 
matrix. 
 
 We see the number of diagonal matrices (elements) A(G) 
and A are m in number that is 
 
 

A(G) =

1

2

(0) ... (0)
(0) (0)

(0) (0) (0) m

A
A

A

 
 
 
 
 
  

     

 
and  
 
 

A =

1

2

(0) (0) ... (0)
(0) (0) (0)

(0) (0) (0) ... m

A
A

A

 
  
 
   

      

 
where Aj’s are rectangular matrices where as Aj are square 
symmetric diagonal matrices 1  j  m. 
 
 Proof is direct hence left as an exercise to the reader. 
 
 We has been examples we see the same is true or 
neutrosophic graphs with m disjoint neutrosophic graphs. 
 
 We will now show by examples the power of an adjacency 
neutrosophic graph G. 
 
Example 4.42:  Let G be the neutrosophic graph 
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      Figure 4.90 
 
 The adjacency matrix A associated with G is as follows: 
 
 

A = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 1 0 0 0 1 1
v 1 0 1 0 0 0 I
v 0 1 0 I 0 0 1
v 0 0 I 0 I 1 0
v 0 0 0 I 0 0 0
v 1 0 0 1 0 0 I
v 1 I 1 0 0 I 0

 
 
 
 
 
 
 
 
 
  

; 

 
 A is a 7  7 neutrosophic symmetric matrix. 
 
 

A2 = 

3 I 1 I 1 0 I 2I
I 2 I I I 0 1 I 1 I
1 I 2 I 0 I 2I 0
1 0 0 1 I 0 0 2I
0 0 I 0 I I 0
I 1 I I 0 I 1 2I 1

2I 1 I 2I 0 1 1 2I

 
    
 
  
 
 

  
  

. 
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 The product of the adjacency matrix.  Each of the diagonal 
entries of A2 equals the degree of the corresponding vertex, if 
the graph has no self loops.  
 

We have all the results in case of usual graphs to be true in 
case of neutrosophic graphs. 
 
 The only advantage is we can several neutrosophic graphs 
but only one usual graph with the number of edges and vertices 
remaining fixed.  
 
 We will illustrate this situation by some examples. 
 
Example 4.43:  Let G be the neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
    Figure 4.91 
 
 
The adjacency matrix A of G is as follows: 
 
 

A = 

0 1 2 3 4

0

1

2

3

4

v v v v v
v 0 1 0 0 0
v 1 0 I 0 I
v 0 I 0 1 1
v 0 0 1 0 1
v 0 I 1 1 0

 
 
 
 
 
 
  

, 
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 v2 

 v0 
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A2 =

1 0 I 0 I
0 1 2I I 2I I
I I 2 I 1 1 I
0 2I 1 2 1
I 1 1 I 1 2 I

 
  
  
 
 
   

. 

 
 Clearly v0 has only one edge passing through it.   
 

The vertex v1 has two neutrosophic edges and one usual 
edge that is why the second diagonal term is 1 + 2I. 
 
 The vertex v2 has 2 ordinary edges and one neutrosophic 
edge passing thro’ it that is why the term is 2+I. 
 
 The edges thro’ the vertex are two ordinary edges.   
 

Finally the edges thro’ v4 are two ordinary edges and one 
neutrosophic edge. 
 
Example 4.44:  Let G be a neutrosophic graph given as follows: 
 
 
 
 
 
 
 
 

Figure 4.92 
 
 

The adjacency neutrosophic matrix A associated with G is 
as follows: 
 
 

 
v0 

 v1 
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A = 

0 1 2 3

0

1

2

3

v v v v
v 0 1 I 0
v 1 0 1 1
v I 1 0 I
v 0 1 I 0

 
 
 
 
 
 

. 

We find A2; 

A2 = 

1 I I 1 1 I
I 3 2I I
1 2I 2I 1 1

1 I I 1 1 I

  
 
 
 
   

. 

Now A3 = 

2I 3 2I 5I 2I
3 2I 4I 3 2I 3 2I

5I 2I 3 4I 5I
2I 3 2I 5I 2I

 
    
 
  

. 

We see Y = A + A2 + A3 

= 

1 3I 4 3I 6I 1 1 3I
4 3I 3 4I 4 4I 4 3I
1 6I 4I 4 6I 1 6I 1
1 3I 3I 4 6I 1 1 3I

    
     
    
     

. 

 No term in Y is zero proving the neutrosophic graph G is 
connected.   

Now we proceed onto find the Y of a disconnected 
neutrosophic graph. 
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Example 4.45:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 

Figure 4.93 
 
 The neutrosophic adjacency matrix A of G is as follows: 
 

A = 

0 1 2 3 4

0

1

2

3

4

v v v v v
v 0 1 I 0 0
v 1 0 1 0 0
v I 1 0 0 0
v 0 0 0 0 I
v 0 0 0 I 0

 
 
 
 
 
 
  

. 

 
 

Now A2 = 

1 I I 1 0 0
I 2 I 0 0
1 I I 1 0 0
0 0 0 I 0
0 0 0 0 I

 
 
 
 
 
 
  

. 

 
 
 We see from the diagonal elements of A2 we see the vertex 
v0 has one real edge and one neutrosophic edge.   
 

The vertex v1 two edges denoted by 2 is the second diagonal 
element.   
 

The vertex v2 has one real edge and one neutrosophic edge 
denoted by 1+I as the 3rd diagonal element of A2.   

 v0  v1 

 v2 

 v3  v4 
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For the vertices v3 and v4 we have the diagonal elements to 

be I confirming that only one neutrosophic edge bridges them. 
 
 We find A3; 
 
 

A3 = 

2I 2 I 3I 0 0
2 I 2I I 2 0 0
3I I 2 2I 0 0
0 0 0 0 I
0 0 0 I 0

 
   
 
 
 
  

 

 
 We find A4; 
 
 

A4 = 

2 4I 5I 3I 2 0 0
5I 4 2I 5I 0 0

2 3I 5I 4I 2 0 0
0 0 0 0 I
0 0 0 I 0

  
  
  
 
 
  

 

 
 
 Now Y = A + A2 + A3 + A4 
 

= 

3 7I 3 7I 3 7I 0 0
3 7I 6 4I 7I 3 0 0
3 7I 3 7I 3 7I 0 0

0 0 0 I 3I
0 0 0 3I I

   
    
   
 
 
  

. 

 
 We see this neutrosophic matrix Y has zeros.   
 

So the graphs are disjoint. 
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 Now we just recall the following results as theorems and the 
proof of this is left as an exercise to the reader. 
 
THEOREM 4.12:  Let G be a neutrosophic graph with n vertices.  
Let A be the neutrosophic adjacency matrix of the graph G.   
 
 Let Y = A + A2 + A3 + … + An–1 then G is disconnected if 
and only if there exists at least one entry in the matrix Y that is 
zero. 
 
THEOREM 4.13:  Let G be a neutrosophic graph.  A the 
neutrosophic adjacency matrix of G.  
 

Then An is also symmetric for any n. 
 
 That is to prove product of a symmetric matrix with itself is 
symmetric. 
 
 Now we introduce a few simple notions about neutrosophic 
graphs. 
 
 In the first place given the number of vertices and edges we 
can have several neutrosophic graphs which are different. 
 
 For instance we have given two vertices there exists one and 
only one neutrosophic graph which is also pure that is 
 
 
 
 
     Figure 4.94 
 
 Given three vertices.  We have the following neutrosophic 
graphs. 
 
 
 
 

 v0  v1  v0  v1 

 v1  v2 

 v0 

 v1  v2 

 v0 
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Figure 4.95 
 
 We see two neutrosophic graphs one pure neutrosophic 
graph and one usual graph. 
 
 It is an open problem to find for a given graph G with n 
vertices and p edges the total number of neutrosophic graphs 
with p edges and n vertices. 
 
Example 4.46:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
  
 
 
 
     Figure 4.96 
 

 
We have several subgraphs which are not neutrosophic sum 

subgraphs which are pure neutrosophic.   
 
Some subgraphs which are neutrosophic.  

 
 We just give them. 
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Figure 4.97 
 
 
 We see there is only one usual subgraphs which is large in 
the since all other usual subgraphs of G are only subgraphs of H 
we call this H as the largest usual subgraph of G. 
 
 Now we find all pure neutrosophic subgraphs of G. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.98 
 
and so on.   
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We see P is the largest pure neutrosophic subgraph of G.  
All other pure neutrosophic subgraphs of G are subgraphs of P.  
Infact P is disjoint.  However H is connected.   

 
We call P the largest pure neutrosophic subgraph of G. 

 
 Consider the neutrosophic subgraphs of G. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.99 
 
 
are all usual subgraphs of G.   
 
 
The smallest pure neutrosophic graph is of the form       
            Figure 4.100 
 
and the smallest neutrosophic graph is of the form 

 v2  
v11 
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Figure 4.101 
 
of course largest is only one in case of pure neutrosophic and 
usual graphs. 
 
Example 4.47:  Let G be a neutrosophic graph given in the 
following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.102 
 
 We see there are many small pure neutrosophic subgraphs. 
 
 
 
 
 
 
       Figure 4.103 
 
and so on. 
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There are many small neutrosophic graphs viz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.104 
 
 
and so on. 
 

Of course all vertices amount for small usual graphs.   
 
Now we proceed onto present the largest pure neutrosophic 

graph and largest usual graph of G. 
 
 
 
 
 
 
 
 
 
 

Figure 4.105 
 
 Clearly this subgraph is disjoint and it is the largest usual 
subgraph. 
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 The largest pure neutrosophic subgraph is as follows: 
 
 
 
 
 
 

Figure 4.106 
 
 
 Clearly the largest pure neutrosophic subgraph is not 
connected and has four components.  The usual largest subgraph 
is also not connected and has two components. 
 
 We define the following concepts. 
 
 If a connected neutrosophic graph G has both the largest 
pure neutrosophic subgraph as well the largest usual subgraph 
are disconnected we call G to be pseudo strongly disconnected 
largest neutrosophic graph. 
 
 If a connected neutrosophic graph G has both the largest 
pure neutrosophic subgraph as well as the largest usual 
subgraph are connected we call G to be strongly connected 
graph. 
 
 If in a connected graph G which is neutrosophic only one of 
the largest subgraph is connected other is disconnected then we 
call G to be just connected. 
 
 Suppose we have a neutrosophic graph G and it is a 
component of two graphs that is G is disconnected and one fo 
the subgraph is connected neutrosophic and other subgraph is 
connected usual then we call G to be special disconnected 
strong neutrosophic graph. 
 
 We will give examples of them. 
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Example 4.48: Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 
 
 

Figure 4.107 
 
 G is clearly a special disconnected strong neutrosophic 
graph. 
 
 Consider 
 
 
 
 
 
 

Figure 4.108 
 
are usual subgraph of G and pure neutrosophic subgraph of G. 
 
Example 4.49:  Let G be neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
  
        Figure 4.109 
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 Clearly G is connected however both pure neutrosophic 
largest subgraph as well as largest usual subgraph of G are not 
connected. 
 
Example 4.50:  Let G be a neutrosophic graph which is as 
follows: 
 
 
 
 
 
 
 
 

Figure 4.110 
 

G is disconnected and both the largest pure neutrosophic 
subgraph as well as largest usual subgraph of G are 
disconnected. 
 
THEOREM 4.14:  Let G be the disconnected neutrosophic graph 
with atleast H1 and H2 (G = H1  H2) where both H1 and H2 are 
connected and neutrosophic.  Then G has both largest pure 
neutrosophic subgraph as well as largest usual graph to be 
disconnected. 
 
 Proof is left as an exercise to the reader. 
 
THEOREM 4.15:  Let G be a neutrosophic graph. The smallest 
usual subgraphs of G are vertices and the smallest pure 
neutrosophic subgraphs of G are  
 
 
        Figure 4.111 
 
 The proof is direct and hence is left as an exercise to the 
reader. 
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 Find conditions on G so that the largest subgraphs are 
always disconnected. 
 
 Now we have spoken about also 3 types of subgraphs of a 
neutrosophic graph G. 
 
Example 4.51:  Let G be a neutrosophic graph 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.112 
 
The subgraphs of G are 
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     Figure 4.113 
and so on. 
 

We have seen subgraphs of neutrosophic graphs.  The 
topological and lattice structure on these subgraphs.   

 
We suggest some problems in the final chapter of this book. 
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Chapter Five 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 
 
 In this chapter we suggest the following problems for the 
interested reader. 
 
 Some of the problems are very difficult and some of them 
are at research level and some are open conjectures. 
 
1. Give some examples of type I subset vertex graph.  
 
2. Find the vertex subset graph of  
 
 
 
 
 
 
 
 
 
     Figure 5.1 
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3. Let {G, V} be the graph, obtain the vertex subset graph of 
(G, V) given by the following figure. 

 
 
 
 
 
 
 
 
          Figure 5.2 
 
4. Let G be the graph with V = {v0, v1, v2, v3, v4} as the vertex 

set. 
 
 Find the number of type II graphs associated with G.  
 
5. Distinguish between type I and type II graphs. 
 
6. What are the advantages of using type II vertex subset 

graphs? 
 
7. Is a type I vertex subset graph unique? 
 
8. Given V = {v0, v1, v2, v3, v4, v5, v6} as the vertex set.   
 

Find the number of type II vertex subset graphs associated 
with V. 

 
9. Let G =  
 
 
 
 
 
 
 
       Figure 5.3 
be the graph. 
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Find the type I vertex set graph associated with G. 

10. Let

G = 

 Figure 5.4 

Is the associated type I subset graph of G a tree?  Justify 
your claim. 

11. Let V = {v0, v1, v2, v3, …, v12} be the collection of vertices.

(i) How many type II vertex subset graphs associated with
V are trees? 

(ii) Can this be generalized for a set of n vertices?
(iii) How many of type II vertex subset graphs associated

with V are complete graphs? 

12. Study problems (11) for V = {v1, v2, …, v24}.

13. Find the type I vertex graph associated with figure 5.5.
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       Figure 5.5 
 
 (i) Will that be a tree? 
 (ii)  How many subgraphs of the type I vertex subset graph  
  will be trees? 
 (iii) Find the number of subgraphs of type I vertex subset  
  graphs which are complete graphs? 
 
14. Given n-vertices as the graph G. 
 (i) How many type II subset vertex graphs exist? 
 (ii) How many will be trees? 
 (iii) How many are n-any trees? 
 
15. Give an example a strong neutrosophic graph with 5 

vertices and 6 edges. 
 
16. Is every subgraph of a strong neutrosophic graph G a strong 

neutrosophic graph?  
 
17. Does there exist a strong neutrosophic graph all of whose 

subgraphs are strong neutrosophic? 
 
18. Let G be a strong neutrosophic graph which is as follows. 
 
 
 
 
 
 
           Figure 5.6 
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 (i) Find all subgraphs of G. 
 (ii) How many subgraphs of G are strong neutrosophic?  
 (iii) How many subgraphs of G are neutrosophic? 
 
19. Let G be a strong neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 5.7 
 
 (i) Can G have strong pure neutrosophic subgraphs? 
 (ii) Can G have usual subgraphs? 
 (iii) Can G have neutrosophic subgraphs? 
 (iv) Find all subgraphs of G. 
 
20. Does there exist a strong neutrosophic graph which has no 

neutrosophic subgraphs? 
 
21. Give some interesting features enjoyed by the strong 

neutrosophic graphs. 
 
22. Let G be the strong neutrosophic graph. S = {Collection of 

all subgraphs of G including  and G}. 
 
 (i) Prove S is closed under ‘’ of subgraphs of G. 
 (ii) Prove S is closed under ‘’ subgraphs of G. 
 (iii) Prove S is closed under difference of subgraphs. 
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23. Given a strong neutrosophic graph.  If the number of 
neutrosophic vertices and usual vertices are given.  

 
 (i) Can one give the number of usual subgraphs of G? 
 (ii) Can we have the number of pure neutrosophic  
  subgraphs of G? 
 (iii) Find the number of neutrosophic subgraphs of G. 
 (iv) Find the total number of subgraphs of G. 
 
24. Let G be a strong neutrosophic graph which is as follows. 
 
 
 
 
 
 
 
      Figure 5.8 
 
 (i) Find all subgraphs of G. 
 (ii) Find all strong neutrosophic subgraphs of G. 
 (iii) Find all usual subgraphs of G. 
 (iv) Find all neutrosophic subgraphs of G. 
 (v) Find all pure neutrosophic subgraphs of G. 
 
25. Let G1 be a strong neutrosophic graph which is as follows 
 
 
 
 
 
 
      Figure 5.9 
 
 (i) Answer questions (i) to (v) of problems 24 for this  
  graph. 
 (ii) Compare G of problem 24 and G1. 
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26. Let G2 be a strong neutrosophic graph given in the 

following figure 5.10. 
 
 
 
 
 
 
 
 
 
     Figure 5.10 
 
 (i) Find all subgraphs of G2 
 (ii) Compare G2 with G1 and G given in problems 24  

and 25. 
 
27. Let G be a strong neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
      Figure 5.11 
 
 (i) Find all subgraphs of G. 
 (ii) Can G have pure neutrosophic subgraphs? 
 (iii) How many planar connected strong neutrosophic graphs 

exist with five vertices some of which are usual some 
neutrosophic. 

 
28. Let G be a plane connected n vertices of which r are usual 

and n–r are neutrosophic and r edges are neutrosophic and 
n–r edges are ordinary. 
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 (i) Find the number of usual subgraphs of G. 
 (ii) Find the number of strong neutrosophic subgraphs of G. 
 (iii) Find the number of neutrosophic subgraphs of G. 
 
29. Let G be strong neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 5.12 
 
 (i) Study question (i), (ii) and (iii) given in problem 26. 
 
 (ii) Suppose G1 is a strong neutrosophic graph which is as  
  follows: 
 
 
 
 
 
 
 
 
 
 
       Figure 5.13 
 
 Compare G and G1 and answer problem (i), (ii) and (iii) 
given in problem 26 in case of G1. 
 
30. Let G be a non planar strong neutrosophic graph which is as 

follows: 
 

  

  

  

  

  

  



Suggested Problems  195 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.14 

 

 (i) Find all subgraphs of G. 
 (ii) Find the number of usual graphs of G. 
 (iii) Find the number of pure neutrosophic subgraphs of G. 
 (iv) Find the number of strong neutrosophic subgraphs of G. 
 
31. Let G be a complete connected strong neutrosophic non 

planar graph with n vertices. 
 n = r + (n–r); r neutrosophic and n–r real and t usual edges 

rest neutrosophic edges. 
 
 (i) Find the number of strong neutrosophic subgraphs of G. 
 (ii) Find the number of usual subgraphs of G. 
 (iii) Find the number of strong pure neutrosophic subgraphs  
  of G. 
 
32. Let G be a strong neutrosophic tree which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 5.15 
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 (i) Find the total number of subgraphs of G. 
 (ii) Find the number of usual subgraphs of G. 
 (iii) How many subgraphs of G are strong neutrosophic  
  subgraphs? 
 (iv)  Find the total number of neutrosophic subgraphs of G. 
 
 
33. Let G be a strong neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 5.16 
 
 (i) Find all subgraphs of G. 
 (ii) Prove the collection of subgraphs is closed under   

and . 
 
34. Give an example of a 6-partite strong neutrosophic graph. 
 
35. Give an example of 10 partite neutrosophic graph G where 

G is a strong neutrosophic graph. 
 
36. Let G be a strong neutrosophic planar connected graph with 

8 vertices (4 vertices are usual 4 neutrosophic) and 2 edges 
usual and the rest 6 edges neutrosophic. 

 
 (i) Find all neutrosophic subgraphs of G. 
 (ii) Find all strong neutrosophic subgraphs of G. 
 (iii) Find the number of usual subgraphs of G. 
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37. Find some interesting applications of k-partite neutrosophic 

strong graphs. 
 
38. Let  
 
 
 
 
 
 
 
 
 
 
     Figure 5.17 
 be a strong neutrosophic graph. 
 

(i) Find all subgraphs of G. 
(ii) How many subgraphs of G are strong neutrosophic? 

 (iii)  How many are usual subgraphs? 
 
 
39. Let G be a strong neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 5.18 
 
 (i) Find all subgraphs of G. 
 
 (ii) Is it isomorphic with the strong neutrosophic graph. 
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   H :   
 
 
 
 
 
 
       Figure 5.19 
 
 (iii) Find all usual subgraphs of G. 
 (iv) Find strong neutrosophic subgraphs of G. 
 (v) Is it possible to find pure neutrosophic subgraphs  in G  
  which is not strong? 
 (vi) Can H have pure neutrosophic subgraphs which are not  
  strong? 
 
40. Obtain all special features enjoyed by strong neutrosophic 

graph. 
 
41. How are strong neutrosophic graphs different from 

neutrosophic graph? 
 
 Explain this by examples.  
 
42. Let G =  
 
 
 
 
 
 
 
 
 
 
      Figure 5.20 

be the strong neutrosophic graph. 
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 (i) Find the complements of the graph G. 

(ii) Obtain all subgraphs of G. 
(iii) Which of the subgraphs of G ae strong neutrosophic? 

 
43. Given the graph. 
 
 
 
 
 
 
 
       
 

Figure 5.21 
 

 (i) Find all neutrosophic graphs which can be obtained 
using the 4 vertices V = {v1, v2, v3, v4} and edges  
E = {e1, e2, …, e6}. 

 (ii) Find all strong neutrosophic graphs obtained using E 
and V. 

 (iii) Find all pure neutrosophic graphs using E and V. 
 
 
44. Find the proper application of strong neutrosophic graphs. 
 
45. Find the number of 5 vertices and 9 edges strong 

neutrosophic graphs, neutrosophic graphs and super strong 
neutrosophic graphs. 

 
46. Give examples of the four types of circuits. 
 
47. Give example of a strong neutrosophic graphs. 
 
48. Can a strong neutrosophic graph always contain a usual 

walk? 
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49. Find the power graph of G where 
 
 
 
 
 
 
 
 

Figure 5.22 
 
50. Let S(G) be the topological space of  
 
 
 
 G = {         } 
  
 
 
 
 
 
     Figure 5.23 
  
 Study the properties associated with G in Figure 5.23. 
 
51. What are the special features enjoyed by special subgraph 

topological spaces? 
 
52. Find the power subgraphs of the neutrosophic graph. 
 
 
 
 
 
 
 
 
         Figure 5.24 
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53. Can S(G) for any G has a subset which forms the Boolean 

algebra? 
 
54. Can there be any S(G) which does not contain a subset 

collection which is a Boolean algebra? 
 
55. Obtain all the special features enjoyed by Turan special 

topological subgraph spaces. 
 
56. Prove the graph G  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.25 
 

 has the associated adjacency matrix to be symmetric super 
diagonal square matrix. 

 
57. Can S(G) the power subgraph set have trees associated with 

it as substructures? 
 
58. What are the advantages of using neutrosophic graphs in the 

place of usual graphs. 
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59. Let G =  
 
 
 
 
 
 
 

Figure 5.26 
 the graph.  Find S(G). 
 
 (i) Can S(G) have trees as subgraphs? 
 (ii)  Can S(G) have substructure which are Boolean algebra? 
 
60. Enumerate any other special feature associated with S(G) 

the collection of all subgraphs with . 
 
 
61. Find the subgraphs of G which is as follows 
 
 
 
 
 
 
 
 
 
 

Figure 5.27 
i. Find S(G). 
ii. What is o(S(G))? 
iii. Prove S(G) is a special neutrosophic topological 

subgraph space. 
iv. Find at least three subspaces of this special 

neutrosophic topological space which are only special 
topological subspaces that are not neutrosophic. 

v. Find the adjacency matrix A of G. 
vi. Find A(G) the neutrosophic incidence matrix of G. 
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62. Let G be a neutrosophic graph which is as follows: 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.28 

 
i. Find all the pure neutrosophic subgraphs of G and show 

they form a special pure neutrosophic topological 
subgraphs space T. 

ii. Find all usual subgraphs special topological subgraph 
space T1. 

iii. Find all subgraphs S(G) of G and show S(G) is the 
special neutrosophic topological subgraph space S. 

iv. Show T and T1 are subspaces of S. 
 

63. Let G be the neutrosophic graph given in the following: 
 
 
 
 
 
 

Figure 5.29 
 

i. Find S(G) = {The collection of all subgraphs of G 
including G and }. 

 ii. Find o(S(G)). 
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64. Let G be the neutrosophic graph. 
  
 
 
 
 
     
 
 
 

Figure 5.30 
 
 

i. Find S(G). 
 ii. Find o(S(G)). 
 iii. Compare S(G) of problem 36 with S(G). 
 
65. Let G be a neutrosophic graph. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.31 
 
 
(i)  Find S(G).  
 
(ii) Compare S(G) with S(H) where H is a neutrosophic  
 graph which is as follows: 
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Figure 5.32 
 

66. Let G be the graph. 
 
 
 
 
 
 

       Figure 5.33 
 
 
 
i. Find S(G). 
 
ii. Find the special topological subgraph space associated 

with S(G). 
 
iii. Find at least 5 special subtopological subgraph spaces 

associated with S(G) such that at least one of them is or 
special subtopological pure neutrosophic subgraph 
subspace of S(G). 
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67. Let G1, G2, G3 and G4 be four neutrosophic graphs given in 
the following: 
 
 
 
 
 
 
 
 
       G1                 G2 
 
 
 
 
 
 
 
 
 
       G3     and        G4 
 

Figure 5.34 
 
i.  Compare S(G1), S(G2), S(G3) and S(G4). 
ii. Find the special neutrosophic topological subgraph 

spaces and compare them. 
iii. Find the special lattice of subgraphs of S(G1), S(G2), 

S(G3) and S(G4). 
 
68. Let G be the neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 

Figure 5.35 
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 i. Find the complement of G. 
 ii. Find S(G). 
 iii. Find o(S(G)). 
 iv. Find the special topological neutrosophic subgraph 

space associated with S(G). 
 
69. Let G be a neutrosophic graph which is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.36 
 
 
i. Find the complement G of G. 
ii. Compare S(G) and S(G). 
iii. Which of the collections S(G) and S(G) has more 

number of pure neutrosophic subgraphs? 
iv. Find the special topological neutrosophic subgraph 

spaces of S(G) and S(G). 
v. What of the topological spaces have more number of  
 neutrosophic topological vector subspaces. 
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70. Let G be a neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.37 
 
    i. Find the complement of G. 
 ii. Find S(G). 
 iii. Find o(S(G)). 
 
71. Let G be the neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

  

 

  

   

  

  

 

  

 

 

 

  

 



Suggested Problems  209 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.40 
 
 i. Find S(G). 
 ii. What is o(S(G))? 
 iii. Find the special topological neutrosophic subgraphs of 

G. 
 
72. Let G be a neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 5.39 
 

 i. Find S(G). 
 ii. Find o(S(G)). 
 iii. Does S(G) contain more number of neutrosophic 

subgraphs than usual subgraphs? 
 
73. Find a characterization or method of finding neutrosophic 

self complemented graphs. 
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74. Give at least 5 examples of self complemented bipartite 
neutrosophic graph. 

 
75. Obtain some interesting results about neutrosophic self 

complemented graph. 
 
76. Find some interesting features enjoyed by the special lattice 

neutrosophic subgraphs of a neutrosophic subgraph. 
 
77. Let G be a neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.40 
 
 
 i. Find the special lattice neutrosophic subgraph of G. 
 ii. Find S(G) and o(S(G)). 
 
78. Let G be a neutrosophic with 10 vertices. 

i. Find the total number of neutrosophic graphs with 10 
vertices. 

ii. How many graphs with 10 vertices are self 
complemented? 

iii. How many of these neutrosophic 10 vertices graphs 
have equal number of neutrosophic subgraphs? 

 
79. Let G and H be two neutrosophic graphs which are as 

follows: 
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     G               H 

Figure 5.41 
 
i. Find S(H) and S(G). 
ii. Prove S(H) has more number of neutrosophic subgraphs 

than that of S(G). 
iii. Find the special neutrosophic lattice subgraphs of both 

S(G) and S(H). 
 
80. Let G be the neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 

Figure 5.42 
 
 i. Find the adjacency neutrosophic matrices A of G. 
 
 ii. Find the incidence neutrosophic matrix A(G) of G. 
 

 

 

 

 
 

 

  

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 



212 Strong Neutrosophic Graphs and Subgraph … 
 
 
 
 
 

81. Let G be a neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.43 
 
i. Find the adjacency matrix A of G. Is A  a super 

neutrosophic square diagonal matrix. 
 
ii. Show A + A2 + … + A12 = Y is such that Y has zeros. 
 
iii. Find A(G) of G. 

 
82. Describe a strongly connected neutrosophic graph. 
 
83. Let G be a neutrosophic graph which is as follows: 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.44 
(i)   Find the contracted graph G/e xy = e and find the  
 contracted graph G/e1 yz = e1. Compare S(G/e) and  
      S(G/e1).  
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(ii) Which of them contain more number of neutrosophic  
      subgraphs? 

 
 
84. Let G be the neutrosophic graph which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.45 
 
 (i) Find the adjacency matrix A of G.  

(ii) Prove in A2 the diagonal elements correspond to the 
degree of the vertices or it gives the number of usual edges 
and neutrosophic edges at each of the vertices. 

 
85. How many colors are needed to edge color the neutrosophic 

graph? 
 
 
 
 
 
 
 
 

Figure 5.46 
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86. Find the number of colors needed to edge color the 
neutrosophic graph G which is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.47 
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