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1. Definition of Soft Set 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰, and a set of attributes A. Then, the 

pair (F, 𝒰), where 𝐹: 𝐴 →  𝒫(𝒰) is called a Soft Set over 𝒰 [1]. 

2. Definition of HyperSoft Set 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰. 

Let 𝑎1 , 𝑎2 , ..., 𝑎𝑛 , for 𝑛 ≥ 1, be 𝑛  distinct attributes, whose corresponding attribute values are 

respectively the sets 𝐴1, 𝐴2, ..., 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. Then the pair 

(𝐹, 𝐴1 × 𝐴2 × 𝐴𝑛), where: 

𝐹: 𝐴1 × 𝐴2 × … × 𝐴𝑛 →  𝒫(𝒰) is called a HyperSoft Set over 𝒰 [2]. 

3. Numerical Example of HyperSoft Set 

Let 𝒰 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and a set ℳ = {𝑥1, 𝑥3} ⊂ 𝒰. 

Let the attributes be: 𝑎1 = size, 𝑎2 = color, 𝑎3 = gender, 𝑎4 = nationality, and their attributes’ values 

respectively: 

Size = 𝐴1 = {small, medium, tall}, 

Color = 𝐴2 = {white, yellow, red, black}, 

Gender = 𝐴3 = {male, female}, 

Nationality = 𝐴4 = {American, French, Spanish, Italian, Chinese}. 

Let the function be: 

𝐹: 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4 →  𝒫(𝒰). This is a HyperSoft Set. 

Let’s assume: 

𝐹({tall, white, female, Italian}) = {𝑥1, 𝑥3}, which means that both 𝑥1  and 𝑥3  are: tall, white, female, 

and Italian. 
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4. Definition of SuperHyperSoft Set 

The SuperHyperSoft Set is an extension of the HyperSoft Set. As for the SuperHyperAlgebra, 

SuperHyperGraph, SuperHyperTopology and in general for SuperHyperStructure and Neutrosophic 

SuperHyperStructure (that includes indeterminacy) in any field of knowledge, “Super” stands for 

working on the powersets (instead of sets) of the attribute value sets. 

 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the powerset of 𝒰. 

Let 𝑎1 , 𝑎2 , …, 𝑎𝑛 , for 𝑛 ≥ 1, be 𝑛  distinct attributes, whose corresponding attribute values are 

respectively the sets 𝐴1, 𝐴2, …, 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}.  

 

Let 𝒫(𝐴1), 𝒫(𝐴2), …, 𝒫(𝐴𝑛) be the powersets of the sets 𝐴1, 𝐴2, …, 𝐴𝑛 respectively. Then the pair 

(𝐹, 𝒫(𝐴1) ×  𝒫(𝐴2) × … × 𝒫(𝐴𝑛),  where × meaning Cartesian product, or: 𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × … ×

𝒫(𝐴𝑛) →  𝒫(𝒰) is called a SuperHyperSoft Set.  

5. Example of SuperHyperSoft Set 

If we define the function: 𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × 𝒫(𝐴3) × 𝒫(𝐴4) →  𝒫(𝒰). we get a SuperHyperSoft 

Set. 

Let’s assume, from the previous example, that: 

𝐹({medium, tall}, {white, red, black}, {female}, {American, Italian})  = {𝑥1, 𝑥2} , which means that: 

𝐹({medium or tall} and {white or red or black} and {female} and {American or Italian}) = {𝑥1, 𝑥2}. 

Therefore, the SuperHyperSoft Set offers a larger variety of selections, so 𝑥1 and 𝑥2 may be: 

either medium, or tall (but not small), either white, or red, or black (but not yellow), mandatory 

female (not male), and either American, or Italian (but not French, Spanish, Chinese).  

In this example there are: Card{medium, tall} ∙ Card{white, red, black} ∙ Card{female} ∙ 

Card{American, Italian} = 2∙3∙1∙2 =12 possibilities, where Card{ } means cardinal of the set { }. 

This is closer to our everyday life, since for example, when selecting something, we have not 

been too strict, but accepting some variations (for example: medium or tall, white or red or black, 

etc.). 

6. Fuzzy-Extension-SuperHyperSoft Set 

𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × … ×  𝒫(𝐴𝑛) → 𝒫 (𝒰(𝑥(𝑑0))) where 𝑥(𝑑0)  is the fuzzy or any fuzzy-

extension degree of appurtenance of the element 𝑥 to the set 𝒰. 

Fuzzy-Extensions mean all types of fuzzy sets [3], such as: Fuzzy Set, Intuitionistic Fuzzy Set, 

Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set 

(Atanassov’s Intuitionistic Fuzzy Set of second type), Fermatean Fuzzy Set, q-Rung Orthopair Fuzzy 

Set, Spherical Fuzzy Set, n-HyperSpherical Fuzzy Set, Neutrosophic Set, Spherical Neutrosophic Set, 

Refined Fuzzy/Intuitionistic Fuzzy/Neutrosophic/other fuzzy extension Sets, Plithogenic Set, etc. 

7. Example of Fuzzy Extension SuperHyperSoft Set 

In the previous example, taking the degree of a generic element 𝑥(𝑑0) as neutrosophic, one gets 

the Neutrosophic SuperHyperSoft Set. 

Assume, that: 𝐹({medium, tall}, {white, red, black}, {female}, {American, Italian})  = 

{𝑥1(0.7, 0.4, 0.1), 𝑥2(0.9, 0.2, 0.3)}. 

Which means that: x1 with respect to the attribute values 

({medium or tall} and {white or red or black} and {female}, and {American or Italian})  has the degree 
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of appurtenance to the set 0.7, the indeterminate degree of appurtenance 0.4, and the degree of non-

appurtenance 0.1. 

While x2 has the degree of appurtenance to the set 0.9, the indeterminate degree of appurtenance 

0.2, and the degree of non-appurtenance 0.3. 

8. Theorem  

The SuperHyperSoft Set is equivalent to a union of the HyperSoft Sets.  

Proof 

Let’s consider the SuperHyperSoft: 

𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × … × 𝒫(𝐴𝑛) →  𝒫(𝒰) 

Assume that the non-empty sets 

1 1 2 2, ,..., n nB A B A B A    and 1 2( , ,..., ) ( )nF B B B P U  

1 11 12 2 21 22 1 2{ , ,...}, { , ,...},..., { , ,...}n n nB b b B b b B b b   , therefore 

11 12 21 22 1 2({ , ,...},{ , ,...},...,{ , ,...})n nF b b b b b b can be decomposed in many
1 21 2( , ,..., )

nk k nkF b b b  

( )P U which are actually HyperSoft Sets. 

 

If we reconsider the previous example, then: 

({medium 𝑜𝑟 tall} 𝑎𝑛𝑑 {white 𝑜𝑟 red 𝑜𝑟 black} 𝑎𝑛𝑑 {female} 𝑎𝑛𝑑 {American 𝑜𝑟 Italian})  produces 12 

possibilities: 

1. medium, white,   female,  American; 

2. medium, white,   female,  Italian; 

3. medium, red,       female,  American; 

4. medium, red,       female,  Italian; 

5. medium, black,   female,  American; 

6. medium, black,   female,  Italian; 

7. tall,         white,  female,  American; 

8. tall,         white,  female,  Italian; 

9. tall,         red,      female,  American; 

10. tall,         red,      female,  Italian;   

11. tall,         black,   female,  American; 

12. tall,         black,   female,  Italian. 

Whence F of each of them is equal to {x1, x2}, or: 

F(medium, white, female,  American) = {x1, x2} 

F(medium, white, female,  Italian) = {x1, x2} 

F(tall, black, female, Italian) = {x1, x2} and all 12 are HyperSoft Sets. 

 

9. Conclusion  

A new type of soft set has been introduced, called SuperHyperSoft Set and an application has 

been presented. Further work to do is to define the operations (union, intersection, complement) of 

the SuperHyperSoft Sets.  
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