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CHAPTER I 
 

INTRODUCTION 
 

  

1.1 Motivation of Study 

Ideas, like any living being, are born and nurtured and go through several stages. As 

soon as ideas are born, they begin to oscillate and sway between affirmation and 

denial, truth and lie, right and left; passing through many cases between the two 

opposite sides, including that moderate point which is equidistant between the two 

opposites where contradictions shake hands, embrace softly and complementarity. 

We may even reach a state of rapid fluctuation that turns issues upside down. What 

was a false case yesterday is proven to be true today. What one person confirms 

today with proof and conclusive evidence, another may deny it tomorrow. Thus, all 

constants are subject to change and all facts are subject to falsification. 

Amid book contradictions and problems, you have to put things in perspective  .You 

have to put the right thing in its rightful place, and the most effective way to do that 

is logic. 

Historically, logic appeared in the writings of the Greek philosopher Aristotle (238 

BC - 322 BC), and his discovery of the syllogism. Aristotle defined the analogy as 

“the inference in which the result follows the premises necessarily”. He presented the 

first formulation of the laws of syllogism in his book Analytics, "The First 

Analytics". Aristotelian logic was a formal abstraction that did not care about the 

content of the issue, but it was not symbolic/mathematical logic. At the end of the 

sixteenth century, the German philosopher and mathematician Gottfried Leibnitz 

(1646-1716) laid the foundations of modern mathematical logic as a deductive 

system that relies on signs - within special rules - in isolation from their meaning. 

Then the British scholar George Paul (1815-1864) invented the Boolean algebra 
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system with commutative and associative properties, which would later allow its use 

in designing software circuits. 



  

3 
 

 for computers, and in this respect, the work of Alfred Whitehood and Bertrand 

Russell in the development of mathematical logic should be commended. 

After these mighty works, logic began to be crystallized in its modern form, where 

classical logic gives a result (0 or 1), yes or no, true or false, white or black for a 

case. Then, the fuzzy logic came out, which was first presented in the sixties of the 

last century by the Azerbaijani Professor Lotfi Zadeh [1]. This logic describes a case 

more broadly than (0 or 1), yes or no, true or false, white or black as it gives degrees 

of validity and invalidity. Thus, he filled a gap that existed in classical logic. After 

that, the poet and philosopher Professor Florentin Smarandache (Professor and Head 

of the Mathematics Department at the University of New Mexico, USA) inspired us 

with neutrosophic logic which is the focus of our research in this thesis. That logic is 

an extension of the fuzzy logic, but it includes an important factor which is 

indeterminacy (𝐼𝐼) [2-4]. The indeterminacy is the gap that the fuzzy logic 

overlooked. Thus, the neutrosophic logic opened a wide door to understanding the 

relationship between the contradictions. According to him, things are not absolutely 

fixed or absolutely changing. There is only one absolute truth, which is God; 

everything else oscillates between relative stability and relative change. You are 

certainly able to describe the same thing as true and false, and yes and no together. 

This means that there is a situation that combines the two contradictions between 

lying and honesty, white and black, or two contracted points of view. This new 

neutral position between the contradicting sides is the neutrosophic logic and 

philosophy, which entered all aspects of life, introducing new concepts and 

interpretations that were always unexpected to us. 

In the concept of neutrosophic logic and neutrosophic sets, there is a degree of 

membership 𝑇𝑇, a degree of uncertainty 𝐼𝐼 and a degree of non-membership 𝐹𝐹. These 

are defined independently from each other. A neutrosophic value has the form 

(𝑇𝑇, 𝐼𝐼,𝐹𝐹). In other words, in neutrosophy, a situation is handled according to its 

trueness, its falsity, and its uncertainty. Therefore, neutrosophic logic and 

neutrosophic sets help us explain many uncertainties in our lives. Therefore, many 

researchers have made studies on this subject [5-7]. Recently, Şahin et al. obtain 

some operations for interval valued neutrosophic sets [8]; Uluçay et al. studied 

neutrosophic multigroups and Applications [9]; Hassan et al. introduced Q-

neutrosophic soft expert set and its application [10]; Sahin et al. obtained 
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neutrosophic soft expert sets [11]; Uluçay studied interval-valued refined 

neutrosophic sets and their applications [12]; Khalifa et al. obtained neutrosophic set 

significance on deep transfer learning models [13]; Kargın et al. studied generalized 

Hamming similarity measure aased on neutrosophic quadruple numbers and its 

applications [14]; Şahin et al. obtain Hausdorff Measures on generalized set valued 

neutrosophic quadruple numbers and decision making applications for adequacy of 

online education [15].  

In 2019, Florentin Smarandache introduced new research areas in neutrosophy, 

which he called neutro-structures and anti-structures [16-17]. When evaluating <A> 

as an element (concept, attribute, idea, proposition, theory, etc.), during the 

neutrosification process, he worked on three regions; two opposites corresponding to 

<A> and <antiA> and also a neutral (indeterminate) <neutA> (also called 

<neutralA>). A neutro-algebra consists of at least one neutro-operation 

(indeterminate for other items and false for other items) or it is an algebra well-

defined for some items (also called internally defined), indeterminate for others, and 

externally defined for others. Therefore, the subject attracted the attention of many 

researchers [18–24]. Recently, Smarandache et al. studied neutro-BCK algebras [25]; 

İbrahim et al. obtained neutro -vector spaces [26]; Al-Tahan et al. studied 

NeutroOrdered Algebra and applications [27]; Smarandache studied generalizations 

and alternatives of classical algebraic structures to neutroalgebraic structures and 

antialgebraic structures [28]. 

For example: In Physics, Florentin Smarandache presented a series of topics in 

"Quantum Mechanics". One of them is that there is no maximum speed limit in the 

universe, and this contradicts Einstein's relativity [29]. He also put forward the 

possibility of a third form between a matter and its opposite, which he called "netro-

matter". The same case is in economics, medicine, politics, and artificial intelligence. 

There is no doubt about mathematics, as the idea of indeterminacy (𝐼𝐼) has created for 

us a new mathematical logic that has produced new algebra and new concepts of 

probability, statistics, measurement, integration, and derivation [30-45]. 

In this book, we will present the neutrosophic decision-making mechanism which is 

an extension of the classical decision-making process by extending the data to 

include the indefinite cases that are ignored by classical logic and which, in fact, 
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support the decision-making problem. This book consists of eight chapters. In the 

introductory part of the thesis, the historical development process of the neutrosophic 

structure theory is given. In the second part, the effect of the neutrosophic logic on 

the decision tree has been compiled. In the third chapter, the Prospector Neutro 

Function with their applications were studied. In the fourth chapter, the subject of 

Neutro ordered R-module and their properties is examined in detail. In the fifth 

chapter, the Fundamental Theorem in neutrosophic Euclidean Geometry is given. In 

the sixth chapter, the solutions of some Kandasamy-Smarandache problems about 

neutrosophic complex numbers and group of units' problem are given. In the seventh 

chapter, the algebraic creativity in the neutrosophic square matrices and the results 

are given with examples. Finally, in the eighth chapter, the results and suggestions 

obtained in the thesis are given.  
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CHAPTER II 
  

NEUTROSOPHIC DECISION TREE 
 

  

In this chapter, we present neutrosophic decision-making, which is an extension 

of the classical decisionmaking process by expanding the data to cover the non-

specific cases ignored by the classical logic which, in fact, supports the decision-

making problem. 

Definition 2.1.1: [1] Let 𝑈𝑈 be a universe of discourse, and let 𝐴𝐴 ⊂ 𝑈𝑈 be a subset. 

Then: 𝐴𝐴FS  =  { �𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥)�: 𝑥𝑥 ∈   𝑈𝑈  }, where 𝑇𝑇𝐴𝐴: 𝑈𝑈 ⟶  [0, 1] is the membership 

degree of the generic element 𝑥𝑥 with respect to the set 𝐴𝐴, is called a Fuzzy Set. 

Definition 2.1.2: [3] Let 𝒰𝒰 be a universe of discourse, and let 𝐴𝐴 ⊂   𝑈𝑈  be a subset. 

Then: 𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼  =  {� 𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥)�:  𝑥𝑥 ∈   𝑈𝑈  }, where 𝑇𝑇𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥): 𝑈𝑈 ⟶  [0, 1] are 

the membership degree respectively the nonmembership of the generic element 𝑥𝑥 

with respect to the set 𝐴𝐴, and sup 𝑇𝑇𝐴𝐴(𝑥𝑥)  +  𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹𝐴𝐴(𝑥𝑥)  ≤  1 for all 𝑥𝑥 ∊  𝑈𝑈, is called 

an Intuitionistic Fuzzy Set.  

Definition 2.1.3: [2] Let 𝑈𝑈 be a universe of discourse, and a set 𝐴𝐴𝑁𝑁𝐼𝐼  ⊂   𝑈𝑈  then: 

𝐴𝐴𝑁𝑁𝐼𝐼 = {(𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥) ,𝐹𝐹𝐴𝐴(𝑥𝑥)): 𝑥𝑥 ∈  𝑈𝑈 } , where  𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥) ,𝐹𝐹𝐴𝐴(𝑥𝑥): 𝑈𝑈 →  [0, 1] 

represent the represent the degree of membership, the degree of indeterminacy, and 

the degree of non-membership respectively of each element 𝑥𝑥 ∈   𝑈𝑈  to the set 𝐴𝐴. 

Definition 2.1.4: [47] Let 𝐾𝐾 be a field, the neutrosophic field generated by 〈𝐾𝐾 ∪ 𝐼𝐼〉 

which is denoted by 𝐾𝐾(𝐼𝐼) = 〈𝐾𝐾 ∪ 𝐼𝐼〉. 

Definition 2.1.5: [48] Classical neutrosophic number has the form 𝑎𝑎 + 𝑏𝑏𝐼𝐼 where 𝑎𝑎, 𝑏𝑏 

are real or complex numbers and 𝐼𝐼 is the indeterminacy such that 0 ∙ 𝐼𝐼 = 0 and 𝐼𝐼2 =

𝐼𝐼 which results that 𝐼𝐼𝑛𝑛 = 𝐼𝐼 for all positive integers 𝑛𝑛.
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Definition 2.1.6: [49] The neutrosophic probability of event 𝐴𝐴 occurrence is 

𝑁𝑁𝑁𝑁(𝐴𝐴) = �𝑐𝑐ℎ(𝐴𝐴), 𝑐𝑐ℎ(𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝐴𝐴), 𝑐𝑐ℎ(𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝐴𝐴)� = (𝑇𝑇, 𝐼𝐼,𝐹𝐹) where 𝑇𝑇, 𝐼𝐼,𝐹𝐹 standard or 

nonstandard subsets of the nonstandard unitary interval are ] −0,1+[  . 

2.2 CLASSICAL DECISION TREE 

We know from the definition of the Classical Decision Tree that it is a graphic in the 

form of a tree gives options and is used in choosing options in the case of one scale. 

Its root starts from the left and its branches spreads into the right showing the options 

and the possibilities of the natural causes (events). It is considered to be a suitable 

method to make a decision if one is not sure, and it is one of the strongest 

mathematical methods that is used to analyze many problems [50]. 

To build the classical decision tree we can follow this algorithm: 

1- Expected Monetary Value (EMV) 

2- Calculate the future monetary value for each option 

3- Choose the option with the highest EMV.  

Example 2.2.1: [50] You need to travel from one city to another to attend an 

important business meeting. Failure to attend the meeting will cost you 4000$ 

You can take either airline 𝑋𝑋 or airline𝑌𝑌. 

Knowing the following information, which airline would you choose? 

Airline 𝑋𝑋 costs 900$ and the give you a 90 % chance of arriving on time 

Airline 𝑌𝑌 costs 300$ and the give you a 70 % chance of arriving on time 

  

Option:

900 $
1- Airlines 𝑿𝑿

On Time
0 $

0 − 900
= −900

Lite
−4000 $

−4000 − 900
= −4900

300 $ 
2- Airlines 𝒀𝒀

On Time
0 $

0 − 300
= −300

Lite
−4000 $

−4000 − 300
= −4300
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Figure 2.1 Classical decision tree 

𝐸𝐸𝐸𝐸𝐸𝐸1 = [0.1(−4900)] + [0.9(−900)] = −1300$ 

𝐸𝐸𝐸𝐸𝐸𝐸2 = [0.3(−4300)] + [0.7(−300)] = −1500$ 

According to the graphic above, traveling in Airlines 𝑋𝑋 is the best option because it 

includes the highest Expected Monetary Value (𝐸𝐸𝐸𝐸𝐸𝐸).  

The Neutrosophic Decisions Tree is the Classical Decision Tree with adding some 

indetermination to the data or by exchanging the classical probabilities with 

neutrosophical probabilities. 

 

2.3 NEUTROSOPHIC DECISION TREE 

Building the neutrosophic tree of decisions without including the probabilities is 

considered to be a suitable option when the decision makers don’t have enough 

information that can make them estimate the probability of the events that built up 

the tree of decisions. It is also suitable at analyzing the best or the worst options 

away from probabilities. This theory agrees with the concept of the classical tree of 

decision. However, what the neutrosophic logic adds to the tree of decision without 

probabilities is that the expected benefits that matches each option, which is usually 

evaluated by the decision makers, according to their expertise or by related skills, 

will be evaluated more accurately and generally with less possible mistakes.  

From another side, we may see that the expected values of the benefits whether good 

or bad are agreed on by some experts but others disagree. Therefore, the best solution 

to face this problem that absolutely affects the quality of the taken decision is to take 

the expected benefits with adding and reducing a value interval between (0) and 

another determinate value, for example (𝑎𝑎).  (0) which represents the minimum 

value in this interval means that there is no disagreement on the expected values 

among the experts or with the decision makers. (𝑎𝑎) Which represents the maximum 

value in this interval means that there is a disagreement among the experts or 

between them and the decision makers about the expected values of benefits and (𝑎𝑎) 

is the highest estimated value.  
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Therefore, we will present the expected value of benefits with adding and reducing 

the interval [0,𝑎𝑎] not forgetting that all the various opinions about the expected 

values will be contained in the [0, 𝑎𝑎]  interval. So that, the expected value of benefits 

will become an interval of values containing all the opinions.  

By doing this, we move from the classical form that gives a determinant value of 

benefits in the neutrosophic form that doesn’t do that, but gives an interval of 

expected values of benefits [51]. 

For example, we can consider three options 𝑑𝑑1,𝑑𝑑2 and 𝑑𝑑3 by the best and the worst 

expectations as it is clarified in the following: 

Table 1.2 Classical and Neutrosophic Part of the Expected Values 

 High turnout Low turnout 
𝑑𝑑1 𝐴𝐴 ± 𝑎𝑎1 𝐵𝐵 ± 𝑎𝑎2 
𝑑𝑑2 𝐶𝐶 ± 𝑎𝑎3 𝐷𝐷 ± 𝑎𝑎4 
𝑑𝑑3 𝐸𝐸 ± 𝑎𝑎5 𝐹𝐹 ± 𝑎𝑎6 

 

𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹 Represents the determinate part of the expected values. 

𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5, 𝑎𝑎6 Represents the indeterminate part of the expected values.  

𝑎𝑎𝑘𝑘 ∈ [0, 𝑎𝑎𝑘𝑘] ∶ 𝑘𝑘 = 1,2,3,4,5,6 

Numerical Example 2.3.1: [51] If the decision maker faces three options to invest in 

Education. These options are   Science Institute,   Languages Institute and   

Kindergarten. And for each option we have two natural causes (High turnout) and 

(Low turnout) depending on the following data, the benefits will change according to 

two variables (the options and the natural causes). 

The experts evaluated the benefits saying that the Science Institute in case of 

(High turnout) will give the benefits of (55000) with an indeterminate value of 

estimation interval between [0,4000], and in case of (Low turnout) it will give the 

benefits of (8000) with an indeterminate value of estimation interval between 

[0,2000]. 

They also say that the Languages Institute in case of (High turnout) will give 

the benefits of (50000) with an indeterminate value of estimation interval between 
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[0,18000], and in case of (Low turnout) it will give the benefits of (20000) with an 

indeterminate value of estimation interval between [0,1000]. 

In addition, the Kindergarten in case of (High turnout) will give the benefits of 

(40000) with an indeterminate value of estimation interval between [0, 3000], and in 

case of (Low turnout) it will give the benefits of (18000) with an indeterminate value 

of estimation interval between [0, 4000]. 

Table 2.2 Example (Neutrosophic Case)  

 High turnout Low turnout 
Science Institute 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟒𝟒𝟓𝟓𝟓𝟓] 𝟖𝟖𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟐𝟐𝟓𝟓𝟓𝟓𝟓𝟓] 
Languages Institute 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟏𝟏𝟖𝟖𝟓𝟓𝟓𝟓𝟓𝟓] 𝟐𝟐𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓] 

Kindergarten 𝟒𝟒𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟑𝟑𝟓𝟓𝟓𝟓𝟓𝟓] 𝟏𝟏𝟖𝟖𝟓𝟓𝟓𝟓𝟓𝟓 ∓ [𝟓𝟓,𝟒𝟒𝟓𝟓𝟓𝟓𝟓𝟓] 

 

Table 3.2 Example (Neutrosophic Case) 

 High turnout Low turnout 
Science Institute [ ]41000,61000  [ ]6000,10000  

Languages Institute [ ]32000,68000  [ ]19000,21000  

Kindergarten [ ]37000,43000  [ ]14000,22000  

 

2.4 The Studying Of Approaches: 

2.4.1 The Optimistic Approach  

We know that this approach depends on evaluating the options paving the way to 

choose the option that guarantee the best possible benefits under the optimistic 

natural cases without taking the pessimistic cases for this option into consideration. 

This case is referred to as (High Max) as the first (Max) refers to the highest 

monetary value and the second (Max) the optimistic natural case [51]. 

Table 4.2 The Optimistic Approach (Neutrosophic Case) 

 High Max 
Science Institute [ ]max 41000,61000 61000=  

Languages Institute [ ]max 32000,68000 68000=  

Kindergarten [ ]max 37000,43000 43000=  
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According to The Optimistic Approach, investing in Languages Institute is the 

best option because it includes the most possible benefit (680000).  

We notice that if we put 1 3 5 0 i i i= = =  (in the Table (2)) we returns to the 

classical case of the tree of decisions according to The Optimistic Approach and we 

notice the following: 

Table 5.2 The Optimistic Approach (Classical Case) 

 High turnout 
Science Institute 55000 
Languages Institute 50000 

Kindergarten 40000 

 

We notice that the highest monetary value in the classical optimistic case with high 

turnout is ( )55000 .  This leads us to take a decision that the investment in the 

Science Institute is the best option.  

Consequently, we notice that there is a differentiation in the taken decisions 

when we widen the data (that represents the expected values of benefits) 

netrosophically. Moreover, it is normal to see that the resulted decision that comes 

from the neutrosophic form is better for investing than the classical one, because it is 

built upon more data including all the opinions and then the resulted decision is 

highly agreed on. 

 

2.4.2 The Pessimistic Approach 

 Know that this approach depends on adjusting the options paving the way to choose 

the option that guarantee the best possible benefits under the pessimistic normal 

cases without taking the optimistic cases for this option into consideration. This case 

is referred to as (Low, Max) as the first (Max) refers to the highest monetary value, 

but it is related to the second part (Min) which is the pessimistic natural case [51]. 

Table 6.2 The pessimistic Approach (Neutrosophic Case) 

 Low Max  
Science Institute [ ]max 6000,10000 10000=  
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Languages Institute [ ]max 19000,21000 21000=  

Kindergarten [ ]max 14000,22000 22000=  

According to The Pessimistic Approach, investing in the Kindergarten is the best 

option because it includes the most possible benefit (22000).  

We notice that if we put 2 4 6 0 i i i= = =  (in the Table (2)) we returns to the 

classical case of the tree of decisions according to The Pessimistic Approach and we 

notice the following: 

Table 7.2 The pessimistic Approach (Classical Case) 

 Low turnout 
Science Institute 8000 
Languages Institute 20000 

Kindergarten 18000 

 

We notice that the highest monetary value in the natural pessimistic case with low 

turnout is ( )20000 .  This leads us to take a decision that the investment in the 

Languages Institute is the best option.  

By comparing this classical form with neutrosophic form, we find that the decision 

of choosing an option is changed. According to the neutrosophic form, this approach 

leads us to invest in The Kindergarten, but according to the classical form, it leads us 

to invest in The Languages Institute. However, when the data are defined accurately, 

it will absolutely lead us to the correct and best option.  

 

2.4.3 The Caution Approach  

This approach is not an optimistic nor a pessimistic one. It is a moderate approach 

that depends on adjusting the options too in order to choose the best option without 

losing any possible opportunity [51]. 

And choosing the most suitable option according to this approach demands to build a 

new matrix as the following by exchanging the option that makes the highest 

monetary value of zero (after taking the high value of the interval) taking into 

consideration that there is no lost opportunities for this option: 

Table 6.2 Continued 
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Table 8.2 The Caution Approach (Neutrosophic Case) 

 High turnout Low turnout 

Science Institute [32000,68000]-[41000,61000] [14000,22000]-[6000,10000] 

Languages Institute [32000,68000]-[32000,68000] [14000,22000]-[19000,21000] 

Kindergarten [32000,68000]-[37000,43000] [14000,22000]-[14000,22000] 

 

Table 9.2 The Caution Approach (Neutrosophic Case) 

 High turnout Low turnout 

Science Institute [ ]9000,7000−  [ ]8000,12000  

Languages Institute [ ]0,0  [ ]3000,1000−  

Kindergarten [ ]5000,25000−  [ ]0,0  

 

We reduced the highest monetary value in the High turnout case from the other 

available monetary values in this natural case. Also, we reduced the highest 

monetary value in the Low turnout case from the other available monetary values in 

this case. 

Now we make a concise matrix that includes the highest values of the lost 

opportunities for each option as the following: 

Table 10.2 The Caution Approach (Neutrosophic Case) 

 Lost opportunities 
Science Institute [𝟖𝟖𝟓𝟓𝟓𝟓,𝟏𝟏𝟐𝟐𝟓𝟓𝟓𝟓] 

Languages Institute [−𝟑𝟑𝟓𝟓𝟓𝟓𝟓𝟓,𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓] 

Kindergarten [−𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓,𝟐𝟐𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓] 
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Consequently, according to this approach, The Languages Institute is the best option 

because it leads to less lost opportunities.  

When working according to this approach in the case of the classic logic, we will 

come to the same decision that The Languages Institute is the best option, but this 

does not happen always.  

When 3 41 62 5 0 ii i ii i= == = == we get the following table: 

Table 11.2 The Caution Approach (Classical Case) 

 High turnout Lowturnout 

Science Institute 55000  8000  

Languages Institute 50000  20000  

Kindergarten 40000  18000  

 

We built up the Caution  matrix: 

Table 12.2 The Caution Approach (Classical Case) 

 High turnout Lowturnout 

Science Institute 0 12000 

Languages Institute 5000 0 

Kindergarten 15000 2000 

 

We take the (Max) and get: 

Table 13.2 The Caution Approach (Classical Case) 

 Lost opportunities 

Science Institute 12000 

Languages Institute 5000 
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Kindergarten 15000 

 

Taking into consideration that this approach has, the less lost opportunities, the most 

suitable option is The Languages Institute. 

We notice that the classical form may agree with the neutrosophic form in the taken 

decision, but this does not happen always. However, it is better to depend on the 

method that has accurate data that leads us to choose the best option. 

By studying the three approaches according the neutrosophic form we find that in 

most cases we get different options from the classical logic form.  

In addition, we get different options according to the approaches. We look to this 

positively because it enriches the decision-making process and it reflects the 

circumstances of the decision maker and the opinions that affects him.  

 

Dealing with the samples of the decision-making process according to the 

Neutrosophic logic provides us with a comprehensive and complete study for the 

problem that we are studying. So that, we don’t miss any data just because it is 

clearly indeterminate. This makes us to choose the best option  . The existence of 

indeterminacy in the problem actually affects the process of taking the suitable 

decision. Therefore, the indeterminate values can’t be ignored while studying in 

order to get more accurate results that leads us to the best options. Nowadays, the 

classical logic is not sufficient to deal with all the data that we study. Therefore, we 

had to expand the data of the study and name it accurately to get more real 

possibilities and, therefore, make decision more accurate. And here appears the role 

of the Neutrosophic logic that generalizes the classical logic and gives us a wider 

horizon in interpreting the data in the study and expand it and then make correct 

decisions with the least possible mistakes. 

2.5 The Neutrosophic Decisions Tree in View of the Neutrosophic Probabilities 

In the case of decision trees in view of the classical probabilities, the decision maker 

has the opportunity to evaluate the possibility of each event of the normal cases. 
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Therefore, the monetary value approach EMV is used in order to choose the best 

options.  

However, it is not logical to see that the possibility of the High Turnout of three 

options the same. For example, it is not possible to see that the probability of the 

Science Institute, the Languages Institute and the Kindergarten in the High Turnout 

to be 0.4 because that doesn’t agree with the logic that says that each option has 

conditions and cases that differs from the other options. 

We will discuss another method through the Neutrosophic Logic to discuss the 

decision tree in the review of probabilities depending on the Neutrosophic 

probabilities, and we will define another form of indeterminate data through this 

method [51].  

We will clarify it as the following: 

First, we will define the Neutrosophic expected monetary value and refer to it as 

(NEMV) depending on the expected Neutrosophic value as: 

In the natural case (𝑛𝑛) and the indeterminate case (𝑚𝑚) we write: 

( ) ( ) ( ) ( ) ( )
1 1

, ,
n m

i j i j I i I
j I

NEMV d p s v d s p s v d s
= =

= ⋅ + ⋅∑ ∑   

( )jP S  Refers to the probability of getting a high or low turnout 

 (S represents the natural cases) 

( )IP S  Refers to the probability of getting the indeterminate case. (𝐼𝐼 represent the 

indeterminacy)  

( ),i jv d S  Represents the expected monetary value of the option  id   in the jS  case. 

( ),i Iv d S  Represents the expected monetary value of the option  id in the IS  case. 

And in our dealt example, it becomes: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1, , ,i j i j j i j I i INEMV d p s v d s p s v d s p s v d s= = = = = == ⋅ + ⋅ + ⋅

( )1jP s =  The probability of high turnout 

( )2jP s =  The probability of low turnout 

Assuming that the neutrosophic probability in case of the high turnout for the 

Educational Science Institute is ( )0.65,  0.05,  0.30NP  that means that there are three 

probabilities: 

( )1   0.65jP S = =  The probability of high turnout for the Science Institute 

( )2   0.30jP S = =  The probability of low turnout for the Science Institute 

( )1   0.05IP S = =  The probability of indeterminacy, which means that turnout for the 

Science Institute not high and not low but between the both. (We get these 

probabilities from research and expertise centers). 

The matrix will be: 

Table 14.2  Example (depending on the Neutrosophic probabilities) 

 High turnout Low turnout 
 Indeterminate 

turnout 

Science Institute 55000 8000  25000 

Languages 
Institute 

50000 20000  27000 

Kindergarten 40000 18000  22000 

 

The values in the matrix are expected values of options by the experts. In this case, 

we recognized another form of indeterminacy, which is the turnout, is neither high 

nor low, but between the two possibilities and we called it indeterminate turnout (and 

the indeterminate turnout may be gradual). 

Now let us calculate the Neutrosophic expected monetary value of the first option 1d  

the Science Institute as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( )

1 1 1 1 2 1 2 1 1 1, , ,

0.65 55000 0.30 8000 0.05 25000 3

2   ,

9400

  1  

j j j j I INEMV d p s v d s p s v d s p s v d

n m

s= = = = = == ⋅ + ⋅ + ⋅

= + + =

= =
 

Now let us calculate the neutrosophic expected monetary value of the Languages 

Institute 2d   

If we know that the neutrosophic probability of the high turnout of the Languages 

Institute are: ( )0.46,  0.09,  0.45NP   

( )1   0.46jP S = =  the probability of high turnout for the Languages Institute 

( )2   0.45jP S = =  the probability of low turnout for the Languages Institute 

( )1   0.09IP S = =  the probability of indeterminacy which means that turnout for the 

Languages Institute not high and not low but between the both. 

( ) ( )( ) ( )( ) ( )( )2 0.46 50000 0.45 20000 0.09 27000 34430NEMV d = + + =   

Now let us calculate the neutrosophic expected monetary value of the Kindergarten 

3d   

If we know that the neutrosophic probability of the high turnout of the Kindergarten 

are: ( )0.50,  0.08,  0.42NP   

( )1   0.50jP S = =  The probability of high turnout for the Kindergarten 

( )2   0.42jP S = =  The probability of low turnout for the Kindergarten 

( )1   0.08IP S = =  The probability of indeterminacy, which means that turnout for the 

Kindergarten not high and not low but between the both. 

( ) ( )( ) ( )( ) ( )( )3 0.50 40000 0.42 18000 0.08 22000 29320NEMV d = + + =  



 

19 
 

By calculating the neutrosophic expected monetary value, we see that the first option 

1d  (the Science Institute) is the suitable opt. On because it presents. Highest 

monetary value ( )39400 . 

 

Figure 2.2 Neutrosophic decisions tree 
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CHAPTER III 

 
 PROSPECTOR NEUTRO-FUNCTION  

 

 

In this section, we define the Prospector Neutro-Function, the method we will use to 

achieve its applications. 

Definition 3.1.1: [52] Prospector Function is defined in the following way;  

𝑓𝑓: [−1, 1] × [−1, 1]  →    [−1, 1]  

with formula: 

𝑓𝑓(𝑥𝑥,𝑦𝑦)  =  
𝑥𝑥 + 𝑦𝑦

1 + 𝑥𝑥 ∙ 𝑦𝑦
   

This function with  𝑓𝑓(−1,1) and 𝑓𝑓(1,−1) are undefined. 

Definition 3.1.2: [53]  The Extended Prospector Function we can extend 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

to 𝑔𝑔(𝑥𝑥, 𝑦𝑦) such that:  

𝑔𝑔(𝑥𝑥,𝑦𝑦) = �
𝑓𝑓(𝑥𝑥,𝑦𝑦),           𝑎𝑎𝑓𝑓 (𝑥𝑥, 𝑦𝑦) ∈ [−1, 1] × [−1, 1] ∖  {(−1,1), (1,−1)}

undefined,     𝑎𝑎𝑓𝑓  (𝑥𝑥, 𝑦𝑦) = (−1,1) or (1,−1)
 

 

𝑔𝑔(−1,1)  =  𝑔𝑔(1,−1)  = 𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑, 

 𝑔𝑔(𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑, 𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑)  =  𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑. 

𝑔𝑔(𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑, 𝑥𝑥)  =  𝑔𝑔(𝑥𝑥, 𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑)  = �  𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑, 𝑎𝑎𝑓𝑓𝑥𝑥 >  0
𝑥𝑥,                       𝑎𝑎𝑓𝑓 𝑥𝑥 ≤ 0 
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Definition 3.1.3: [53] Let 𝐴𝐴 be a finite set defined as 𝐴𝐴 =  {(𝑥𝑥, 𝑦𝑦):     𝑥𝑥, 𝑦𝑦 ∈

 {𝑘𝑘,𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑}. The Binary Law 𝛩𝛩 is defined for every   

1- If 𝑔𝑔(𝑥𝑥,𝑦𝑦) is not undefined, then 𝑥𝑥𝛩𝛩𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝑔𝑔(𝑥𝑥,𝑦𝑦)∗10)
10

 , where round is the 

function that output the integer nearest to the argument. 

2- If 𝑔𝑔(𝑥𝑥,𝑦𝑦) is undefined then 𝑥𝑥 𝛩𝛩𝑦𝑦 = 𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑. 

Then 𝛩𝛩 is a finite Neutro Binary Law. This is because 𝛩𝛩 is commutative and 

associative for the subset of elements of 𝐴𝐴 without any undefined component, but it 

is not associative otherwise. 

𝐸𝐸.𝑔𝑔 𝑎𝑎𝑓𝑓 𝑎𝑎 =  −0.9, 𝑏𝑏 =  0.8, 𝑐𝑐 =  𝑠𝑠𝑛𝑛𝑑𝑑𝑛𝑛𝑓𝑓𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑, 𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑎𝑎 𝛩𝛩 (𝑏𝑏 𝛩𝛩 𝑐𝑐)  =  𝑎𝑎   

𝑎𝑎𝑛𝑛𝑑𝑑 (𝑎𝑎 𝛩𝛩 𝑏𝑏) 𝛩𝛩 𝑐𝑐 =  −0.4 ≠  𝑎𝑎     therefore, associativity is a Neutro Binary Law. 

The following tables summarize the Cayley table of the Neutro Binary Law 𝛩𝛩 which 

is not associative when we included the undefined value and it generates a Neutro 

Binary Law 𝛩𝛩. We preferred to maintain the undefinition of the Prospector function 

because this indicates there is contradiction. 

Table 15.3 Example 

𝑥𝑥𝛩𝛩𝑦𝑦 -1 -0.9 -0.8 -0.7       -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-0.9 -1 -1 -1 -1 -1 -1 -1 -0.9 -0.9 -0.9 -0.9 

-0.8 -1 -1 -1 -1 -0.9 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 

-0.7 -1 -1 -1 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.7 -0.7 

-0.6 -1 -1 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.7 -0.7 -0.6 

-0.5 -1 -1 -0.9 -0.9 -0.8 -0.8 -0.8 -0.7 -0.6 -0.6 -0.5 

-0.4 -1 -1 -0.9 -0.9 -0.8 -0.8 -0.7 -0.6 -0.5 -0.5 -0.4 
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-0.3 -1 -0.9 -0.9 -0.8 -0.8 -0.7 -0.6 -0.6 -0.4 -0.4 -0.3 

-0.4 -1 -1 -0.9 -0.9 -0.8 -0.8 -0.7 -0.6 -0.5 -0.5 -0.4 

-0.3 -1 -0.9 -0.9 -0.8 -0.8 -0.7 -0.6 -0.6 -0.4 -0.4 -0.3 

-0.2 -1 -0.9 -0.9 -0.8 -0.7 -0.6 -0.6 -0.5 -0.3 -0.3 -0.2 

-0.1 -1 -0.9 -0.8 -0.7 -0.7 -0.6 -0.5 -0.4 -0.2 -0.2 -0.1 

undef -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 

0 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.1 -0.1 0 

0.1 -1 -0.9 -0.8 -0.6 -0.5 -0.4 -0.3 -0.2 0 0 0.1 

0.2 -1 -0.9 -0.7 -0.6 -0.5 -0.3 -0.2 -0.1 0.1 0.1 0.2 

0.3 -1 -0.8 -0.7 -0.5 -0.4 -0.2 -0.1 0 0.2 0.2 0.3 

0.4 -1 -0.8 -0.6 -0.4 -0.3 -0.1 0 0.1 0.3 0.3 0.4 

0.5 -1 -0.7 -0.5 -0.3 -0.1 0 0.1 0.2 0.4 0.4 0.5 

0.6 -1 -0.7 -0.4 -0.2 0 0.1 0.3 0.4 0.5 0.5 0.6 

0.7 -1 -0.5 -0.2 0 0.2 0.3 0.4 0.5 0.6 0.6 0.7 

0.8 -1 -0.4 0 0.2 0.4 0.5 0.6 0.7 0.7 0.8 0.8 

0.9 -1 0 0.4 0.5 0.7 0.7 0.8 0.8 0.9 0.9 0.9 

1 undef 1 1 1 1 1 1 1 1 1 1 

 

 

 

Table 15.3 Continued 
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Table 16.3 Example 

𝑥𝑥𝛩𝛩𝑦𝑦 undef 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 undef 

-0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.7 -0.7 -0.5 -0.4 0 1 

-0.8 -0.8 -0.8 -0.7 -0.7 -0.6 -0.5 -0.4 -0.2 0 0.4 1 

-0.7 -0.7 -0.6 -0.6 -0.5 -0.4 -0.3 -0.2 0 0.2 0.5 1 

-0.6 -0.6 -0.5 -0.5 -0.4 -0.3 -0.1 0 0.2 0.4 0.7 1 

-0.5 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.3 0.5 0.7 1 

-0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.3 0.4 0.6 0.8 1 

-0.3 -0.3 -0.2 -0.1 0 0.1 0.2 0.4 0.5 0.7 0.8 1 

-0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.5 0.6 0.7 0.9 1 

-0.1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 

undef undef undef undef undef undef undef undef undef undef undef undef 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 undef 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1 

 

0.2 undef 0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 0.9 1 

0.3 undef 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1 

0.4 undef 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1 1 

0.5 undef 0.6 0.6 0.7 0.8 0.8 0.8 0.9 0.9 1 1 
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0.6 undef 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1 1 

0.7 undef 0.7 0.8 0.8 0.9 0.9 0.9 0.9 1 1 1 

0.8 undef 0.8 0.9 0.9 0.9 0.9 0.9 1 1 1 1 

0.9 undef 0.9 0.9 0.9 1 1 1 1 1 1 1 

1 undef 1 1 1 1 1 1 1 1 1 1 

 

A group of Syrian migrants was surveyed on an evaluation scale between -5 to 5 in 
various aspects of access to health [54]. 

The World Health Organization (WHO) states that a health system brings together all 

the institutions and organizations whose primary objective is to maintain and 

improve the health of the population. Most health systems are made up of different 

sectors, public, private, traditional and informal, and must provide good treatments 

and services that respond to the needs of the population and are fair from a financial 

point of view. 

Access to health services is the ability to get care when it is needed. This can be 

determined by various factors and variables such as the location of health centers and 

the availability of medical or health providers (geographical or physical barriers), up 

to health insurance and health care costs, also can be influenced by cultural barriers 

or language. 

This research aims to evaluating the access barriers to health that the international 

migrant population faces in primary health care in Turkey. To achieve this objective, 

a group of 20 Syrian migrants of different sexes are surveyed. Respondents evaluated 

different relevant aspects in health care on a numerical scale with a maximum of  5 

for approval and a minimum of −5 for disapproval. 

Variables that have been used are the following:  

1. Location access barriers 

2. language access barriers  

   

 

Table 16.3 Continued 
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3. Financial access barriers 

4. Legal access barrier. 

The assessments provided by the interviewed on the four barriers were as follows: 

Table 17.3 Example 

Assessments Location access 
barriers 

Language access barriers Financial 
access 
barriers 

Legal access 
barrier 

𝑣𝑣𝑖𝑖𝑖𝑖 = −5, �̅�𝑣𝑖𝑖𝑖𝑖 = −1 0 1 0 0 

𝑣𝑣𝑖𝑖𝑖𝑖 = −4, �̅�𝑣𝑖𝑖𝑖𝑖 = −0.8 0 4 0 0 

𝑣𝑣𝑖𝑖𝑖𝑖 = −3, �̅�𝑣𝑖𝑖𝑖𝑖 = −0.6 0 2 0 2 

𝑣𝑣𝑖𝑖𝑖𝑖 = −2, �̅�𝑣𝑖𝑖𝑖𝑖 = −0.4 0 6 0 7 

𝑣𝑣𝑖𝑖𝑖𝑖 = −1, �̅�𝑣𝑖𝑖𝑖𝑖 = −0.2 0 3 0 5 

𝑣𝑣𝑖𝑖𝑖𝑖 = 0, �̅�𝑣𝑖𝑖𝑖𝑖 = 0 0 0 1 1 

𝑣𝑣𝑖𝑖𝑖𝑖 = 1, �̅�𝑣𝑖𝑖𝑖𝑖 = 0.2 0 2 2 2 

𝑣𝑣𝑖𝑖𝑖𝑖 = 2, �̅�𝑣𝑖𝑖𝑖𝑖 = 0.4 3 2 5 2 

𝑣𝑣𝑖𝑖𝑖𝑖 = 3, �̅�𝑣𝑖𝑖𝑖𝑖 = 0.6 6 0 8 0 

𝑣𝑣𝑖𝑖𝑖𝑖 = 4, �̅�𝑣𝑖𝑖𝑖𝑖 = 0.8 10 0 3 0 

𝑣𝑣𝑖𝑖𝑖𝑖 = 5, �̅�𝑣𝑖𝑖𝑖𝑖 = 1 1 0 1 1 
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1- The value obtained in the evaluation of each aspect for each migrant is rescaled to 

the interval [−1,1], dividing by 5. That is, �̅�𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑖𝑖
5

, we denote by 𝑣𝑣𝑖𝑖𝑖𝑖 , (𝑎𝑎 =

 1,2, … , 20;     𝑗𝑗 =  1,2,3,4) the evaluation of the ith migrant on the jth aspect. 

2- It is decided on two different situations: 

 If less than 33.333% of the respondents show contradictory results for each fixed j, 

that is, if there are 4 pairs or less of values (−1,1) or (1,−1), these values are 

eliminated for aggregating. 

 Otherwise, the jth aspect is evaluated as “undefined” and it should be reviewed in 

more detail because there is such a contradiction. 

When we have the case (1) the aggregation of the remaining values is calculated by 

using 𝛩𝛩.The results obtained from applying this method were as follows: 

Aggregating the data of Table 17.3 using 𝛩𝛩 we have the following results based on 

Table 15.3 and Table 16.3: 

𝛩𝛩𝑖𝑖=120 �̅�𝑣𝑖𝑖1 = �̅�𝑣11𝛩𝛩�̅�𝑣21𝛩𝛩�̅�𝑣31𝛩𝛩…𝛩𝛩�̅�𝑣201 = 1  

which means there is sufficient evidence that “Location access barriers” is good. 

𝛩𝛩𝑖𝑖=120 �̅�𝑣𝑖𝑖1 = �̅�𝑣11𝛩𝛩�̅�𝑣21𝛩𝛩�̅�𝑣31𝛩𝛩…𝛩𝛩�̅�𝑣201 = −1  

which means there is sufficient evidence that “language access barriers” is bad. 

𝛩𝛩𝑖𝑖=120 �̅�𝑣𝑖𝑖1 = �̅�𝑣11𝛩𝛩�̅�𝑣21𝛩𝛩�̅�𝑣31𝛩𝛩…𝛩𝛩�̅�𝑣201 = 1  

which means there is sufficient evidence that “Financial access barriers” is good. 

𝛩𝛩𝑖𝑖=120 �̅�𝑣𝑖𝑖1 = �̅�𝑣11𝛩𝛩�̅�𝑣21𝛩𝛩�̅�𝑣31𝛩𝛩…𝛩𝛩�̅�𝑣201 = undefined  

which means there is no sufficient evidence that means “Legal access barrier” it 

should be reviewed in more detail why there is such a contradiction.
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CHAPTER IV 
 

 NEUTRO ORDERED R-Module  
 

 

In this section, we use the defined notion of NeutroOrdered Algebra and apply it to 

NeutroOrdered 𝑅𝑅-Module. As a result, we define NeutroOrdered 𝑅𝑅-Module and 

other related concepts. Moreover, we study some properties of NeutroOrdered 𝑅𝑅-

Module and, NeutroOrdered 𝑅𝑅-Module homomorphism. 

Definition 4.1.1: [55] Let 𝑅𝑅  be a Neutro-Ring and let ( 𝐸𝐸𝑅𝑅 , +)  be a Neutro abelian 

group and " ∙ " be a binary operation such that ∙ : 𝑅𝑅 ×  𝐸𝐸 →  𝐸𝐸. Then ( 𝐸𝐸𝑅𝑅 , +,∙) is 

called a Neutro left 𝑅𝑅-Module on Neutro-Ring (𝑅𝑅, +, . )  if the following conditions 

are satisfied: 

" + " is left Neutro-Distributive over " ∙ " that is there exists at least some  𝑟𝑟 ∈

𝑅𝑅   𝑎𝑎𝑛𝑛𝑑𝑑   𝑚𝑚,𝑛𝑛 ∈ 𝐸𝐸𝑅𝑅     such that 𝑟𝑟 ∙ (𝑚𝑚 +  𝑛𝑛) = 𝑟𝑟 ∙ 𝑚𝑚 + 𝑟𝑟 ∙ 𝑛𝑛 ,there exists at least 

𝑞𝑞 ∈ 𝑅𝑅   𝑎𝑎𝑛𝑛𝑑𝑑   𝑛𝑛, 𝑣𝑣 ∈ 𝐸𝐸𝑅𝑅    such that 𝑞𝑞 ∙ (𝑛𝑛 + 𝑣𝑣) 𝑜𝑜𝑟𝑟 𝑞𝑞 ∙ 𝑛𝑛 + 𝑞𝑞 ∙ 𝑣𝑣 are indeterminate and 

there exists at least   𝑠𝑠 ∈ 𝑅𝑅 , 𝑥𝑥,𝑦𝑦 ∈ 𝐸𝐸𝑅𝑅  such that  𝑠𝑠 ∙ (𝑥𝑥 + 𝑦𝑦)  ≠  𝑠𝑠 ∙ 𝑥𝑥 +  𝑠𝑠 ∙ 𝑦𝑦. 

" + " is right Neutro-Distributive over " ∙ " that is there exists at least some 𝑟𝑟, 𝑠𝑠 ∈

𝑅𝑅   𝑎𝑎𝑛𝑛𝑑𝑑   𝑚𝑚 ∈ 𝐸𝐸𝑅𝑅     such that (𝑟𝑟 + 𝑠𝑠) ∙ 𝑚𝑚 = 𝑟𝑟 ∙ 𝑚𝑚 + 𝑠𝑠 ∙ 𝑚𝑚 ,there exists at least 𝑥𝑥,𝑦𝑦 ∈

𝑅𝑅   𝑎𝑎𝑛𝑛𝑑𝑑   𝑧𝑧 ∈ 𝐸𝐸𝑅𝑅   such that  (𝑥𝑥 + 𝑦𝑦) ∙ 𝑧𝑧  𝑜𝑜𝑟𝑟  𝑥𝑥 ∙ 𝑧𝑧 + 𝑦𝑦 ∙ 𝑧𝑧 are indeterminate and there 

exists at least some  𝑛𝑛, 𝑞𝑞 ∈ 𝑅𝑅 ,𝑛𝑛 ∈ 𝐸𝐸𝑅𝑅  such that  

 (𝑛𝑛 + 𝑞𝑞) ∙ 𝑛𝑛 ≠ 𝑛𝑛 ∙ 𝑛𝑛 + 𝑞𝑞 ∙ 𝑛𝑛. 

 " ∙ " is Neutro-Associative that is there exists at least some 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅 𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚 ∈ 𝐸𝐸 such 

that (𝑟𝑟𝑠𝑠) ∙ 𝑚𝑚 = 𝑟𝑟 ∙ (𝑠𝑠 ∙ 𝑚𝑚), there exists at least some  𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 , 𝑧𝑧 ∈ 𝐸𝐸𝑅𝑅  such that 

(𝑥𝑥 ∙ 𝑦𝑦) ∙ 𝑧𝑧  𝑜𝑜𝑟𝑟  𝑥𝑥 ∙ (𝑦𝑦 ∙ 𝑧𝑧) are indeterminate and there exists at least some  𝑛𝑛, 𝑞𝑞 ∈

𝑅𝑅 ,𝑛𝑛 ∈ 𝐸𝐸𝑅𝑅  such that (𝑛𝑛𝑞𝑞) ∙ 𝑛𝑛 ≠ 𝑛𝑛 ∙ (𝑞𝑞 ∙ 𝑛𝑛).
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There is an element 𝑛𝑛 (Neutro-Neutral element in 𝑅𝑅) that is there exists at least some 

𝑚𝑚𝑚𝑚𝐸𝐸 such that  

   𝑛𝑛 ∙ 𝑚𝑚 = 𝑚𝑚    there exists at least some  𝑥𝑥 ∈ 𝐸𝐸𝑅𝑅  such that 𝑛𝑛 ∙ 𝑥𝑥 is indeterminate and 

there exists at least some  𝑛𝑛 ∈ 𝐸𝐸𝑅𝑅  such that    𝑛𝑛 ∙ 𝑛𝑛 ≠ 𝑛𝑛. 

Similarly, the form  (𝐸𝐸𝑅𝑅 , +,∙)  is known as Neutro right 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 over a Neutro-

Ring. 

Notes 4.1.2: 

If we have 𝑅𝑅 as a commutative Neutro-Ring, then every Neutro left 𝑅𝑅-Module  is a 

Neutro right 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛. 

𝐸𝐸 is called a finite Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 of order 𝑛𝑛 if the number of elements in 𝐸𝐸 is 

n that is 𝑜𝑜(𝐸𝐸)  =  𝑛𝑛. If no such 𝑛𝑛 exists, then 𝐸𝐸 is called an infinite Neutro 𝑅𝑅 −

𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 and we write 𝑜𝑜(𝐸𝐸)  =  ∞.  

An element 𝑥𝑥 ∈  𝐸𝐸 is called a NeutroIdempotent element if 𝑥𝑥 2  =  𝑥𝑥.  

An element 𝑥𝑥 ∈ 𝐸𝐸 is called a NeutroINilpotent element if for the least positive 

integer 𝑛𝑛, we have 

 𝑥𝑥 𝑛𝑛  =  𝑛𝑛 where 𝑛𝑛 is Neutro-Neutral element in 𝐸𝐸. 

Example 4.1.3: Let 𝑅𝑅 be a commutative Neutro-Ring. A very important example of 

an Neutro 𝑅𝑅-Module  is  𝑅𝑅 Neutro-Ring itself:  

Example 4.1.4: Let 𝑋𝑋 = {𝑚𝑚,𝑛𝑛,𝑠𝑠, 𝑞𝑞, 𝑛𝑛} be a universe of discourse and let 𝐸𝐸 =

{𝑚𝑚,𝑛𝑛,𝑠𝑠} be a subset of  𝑋𝑋. let ∎ and ∗ be binary operation defined on 𝐸𝐸 as shown in 

the Cayely tables below: 

Table 18.4 Example 

∎ 𝑚𝑚 𝑛𝑛 𝑠𝑠 

𝑚𝑚 𝑚𝑚 𝑛𝑛 𝑛𝑛 𝑜𝑜𝑟𝑟 𝑠𝑠 

𝑛𝑛 𝑠𝑠  𝑜𝑜𝑟𝑟 𝑛𝑛 𝑚𝑚 𝑜𝑜𝑟𝑟 𝑛𝑛 𝑠𝑠 

𝑠𝑠 𝑛𝑛 𝑠𝑠  𝑛𝑛  
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Table 19.4  Example 

∗ 𝑚𝑚 𝑛𝑛 𝑠𝑠 

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 

𝑛𝑛 𝑚𝑚 𝑜𝑜𝑟𝑟 𝑛𝑛 𝑠𝑠 𝑚𝑚 

𝑠𝑠 𝑚𝑚 𝑠𝑠 𝑛𝑛 

 

It is clear from the table that it (𝑅𝑅,∎,∗) is a Neutro-Commutative Ring with Neutro-

Unity and: 

           𝑚𝑚 ∗ (𝑛𝑛∎𝑠𝑠) = 𝑚𝑚 ∗ 𝑠𝑠 = 𝑚𝑚 

          (𝑚𝑚 ∗ 𝑛𝑛)∎(𝑚𝑚 ∗ 𝑠𝑠) = 𝑚𝑚∎𝑚𝑚 = 𝑚𝑚  [degree of truth (𝑇𝑇)],  

                        𝑠𝑠 ∗ (𝑛𝑛∎𝑚𝑚) = 𝑠𝑠 𝑜𝑜𝑟𝑟 𝑛𝑛   

                      (𝑠𝑠 ∗ 𝑛𝑛)∎(𝑠𝑠 ∗ 𝑚𝑚) = 𝑛𝑛 𝑜𝑜𝑟𝑟 𝑚𝑚   are indeterminacy [degree of 

indeterminacy (𝐼𝐼)] 

          and   𝑛𝑛 ∗ (𝑠𝑠∎𝑚𝑚) = 𝑛𝑛 ∗ 𝑛𝑛 = 𝑠𝑠 

                      (𝑛𝑛 ∗ 𝑠𝑠)∎(𝑛𝑛 ∗ 𝑚𝑚) = 𝑚𝑚∎𝑚𝑚 = 𝑚𝑚                 [degree of falsehood (𝐹𝐹)].  

This shows that "∎"is both left Neutro-Distributive over " ∗ ". 

           (𝑚𝑚∎𝑛𝑛) ∗ 𝑠𝑠 = 𝑛𝑛 ∗ 𝑠𝑠 = 𝑚𝑚 

          (𝑚𝑚 ∗ 𝑠𝑠)∎(𝑛𝑛 ∗ 𝑠𝑠) = 𝑚𝑚∎𝑚𝑚 = 𝑚𝑚  [degree of truth (𝑇𝑇)],  

         (𝑛𝑛∎𝑚𝑚) ∗ 𝑠𝑠 = 𝑛𝑛 𝑜𝑜𝑟𝑟 𝑚𝑚 

         (𝑛𝑛 ∗ 𝑠𝑠)∎(𝑚𝑚 ∗ 𝑠𝑠) = 𝑚𝑚 [degree of indeterminacy (𝐼𝐼)] 

          and (𝑠𝑠∎𝑚𝑚) ∗ 𝑛𝑛 = 𝑛𝑛 ∗ 𝑛𝑛 = 𝑠𝑠 

         (𝑠𝑠 ∗ 𝑛𝑛)∎(𝑚𝑚 ∗ 𝑛𝑛) = 𝑠𝑠∎𝑚𝑚 = 𝑛𝑛 [degree of falsehood (𝐹𝐹)]. 

This shows that "∎"is both right Neutro-Distributive over " ∗ ". 

𝑚𝑚 ∗ (𝑛𝑛 ∗ 𝑠𝑠) = 𝑚𝑚 ∗ 𝑚𝑚 = 𝑚𝑚   
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 (𝑚𝑚 ∗ 𝑛𝑛) ∗ 𝑠𝑠 = 𝑚𝑚 ∗ 𝑠𝑠 = 𝑚𝑚   

(𝑛𝑛 ∗ 𝑚𝑚) ∗ 𝑠𝑠 = 𝑚𝑚[degree of truth (𝑇𝑇)], 

𝑛𝑛 ∗ (𝑚𝑚 ∗ 𝑠𝑠) = 𝑛𝑛 𝑜𝑜𝑟𝑟 𝑚𝑚[degree of indeterminacy (𝐼𝐼)] 

and  𝑠𝑠 ∗ (𝑛𝑛 ∗ 𝑛𝑛) = 𝑠𝑠 ∗ 𝑠𝑠 = 𝑛𝑛 

       (𝑠𝑠 ∗ 𝑛𝑛) ∗ 𝑛𝑛 = 𝑠𝑠 ∗ 𝑛𝑛 = 𝑠𝑠 [degree of falsehood (𝐹𝐹)]. 

This shows that  " ∗ " is a Neutro-Associative. 

𝑠𝑠 ∗ 𝑛𝑛 = 𝑠𝑠 , 𝑚𝑚 ∗ 𝑛𝑛 = 𝑚𝑚  [degree of truth (𝑇𝑇)],  

𝑚𝑚 ∗ 𝑛𝑛 = 𝑚𝑚 ,𝑛𝑛 ∗ 𝑚𝑚 = 𝑚𝑚 𝑜𝑜𝑟𝑟 𝑛𝑛  [degree of indeterminacy (𝐼𝐼)] 

 𝑛𝑛 ∗ 𝑛𝑛 = 𝑠𝑠 ≠ 𝑛𝑛 [degree of falsehood (𝐹𝐹)]. 

It follows that (𝐸𝐸,∎,∗) Neutro R-Module over Neutro-Ring (𝑅𝑅,∎,∗). 

4.2 Neutro-Sub R-Module 

Definition 4.2.1: [55] Let  𝐸𝐸  be a Neutro R-Module. A nonempty subset 𝑁𝑁 of 𝐸𝐸 is 

called a Neutro-Sub R-Module  of 𝐸𝐸 if 𝑁𝑁 is also a Neutro R-Module. 

Example 4.2.2: Let  𝐸𝐸  be a Neutro R-Module. 𝐸𝐸  is a Neutro-Sub R-Module called 

a trivial Neutro-Sub R-Module. 

Theorem 4.2.3: [55]  Let 𝐸𝐸  be a Neutro R-Module over a Neutro-Ring  𝑅𝑅  and let  

𝑁𝑁 be a nonempty subset of 𝐸𝐸.  

𝑁𝑁 is a Neutro-Sub R-Module of 𝐸𝐸 if the following conditions hold:  

(1) That is there exists at least some     𝑚𝑚,𝑛𝑛 ∈ 𝑁𝑁    such that  𝑚𝑚 +  𝑛𝑛 ∈ 𝑁𝑁 . 

(2) That is there exists at least some     𝑚𝑚 ∈ 𝑁𝑁  , 𝑟𝑟 ∈ 𝑅𝑅  such that  𝑟𝑟𝑚𝑚 ∈ 𝑁𝑁 . 

Corollary 4.2.4: Let 𝐸𝐸  be a Neutro R-Module over a Neutro-Ring  𝑅𝑅  and let  𝑁𝑁 be 

a nonempty subset of 𝐸𝐸.  

𝑁𝑁 is a Neutro-Sub R-Module of 𝐸𝐸 if the following conditions hold:  

That is there exists at least some     𝑚𝑚,𝑛𝑛 ∈ 𝑁𝑁  , 𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅  such that  𝑟𝑟𝑚𝑚 + 𝑠𝑠𝑛𝑛 ∈ 𝑁𝑁 . 
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Example 4.2.5: Let (𝐸𝐸,∎,∗)  be a the Neutro R-Module of Example 4.1.4  and let  

𝑁𝑁 =  {𝑠𝑠,𝑛𝑛} : 

 𝑠𝑠,𝑛𝑛 ∈ 𝑁𝑁   ,𝑠𝑠∎𝑛𝑛 = 𝑠𝑠 ∈ 𝑁𝑁  but  𝑛𝑛∎𝑛𝑛 = 𝑚𝑚 

𝑠𝑠,𝑛𝑛 ∈ 𝑁𝑁  ,𝑠𝑠 ∈ 𝑅𝑅 ,𝑠𝑠 ∗ 𝑛𝑛 = 𝑠𝑠 ∈ 𝑁𝑁  but  𝑛𝑛 ∗ 𝑠𝑠 = 𝑚𝑚 

It follows that 𝑁𝑁 is Neutro-Sub R-Module of 𝐸𝐸. 

Theorem 4.2.6: Let 𝐸𝐸  be a Neutro R-Module over a Neutro-Ring 𝑅𝑅 and let {𝑁𝑁𝑛𝑛}𝑛𝑛∈λ 

be a family of Neutro-Sub 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 of 𝐸𝐸 .Then ∩ 𝑁𝑁𝑛𝑛 is a Neutro-Sub R-Module. 

4.3 Neutro 𝑹𝑹 −𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Homomorphism  

Definition 4.3.1: [55] Let  (𝐸𝐸, +,∙)  and  (𝑁𝑁,∎,∗)  be any two Neutro R-Modules. 

The mapping 𝜑𝜑 ∶  𝐸𝐸 →  𝑁𝑁 is called a Neutro R-Module Homomorphism if the 

following conditions hold:  

for at least a pair (𝑥𝑥,𝑦𝑦) ∈  𝐸𝐸, we have:  

𝜑𝜑(𝑥𝑥 +  𝑦𝑦)  =  𝜑𝜑(𝑥𝑥)∎ 𝜑𝜑(𝑦𝑦) 

𝜑𝜑(𝑥𝑥 ∙ 𝑦𝑦)  =  𝜑𝜑(𝑥𝑥) ∗ 𝜑𝜑(𝑦𝑦) 

If in addition 𝜑𝜑 is a Neutro-Bijection, then 𝜑𝜑 is called a Neutro R-Module 

Isomorphism and we write  𝐸𝐸 ≅ 𝑁𝑁. Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 Epimorphism, Neutro R-

Module Monomorphism, Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 Endomorphism and Neutro R-Module 

Automorphism are defined similarly. 

Definition 4.3.2:[37] The kernel of 𝜑𝜑 denoted by 𝐾𝐾𝑛𝑛𝑟𝑟𝜑𝜑 is defined as:  

 𝐾𝐾𝑛𝑛𝑟𝑟𝜑𝜑 =  {𝑥𝑥 ∶  𝜑𝜑(𝑥𝑥)  =  𝑛𝑛𝑁𝑁} where 𝑛𝑛𝑁𝑁 ∈ 𝑁𝑁 is Neutro-Neutral element in 𝑁𝑁. 

The image of 𝜑𝜑 denoted by 𝐼𝐼𝑚𝑚𝜑𝜑 is defined as:  

 𝐼𝐼𝑚𝑚𝜑𝜑 =  {𝑦𝑦 ∈  𝑁𝑁 ∶  𝑦𝑦 =  𝜑𝜑(𝑥𝑥) 𝑓𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑛𝑛 𝑀𝑀𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 𝑦𝑦 ∈  𝑁𝑁}.  

Example 4.3.3: Let (𝐸𝐸,∎,∗)  be a the Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 of Example 4.1.4  and 

let 𝜑𝜑: (𝐸𝐸,∎,∗) → (𝐸𝐸,∎,∗)  be a mapping defined by: 

𝜑𝜑(𝑚𝑚) = 𝑚𝑚 ∗𝑚𝑚 
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It can be shown that 𝜑𝜑 is a Neutro R-Module Homomorphism such that 

for 𝑚𝑚,𝑛𝑛, 𝑠𝑠 ∈  𝐸𝐸, we have:  

𝜑𝜑(𝑚𝑚 ∎ 𝑚𝑚) = 𝜑𝜑(𝑚𝑚) = 𝑚𝑚 ∗ 𝑚𝑚 = 𝑚𝑚 

        𝜑𝜑(𝑚𝑚)∎ 𝜑𝜑(𝑚𝑚) = (𝑚𝑚 ∗𝑚𝑚)∎(𝑚𝑚 ∗𝑚𝑚) = 𝑚𝑚∎𝑚𝑚 = 𝑚𝑚   but  

                𝜑𝜑(𝑚𝑚∎𝑛𝑛) = 𝜑𝜑(𝑛𝑛) = 𝑛𝑛 ∗ 𝑛𝑛 = 𝑠𝑠  

𝜑𝜑(𝑚𝑚)∎𝜑𝜑(𝑛𝑛) = (𝑚𝑚 ∗ 𝑚𝑚)∎(𝑛𝑛 ∗ 𝑛𝑛) = 𝑚𝑚∎𝑠𝑠 = 𝑛𝑛 

𝜑𝜑(𝑚𝑚 ∗ 𝑛𝑛) = 𝜑𝜑(𝑚𝑚) = 𝑚𝑚 ∗ 𝑚𝑚 = 𝑚𝑚 

𝜑𝜑(𝑚𝑚) ∗ 𝜑𝜑(𝑛𝑛) = 𝑚𝑚 ∗ 𝑠𝑠 = 𝑚𝑚 but  

               𝜑𝜑(𝑠𝑠 ∗ 𝑛𝑛) = 𝜑𝜑(𝑠𝑠) = 𝑠𝑠 ∗ 𝑠𝑠 = 𝑛𝑛 

𝜑𝜑(𝑠𝑠) ∗ 𝜑𝜑(𝑛𝑛) = 𝑛𝑛 ∗ 𝑠𝑠 = 𝑚𝑚  

The kernel of 𝜑𝜑 is 𝐾𝐾𝑛𝑛𝑟𝑟𝜑𝜑 =  {𝑥𝑥 ∶  𝜑𝜑(𝑥𝑥) =  𝑛𝑛𝑀𝑀} = {𝑚𝑚,𝑠𝑠} where 𝑛𝑛𝑀𝑀 ∈ 𝐸𝐸 is Neutro-

Neutral element in 𝐸𝐸. 

The image of 𝜑𝜑 is 𝐼𝐼𝑚𝑚𝜑𝜑 =  {𝑦𝑦 ∈  𝑁𝑁 ∶  𝑦𝑦 =  𝜑𝜑(𝑥𝑥)𝑓𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑛𝑛 𝑀𝑀𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 𝑦𝑦 ∈  𝑁𝑁} =

{𝑚𝑚,𝑛𝑛,𝑠𝑠} 

Theorem 4.3.4: Let  (𝐸𝐸,∙, +)  and  (𝑁𝑁,∎,∗)  be any two Neutro R-Modules. Suppose 

that 𝜑𝜑 ∶  𝐸𝐸 →  𝑁𝑁 is a Neutro R-Module Homomorphism. Then:  

𝜑𝜑(𝑛𝑛𝑀𝑀) is not necessarily equals 𝑛𝑛𝑁𝑁.  

𝐾𝐾𝑛𝑛𝑟𝑟𝜑𝜑 is a Neutro-Sub R-Module of 𝐸𝐸.  

𝐼𝐼𝑚𝑚𝜑𝜑 is not necessarily a Neutro-Sub R-Module of 𝑁𝑁.  

𝜑𝜑 is NeutroInjective if and only if 𝐾𝐾𝑛𝑛𝑟𝑟𝜑𝜑 =  {𝑛𝑛𝑀𝑀} for at least one 𝑛𝑛𝑀𝑀 ∈ 𝐸𝐸. 

Definition 4.3.5: [55] Let  𝐾𝐾,𝐸𝐸  and  𝑁𝑁  be Neutro R-Module over a Neutro-Ring 𝑅𝑅 

and let  

φ ∶ 𝐾𝐾 → 𝐸𝐸,ψ ∶ 𝐸𝐸 → 𝑁𝑁 
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be Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 homomorphisms. The composition ψ φ ∶ 𝐾𝐾 → 𝑁𝑁 is defined 

by  

ψφ (𝑘𝑘)  =  ψ(φ(𝑘𝑘)) 𝑓𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑀𝑀𝑀𝑀 𝑘𝑘∈𝐾𝐾.  

Theorem 4.3.6: Let  𝐾𝐾,𝐸𝐸  and  𝑁𝑁  be Neutro R-Module over a Neutro-Ring 𝑅𝑅 and 

let   

φ ∶ 𝐾𝐾 → 𝐸𝐸,ψ ∶ 𝐸𝐸 → 𝑁𝑁 

be Neutro R-Module homomorphisms. Then the composition ψφ ∶ 𝐾𝐾 → 𝑁𝑁 is a 

Neutro R-Module homomorphisms. 

Theorem 4.3.7: Let  𝐾𝐾,𝐸𝐸  and  𝑁𝑁  be Neutro R-Modules over a Neutro-Ring 𝑅𝑅 and 

let   

φ ∶ 𝐾𝐾 → 𝐸𝐸,ψ ∶ 𝐸𝐸 → 𝑁𝑁 

be Neutro R-Module homomorphisms. Then  

If ψφ is Monomorphism Neutro R-Module, then φ Monomorphism Neutro R-

Module. 

If ψφ is Neutro R-Module Epimorphism, then ψ is Neutro R-Module Epimorphism. 

If ψ and φ are Monomorphism Neutro R-Module, then ψφ is Monomorphism Neutro 

R-Module. 

4.4 Neutro Ordered 𝑹𝑹 −𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴   

Definition 4.4.1: [56] Let 𝐸𝐸 be a Neutro R-Module with 𝑛𝑛 (Neutro) operations “𝑎𝑎” 

and “ ≤ ” be a partial order (reflexive, anti-symmetric, and transitive) on 𝐸𝐸. Then 

(𝐸𝐸,∗1,∗2 ,≤) is a NeutroOrdered R-Module if the following conditions hold.  

(1) There exist 𝑥𝑥 ≤  𝑦𝑦 ∈ 𝐸𝐸 with 𝑥𝑥 ≠  𝑦𝑦 such that 𝑧𝑧 ∗𝑖𝑖 𝑥𝑥 ≤  𝑧𝑧 ∗𝑖𝑖 𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑥𝑥 ∗𝑖𝑖 𝑧𝑧 ≤

 𝑦𝑦 ∗𝑖𝑖  𝑧𝑧 for some 𝑎𝑎 =  1, 2  and 𝑧𝑧 ∈  𝐸𝐸 (This condition is called degree of truth, “𝑇𝑇”.)  

 (2) There exist 𝑥𝑥 ≤  𝑦𝑦 ∈  𝐸𝐸 and 𝑧𝑧 ∈  𝐴𝐴 such that 𝑧𝑧 ∗𝑖𝑖 𝑥𝑥 ≤  𝑧𝑧 ∗𝑖𝑖 𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑥𝑥 ∗𝑖𝑖 𝑧𝑧 ≤

 𝑦𝑦 ∗𝑖𝑖  𝑧𝑧 for some 𝑎𝑎 =  1,2. (This condition is called degree of falsity, “𝐹𝐹”.)  
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(3) There exist 𝑥𝑥 ≤  𝑦𝑦 ∈ 𝐸𝐸 and 𝑧𝑧 ∈ 𝐴𝐴 such that 

𝑧𝑧 ∗𝑖𝑖 𝑥𝑥  𝑜𝑜𝑟𝑟  𝑧𝑧 ∗𝑖𝑖 𝑦𝑦  𝑜𝑜𝑟𝑟  𝑥𝑥 ∗𝑖𝑖 𝑧𝑧  𝑜𝑜𝑟𝑟  𝑦𝑦 ∗𝑖𝑖 𝑧𝑧 are indeterminate, or the relation between that 

𝑧𝑧 ∗𝑖𝑖 𝑥𝑥   and 𝑧𝑧 ∗𝑖𝑖 𝑦𝑦, or the relation between 𝑥𝑥 ∗𝑖𝑖 𝑧𝑧  and 𝑦𝑦 ∗𝑖𝑖 𝑧𝑧 are indeterminate for 

some      𝑎𝑎 =  1, 2. (This condition is called degree of indeterminacy, “𝐼𝐼”.)  

Where (𝑇𝑇, 𝐼𝐼,𝐹𝐹) is different from (1, 0, 0) that represents the classical Ordered R-

Module as well from (0, 0, 1) that represents the AntiOrdered R-Module.  

Definition 4.4.2: [56]  Let (𝐸𝐸,∗1,∗2 ,≤)  be a NeutroOrdered R-Module. If “ ≤ ” is a 

total order on 𝐴𝐴 then 𝐸𝐸 is called NeutroTotal Ordered R-Module.  

Definition 4.4.3: [56] Let (𝐸𝐸,∗1,∗2 ,≤) be a Neutro Ordered R-Module and ∅ ≠

 𝑆𝑆 ⊆  𝐸𝐸. Then  𝑆𝑆 is a Neutro Ordered Sub R-Module of S if (𝑆𝑆,∗1,∗2 ,≤) is a Neutro 

Ordered R-Module and there exist. 

Example 4.4.4: Let 𝐸𝐸 = {𝑚𝑚, 𝑛𝑛,𝑠𝑠} and (𝐸𝐸,∎,∗, ) be defined by the following table. 

Table 20.4 Example 

∎ 𝑚𝑚 𝑛𝑛 𝑠𝑠 

𝑚𝑚 𝑚𝑚 𝑛𝑛 𝑛𝑛 

𝑛𝑛 𝑠𝑠 𝑜𝑜𝑟𝑟 𝑛𝑛 𝑚𝑚 𝑜𝑜𝑟𝑟 𝑛𝑛 𝑠𝑠 

𝑠𝑠 𝑛𝑛 𝑠𝑠 𝑛𝑛 

 

Table 21.4 Example 

∗ 𝑚𝑚 𝑛𝑛 𝑠𝑠 

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 

𝑛𝑛 𝑚𝑚 𝑜𝑜𝑟𝑟 𝑛𝑛 𝑠𝑠 𝑚𝑚 

𝑠𝑠 𝑚𝑚 𝑠𝑠 𝑛𝑛 

 

As showed (𝐸𝐸,∎,∗, ) in Example 4.1.3  is a Neutro R-Module. 

By defining the total order 

≤ = {(𝑚𝑚,𝑚𝑚), (𝑛𝑛,𝑛𝑛), (𝑠𝑠,𝑠𝑠), (𝑚𝑚,𝑛𝑛), (𝑚𝑚,𝑠𝑠), (𝑛𝑛,𝑠𝑠)} 
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on 𝐸𝐸, we get that (𝐸𝐸,∎,∗,≤)  is a NeutroTotalOrdered R-Module. This is easily 

seen as: 

𝑚𝑚 ≤ 𝑠𝑠 implies that 𝑚𝑚 ∗ 𝑥𝑥 ≤ 𝑠𝑠 ∗ 𝑥𝑥 and 𝑥𝑥 ∗ 𝑚𝑚 ≤ 𝑥𝑥 ∗ 𝑠𝑠 for all 𝑥𝑥 ∈ 𝐸𝐸.  

And having 𝑛𝑛 ≤ 𝑠𝑠 but ∎𝑛𝑛.  𝑠𝑠∎𝑠𝑠 ≤    

𝑚𝑚 ≤ 𝑛𝑛 implies that 𝑚𝑚 ∗ 𝑥𝑥 ≤ 𝑛𝑛 ∗ 𝑥𝑥 and 𝑥𝑥 ∗ 𝑚𝑚 ≤ 𝑥𝑥 ∗ 𝑛𝑛 for all 𝑥𝑥 ∈ 𝐸𝐸.  

And having 𝑛𝑛 ≤ 𝑠𝑠 but ∗ 𝑛𝑛 ≤  𝑠𝑠 ∗ 𝑠𝑠. 

Example 4.4.5: Let (𝐸𝐸,∎,∗,≤)  be a the Neutro 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 of Example 4.1.3 and 

let  𝑁𝑁 =  {𝑠𝑠,𝑛𝑛} : 

 𝑠𝑠,𝑛𝑛 ∈ 𝑁𝑁   ,𝑠𝑠∎𝑛𝑛 = 𝑠𝑠 ∈ 𝑁𝑁  but  𝑛𝑛∎𝑛𝑛 = 𝑚𝑚 

𝑠𝑠,𝑛𝑛 ∈ 𝑁𝑁  ,𝑠𝑠 ∈ 𝑅𝑅 ,𝑠𝑠 ∗ 𝑛𝑛 = 𝑠𝑠 ∈ 𝑁𝑁  but  𝑛𝑛 ∗ 𝑠𝑠 = 𝑚𝑚 

By defining the total order 

≤ = {(𝑚𝑚,𝑚𝑚), (𝑛𝑛,𝑛𝑛), (𝑠𝑠,𝑠𝑠), (𝑚𝑚,𝑛𝑛), (𝑚𝑚,𝑠𝑠), (𝑛𝑛,𝑠𝑠)} 

It follows that (𝑁𝑁,∎,∗,≤) is Neutro-Sub 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 of 𝐸𝐸. 

Definition 4.4.6: [56] Let  (𝐸𝐸,∗1,∗2 ,≤1) and  (𝑁𝑁,∎1,∎2 ,≤2) be any two Neutro 

Ordered 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛𝑠𝑠. The mapping 𝜑𝜑 ∶  𝐸𝐸 →  𝑁𝑁 is called a Neutro Ordered R-

Module Homomorphism if the following conditions hold:  

for some (𝑥𝑥, 𝑦𝑦) ∈  𝐸𝐸, we have:  

𝜑𝜑(𝑥𝑥 ∗1  𝑦𝑦)  =  𝜑𝜑(𝑥𝑥)∎1 𝜑𝜑(𝑦𝑦) 

𝜑𝜑(𝑥𝑥 ∗2  𝑦𝑦)  =  𝜑𝜑(𝑥𝑥)∎2𝜑𝜑(𝑦𝑦) 

and there exist 𝑎𝑎 ≤1 𝑏𝑏  ,𝑎𝑎 ≠ 𝑏𝑏 , 𝜑𝜑(𝑎𝑎) ≤2 𝜑𝜑(𝑏𝑏) 

𝜑𝜑 is called Neutro Ordered R-Module Isomorphism if 𝜑𝜑 is a bijective NeutroOrdered 

R-Module Homomorphism. 

i)There exists a double (𝑠𝑠, 𝑞𝑞) ∈ 𝐸𝐸 such that 𝜑𝜑(𝑠𝑠 ∗1  𝑞𝑞)  =  𝜑𝜑(𝑠𝑠)∎1𝜑𝜑(𝑞𝑞) (degree of 

truth 𝑇𝑇) and there exist two doubles (𝑠𝑠, 𝑛𝑛), (𝑘𝑘,𝑚𝑚) (𝐹𝐹,𝐸𝐸) such that [𝜑𝜑(𝑠𝑠 ∗1  𝑛𝑛) ≠
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 𝜑𝜑(𝑠𝑠) ∎1𝜑𝜑(𝑛𝑛) (degree of falsehood 𝐹𝐹) or 𝜑𝜑(𝑘𝑘 ∗1  𝑚𝑚) = indeterminacy  𝜑𝜑(𝑘𝑘) ∎1 𝜑𝜑(𝑚𝑚) 

(degree of indeterminacy 𝐼𝐼)]; where (𝑇𝑇, 𝐼𝐼,𝐹𝐹) is different from (1, 0, 0) and (0, 0, 1). 

ii)There exists a double (𝑠𝑠, 𝑞𝑞) ∈ 𝐸𝐸 such that 𝜑𝜑(𝑠𝑠 ∗2  𝑞𝑞)  =  𝜑𝜑(𝑠𝑠)∎2𝜑𝜑(𝑞𝑞) (degree of 

truth 𝑇𝑇) and there exist two doubles (𝑠𝑠, 𝑛𝑛), (𝑘𝑘,𝑚𝑚) (𝐹𝐹,𝐸𝐸) such that [𝜑𝜑(𝑠𝑠 ∗2  𝑛𝑛) ≠

 𝜑𝜑(𝑠𝑠) ∎2𝜑𝜑(𝑛𝑛) (degree of falsehood 𝐹𝐹) or 

𝜑𝜑(𝑘𝑘 ∗2  𝑚𝑚) = indeterminacy  𝜑𝜑(𝑘𝑘) ∎2 𝜑𝜑(𝑚𝑚) (degree of indeterminacy 𝐼𝐼)]; where 

(𝑇𝑇, 𝐼𝐼,𝐹𝐹) is different from (1, 0, 0) and (0, 0, 1). 

Example 4.4.7: Let 𝜑𝜑: (𝐸𝐸,∗1,∗2,≤) → (𝐸𝐸,∗1,∗2,≤)  be a mapping defined by: 

𝜑𝜑(𝑚𝑚) = 𝑚𝑚 ∗2 𝑚𝑚 

It can be shown that 𝜑𝜑 is a Neutro Ordered 𝑅𝑅 −𝐸𝐸𝑜𝑜𝑑𝑑𝑠𝑠𝑀𝑀𝑛𝑛 Homomorphism such that 

for 𝑚𝑚,𝑛𝑛, 𝑠𝑠 ∈  𝐸𝐸, we have:  

1- and 2- it proved in Example 4.3.2 

There exist 𝑚𝑚 ≤ 𝑛𝑛  such that  𝜑𝜑(𝑚𝑚) ≤ 𝜑𝜑(𝑛𝑛).
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CHAPTER V 
 

NEUTROSOPHIC EUCLIDEAN GEOMETRY 
 

 

In the beginning, we will define the basic concepts in neutrosophic Euclidean 

geometry and then we will study their relations with classical geometry. 

Definition 5.1.1: [57] Let 𝑅𝑅(𝐼𝐼) = {𝑎𝑎 + 𝑏𝑏𝐼𝐼;  𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅} be the real neutrosophic field, 

we say that 𝑎𝑎 + 𝑏𝑏𝐼𝐼 ≤ 𝑐𝑐 + 𝑑𝑑𝐼𝐼 if and only if 𝑎𝑎 ≤ 𝑐𝑐 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 + 𝑏𝑏 ≤ 𝑐𝑐 + 𝑑𝑑. 

Theorem 5.1.2: [57] The relation defined in Definition 5.1.1 is a partial order 

relation (reflexive, anti-symmetric, and transitive). 

Proof: 

Let 𝑥𝑥 = 𝑎𝑎 + 𝑏𝑏𝐼𝐼,𝑦𝑦 = 𝑐𝑐 + 𝑑𝑑𝐼𝐼, 𝑧𝑧 = 𝑚𝑚 + 𝑛𝑛𝐼𝐼 ∈ 𝑅𝑅(𝐼𝐼), we have 

𝑥𝑥 ≤ 𝑥𝑥 that is because 𝑎𝑎 ≤ 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 + 𝑏𝑏 ≤ 𝑎𝑎 + 𝑏𝑏. 

Now, suppose that 𝑥𝑥 ≤ 𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦 ≤ 𝑥𝑥, then 𝑎𝑎 ≤ 𝑐𝑐,𝑎𝑎 + 𝑏𝑏 ≤ 𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 ≤ 𝑎𝑎, 

 𝑐𝑐 + 𝑑𝑑 ≤ 𝑎𝑎 + 𝑏𝑏, hence 

𝑎𝑎 = 𝑐𝑐,𝑎𝑎 + 𝑏𝑏 = 𝑐𝑐 + 𝑑𝑑, which means that 𝑑𝑑 = 𝑏𝑏 and 𝑥𝑥 = 𝑦𝑦. 

Assume that 𝑥𝑥 ≤ 𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦 ≤ 𝑧𝑧, hence 𝑎𝑎 ≤ 𝑐𝑐,𝑎𝑎 + 𝑏𝑏 ≤ 𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 ≤ 𝑚𝑚, 𝑐𝑐 + 𝑑𝑑 ≤ 𝑚𝑚 + 𝑛𝑛, 

this implies that 

𝑎𝑎 ≤ 𝑚𝑚,𝑎𝑎 + 𝑏𝑏 ≤ 𝑚𝑚 + 𝑛𝑛, so 𝑥𝑥 ≤ 𝑧𝑧. Thus ≤ is a partial order relation on 𝑅𝑅(𝐼𝐼). 

Remark 5.1.3:  

According to Theorem 5.1.2, we can define positive neutrosophic real numbers as 

follows: 

𝑎𝑎 + 𝑏𝑏𝐼𝐼 ≥ 0 = 0 + 0. 𝐼𝐼 implies that 𝑎𝑎 ≥ 0,𝑎𝑎 + 𝑏𝑏 ≥ 0. 

Absolute value on 𝑅𝑅(𝐼𝐼) can be defined as follows: 

|𝑎𝑎 + 𝑏𝑏𝐼𝐼| = |𝑎𝑎| + 𝐼𝐼[|𝑎𝑎 + 𝑏𝑏| − |𝑎𝑎|], we can see that |𝑎𝑎 + 𝑏𝑏𝐼𝐼| ≥ 0. 

We can compute the square root of a neutrosophic positive real number as follows: 

√𝑎𝑎 + 𝑏𝑏𝐼𝐼 = √𝑎𝑎 + 𝐼𝐼�√𝑎𝑎 + 𝑏𝑏 − √𝑎𝑎�     , 𝑎𝑎𝑛𝑛 𝑎𝑎𝑠𝑠 𝑐𝑐𝑀𝑀𝑛𝑛𝑎𝑎𝑟𝑟 𝑛𝑛ℎ𝑎𝑎𝑛𝑛 

 (√𝑎𝑎 + 𝐼𝐼�√𝑎𝑎 + 𝑏𝑏 − √𝑎𝑎�)2 = 𝑎𝑎 + 𝑏𝑏𝐼𝐼 𝑎𝑎𝑛𝑛𝑑𝑑 √𝑎𝑎 + 𝑏𝑏𝐼𝐼 ≥ 0. 

Examples: 

• 𝑥𝑥 = 2 − 𝐼𝐼 is a neutrosophic positive real number, since 2 ≥ 0 
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 𝑎𝑎𝑛𝑛𝑑𝑑 (2 − 1) = 1 ≥ 0. 

• 2 + 𝐼𝐼 ≥ 2, that is because 2 ≥ 2 𝑎𝑎𝑛𝑛𝑑𝑑 (2 + 1) = 3 ≥ (2 + 0) = 2. 

• |1 + 3𝐼𝐼| = |1| + 𝐼𝐼[|1 + 3| − |1|] = 1 + 3𝐼𝐼. 

• |−3 + 2𝐼𝐼| = |−3| + 𝐼𝐼[|−3 + 2| − |−3|] = 3 − 2𝐼𝐼 notice 0 + 0𝐼𝐼 ≥ −3 + 2𝐼𝐼 

• √9 + 4𝐼𝐼 = √9 + 𝐼𝐼�√13 − √9� = 3 + �√13 − 3�𝐼𝐼. 

Definition 5.1.4: [57] We define the neutrosophic plane with n-dimensional  

neutrosophic as follows: 

𝑅𝑅(𝐼𝐼) × 𝑅𝑅(𝐼𝐼) × 𝑅𝑅(𝐼𝐼) × . . . . . .�
𝑛𝑛−𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡

× 𝑅𝑅(𝐼𝐼) 

Example 5.1.5: 𝑅𝑅(𝐼𝐼) = {𝑎𝑎 + 𝑏𝑏𝐼𝐼;𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅} is a neutrosophic plane with one n-

dimension. 

𝑅𝑅(𝐼𝐼)2 = {(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼);𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ 𝑅𝑅} is a neutrosophic plane with two n-

dimensions. 

In the following, we will focus on the two n-dimensional neutrosophic planes. 

Definition 5.1.6: [57] Let 𝐴𝐴(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼),𝐵𝐵(𝑥𝑥 + 𝑦𝑦𝐼𝐼, 𝑧𝑧 + 𝑛𝑛𝐼𝐼) be two neutrosophic 

points from 𝑅𝑅(𝐼𝐼)2, we define: 

𝐴𝐴𝐵𝐵�����⃗ = ([𝑥𝑥 + 𝑦𝑦𝐼𝐼] − [𝑎𝑎 + 𝑏𝑏𝐼𝐼], [𝑧𝑧 + 𝑛𝑛𝐼𝐼] − [𝑐𝑐 + 𝑑𝑑𝐼𝐼]), is called a neutrosophic vector 

with 2-dimensions neutrosophic. 

Definition 5.1.7: [57] Let 𝑠𝑠�⃗ = (𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) be a neutrosophic vector, we define 

its norm as follows: 

‖𝑠𝑠�⃗ ‖ = �(𝑎𝑎 + 𝑏𝑏𝐼𝐼)2 + (𝑐𝑐 + 𝑑𝑑𝐼𝐼)2 = �𝑎𝑎2 + 𝑐𝑐2 + 𝐼𝐼[(𝑎𝑎 + 𝑏𝑏)2 + (𝑐𝑐 + 𝑑𝑑)2 − 𝑎𝑎2 − 𝑐𝑐2]. 

It is easy to see that ‖𝑠𝑠�⃗ ‖ ≥ 0,𝑎𝑎𝑐𝑐𝑐𝑐𝑜𝑜𝑟𝑟𝑑𝑑𝑎𝑎𝑛𝑛𝑔𝑔 𝑛𝑛𝑜𝑜 Remark 5.1.3 

 

Definition 5.1.8: [57] Let 𝐴𝐴(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼),𝐵𝐵(𝑥𝑥 + 𝑦𝑦𝐼𝐼, 𝑧𝑧 + 𝑛𝑛𝐼𝐼) be two neutrosophic 

points from 𝑅𝑅(𝐼𝐼)2, we define: 

(a) The midpoint of [𝐴𝐴𝐵𝐵] is 𝐶𝐶 �𝑎𝑎+𝑏𝑏𝐼𝐼+𝑥𝑥+𝑦𝑦𝐼𝐼
2

, 𝑐𝑐+𝑟𝑟𝐼𝐼+𝑧𝑧+𝑡𝑡𝐼𝐼
2

�. 

(b) The neutrosophic distance between 𝐴𝐴 and 𝐵𝐵 is equal to �𝐴𝐴𝐵𝐵�����⃗ �. 

Example 5.1.9: Consider the following neutrosophic points 𝐴𝐴(1 + 𝐼𝐼, 2 −

3𝐼𝐼),𝐵𝐵(−𝐼𝐼,−1 + 2𝐼𝐼), 
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The neutrosophic vector 𝐴𝐴𝐵𝐵�����⃗ = (−1 − 2𝐼𝐼,−3 + 5𝐼𝐼), the square of the neutrosophic 

distance between 𝐴𝐴 and 𝐵𝐵 is �𝐴𝐴𝐵𝐵�����⃗ �
2

= 1 + 9 + 𝐼𝐼[9 + 4 − 1 − 9] = 10 + 3𝐼𝐼. 

Hence the neutrosophic distance is equal to √10 + 3𝐼𝐼 = √10 + 𝐼𝐼�√13 − √10�. We 

can find easily that (√10 + 3𝐼𝐼 )2 = (√10 + 𝐼𝐼�√13 − √10�)2 = 10 + 3𝐼𝐼. 

Let 𝐶𝐶 be the neutrosophic midpoint of [𝐴𝐴𝐵𝐵], then 𝐶𝐶 �1
2

, 1
2
− 1

2
𝐼𝐼�. 

Now, we list some geometrical and algebraic properties of the classical space 

𝑅𝑅2 × 𝑅𝑅2. We will need them in the forthcoming sections. 

Remark 5.1.10: Let  𝐸𝐸 = 𝑅𝑅2 × 𝑅𝑅2 be the Cartesian product of the classical 

Euclidean plane with itself, we have 

(a) 𝐸𝐸 has a module structure over the ring 𝑅𝑅 × 𝑅𝑅 , with respect to the following 

operations: 

Addition: �(𝑎𝑎, 𝑏𝑏), (𝑐𝑐,𝑑𝑑)� + �(𝑥𝑥,𝑦𝑦), (𝑧𝑧, 𝑛𝑛)� = �(𝑎𝑎 + 𝑥𝑥, 𝑏𝑏 + 𝑦𝑦), (𝑐𝑐 + 𝑧𝑧,𝑑𝑑 + 𝑛𝑛)�, 

Multiplication by a duplet scalar from × 𝑅𝑅 : (𝑚𝑚,𝑛𝑛). �(𝑎𝑎, 𝑏𝑏), (𝑐𝑐, 𝑑𝑑)� =

�(𝑚𝑚.𝑎𝑎,𝑛𝑛. 𝑏𝑏), (𝑚𝑚. 𝑐𝑐,𝑛𝑛.𝑑𝑑)�. 

(b) The norm of any vector in 𝐸𝐸 can be defined as a duplet number from × 𝑅𝑅 , as 

follows: 

‖((𝑎𝑎, 𝑏𝑏), (𝑐𝑐, 𝑑𝑑))‖ = ��𝑎𝑎2 + 𝑐𝑐2,�𝑏𝑏2 + 𝑑𝑑2�. 

Example 5.1.11: Consider the following two points from the space 𝐸𝐸, 

𝐴𝐴((1,2), (2,5)),𝐵𝐵((−1,4), (3,−2)), we have: 

(a) 𝐴𝐴𝐵𝐵�����⃗ = �(−2,2), (1,−7)�. 

(b) �𝐴𝐴𝐵𝐵�����⃗ � = ��(−2)2 + (1)2,�(2)2 + (−7)2� = �√5,√53�. 

(c) Let 𝑟𝑟 = (5,8) ∈ 𝑅𝑅 × 𝑅𝑅 be a duplet scalar, we have: 

   𝑟𝑟.𝐴𝐴𝐵𝐵�����⃗ = �(−10,16), (5,−56)�, it is clear that �𝑟𝑟.𝐴𝐴𝐵𝐵�����⃗ � = 𝑟𝑟. �𝐴𝐴𝐵𝐵�����⃗ �. 
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5.2 The Connection Between Neutrosophic and Classical Geometry 

This section is devoted to clarifying the relationships between neutrosophic 

coordinates defined above, and between classical geometrical coordinates. 

Many important questions arise according to section 5.1 The first one is about 

famous relations in classical geometry: Does the midpoint of [𝐴𝐴𝐵𝐵] have the same 

neutrosophic distance from 𝐴𝐴 and 𝐵𝐵? If the answer is no, then our geometrical 

system is weak and has no importance because it contradicts logical statements. 

The second, do the neutrosophic points have relationships with classical points. This 

question is the most important one, that is because if it has a positive answer, then we 

can study geometrical shapes in the neutrosophic plane. 

The third is about how can we define neutrosophic lines, circles, elliptic curves… 

etc. 

 We try to answer these important questions by using algebra since the neutrosophic 

plane with two N-dimensions is a module over the ring 𝑅𝑅(𝐼𝐼). 

Definition 5.2.1: [57] Let 𝐸𝐸 = 𝑅𝑅(𝐼𝐼)2 = 𝑅𝑅(𝐼𝐼) × 𝑅𝑅(𝐼𝐼),𝐸𝐸 = 𝑅𝑅2 × 𝑅𝑅2be the 

neutrosophic plane with two N-dimensions and the Cartesian product of the classical 

Euclidean space 𝑅𝑅2 with itself, we define the AH-isometry map as follows: 

𝑓𝑓:𝐸𝐸 → 𝐸𝐸; 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) = ((𝑎𝑎,𝑎𝑎 + 𝑏𝑏), (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑)). 

We can define the one-dimensional isometry between 𝑅𝑅(𝐼𝐼) and the space 𝑅𝑅 × 𝑅𝑅 as 

follows: 

𝑔𝑔:𝑅𝑅(𝐼𝐼) → 𝑅𝑅 × 𝑅𝑅;𝑔𝑔(𝑎𝑎 + 𝑏𝑏𝐼𝐼) = (𝑎𝑎,𝑎𝑎 + 𝑏𝑏). 

Remark 5.2.2: The one-dimensional isometry is an algebraic isomorphism between 

𝑅𝑅(𝐼𝐼) and 𝑅𝑅 × 𝑅𝑅. 

Proof: Let 𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼 be two neutrosophic real numbers, then 

𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼 + 𝑐𝑐 + 𝑑𝑑𝐼𝐼) = 𝑓𝑓([𝑎𝑎 + 𝑐𝑐] + [𝑏𝑏 + 𝑑𝑑]𝐼𝐼) = (𝑎𝑎 + 𝑐𝑐,𝑎𝑎 + 𝑐𝑐 + 𝑏𝑏 + 𝑑𝑑)

= (𝑎𝑎,𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑) 

                                                = 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼) + 𝑓𝑓(𝑐𝑐 + 𝑑𝑑𝐼𝐼). 
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𝑓𝑓([𝑎𝑎 + 𝑏𝑏𝐼𝐼]. [𝑐𝑐 + 𝑑𝑑𝐼𝐼]) = 𝑓𝑓(𝑎𝑎𝑐𝑐 + 𝐼𝐼[𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑑𝑑]) = (𝑎𝑎𝑐𝑐, 𝑎𝑎𝑐𝑐 + 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑑𝑑)

= (𝑎𝑎,𝑎𝑎 + 𝑏𝑏). (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑) 

                                              = 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼).𝑓𝑓(𝑐𝑐 + 𝑑𝑑𝐼𝐼). 

𝑓𝑓 is a correspondence one-to-one, that is because 𝐾𝐾𝑛𝑛𝑟𝑟(𝑓𝑓) = {0}, and for every pair 

(𝑎𝑎, 𝑏𝑏) ∈ 𝑅𝑅 × 𝑅𝑅, there exists 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝐼𝐼 ∈ 𝑅𝑅(𝐼𝐼)  𝑠𝑠𝑠𝑠𝑐𝑐ℎ 𝑛𝑛ℎ𝑎𝑎𝑛𝑛  𝑓𝑓(𝑎𝑎 + [𝑏𝑏 − 𝑎𝑎]𝐼𝐼) =

(𝑎𝑎, 𝑏𝑏). Thus, 𝑓𝑓 is an isomorphism. 

Example 5.2.3: Consider the following neutrosophic point 𝐴𝐴(1 + 𝐼𝐼, 3 − 6𝐼𝐼), its 

isometric image is �(1,2), (3,−3)�. 

Consider the following neutrosophic vector 𝑠𝑠�⃗ = (2 − 𝐼𝐼, 4 + 𝐼𝐼), its isometric vector is 

�⃗�𝑣 = �(2,1), (4,5)�. 

The idea behind the AH-isometry is to deal with neutrosophic points as classical 

points and to explore their properties using classical Euclidean geometry. 

The following theorem is considered as the fundamental theorem in neutrosophic 

Euclidean geometry since it describes the relation between neutrosophic space with 

two N-dimensions and the classical module generated by the Cartesian product of the 

classical Euclidean space by itself. 

Theorem 5.2.4: [57] (Fundamental Theorem in neutrosophic Euclidean Geometry) 

Let 𝑓𝑓:𝐸𝐸 → 𝐸𝐸; 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) = ((𝑎𝑎,𝑎𝑎 + 𝑏𝑏), (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑)) be the AH-isometry 

defined above, we have: 

(a) 𝑓𝑓 preserves addition operation between vectors. 

(b) 𝑓𝑓 preserves distances between points. 

(c) 𝑓𝑓 is a bijection one-to-one between 𝐸𝐸 and 𝐸𝐸. 

(d) Multiplying a neutrosophic vector by a neutrosophic real number is preserved up 

to isometry, i.e. The direct image of a neutrosophic vector multiplied by a 

neutrosophic real number is exactly equal to its AH-isometric image multiplied by 

the one-dimensional isometric image of the corresponding neutrosophic real number. 
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Proof: 

 (a) Let 𝑠𝑠�⃗ = (𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼), �⃗�𝑣 = (𝑥𝑥 + 𝑦𝑦𝐼𝐼, 𝑧𝑧 + 𝑛𝑛𝐼𝐼) be two neutrosophic vectors, we 

have 

𝑓𝑓(𝑠𝑠�⃗ + �⃗�𝑣) = 𝑓𝑓(𝑎𝑎 + 𝑥𝑥 + 𝐼𝐼[𝑏𝑏 + 𝑦𝑦], 𝑐𝑐 + 𝑧𝑧 + 𝐼𝐼[𝑑𝑑 + 𝑛𝑛])

= ((𝑎𝑎 + 𝑥𝑥, 𝑎𝑎 + 𝑥𝑥 + 𝑏𝑏 + 𝑦𝑦), (𝑐𝑐 + 𝑧𝑧, 𝑐𝑐 + 𝑧𝑧 + 𝑑𝑑 + 𝑛𝑛)) 

                         = �(𝑎𝑎,𝑎𝑎 + 𝑏𝑏), (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑)� + ((𝑥𝑥, 𝑥𝑥 + 𝑦𝑦), (𝑧𝑧, 𝑧𝑧 + 𝑛𝑛))=𝑓𝑓(𝑠𝑠�⃗ ) + 𝑓𝑓(�⃗�𝑣) 

(b) We must prove that the norm of the classical vector 𝑓𝑓(𝑠𝑠),����������⃗  

is exactly equal to the one-dimensional isometric image of the norm of the 

neutrosophic vector 𝑠𝑠.���⃗  

‖𝑓𝑓(𝑠𝑠�⃗ )‖2 = (𝑎𝑎2 + 𝑐𝑐2, (𝑎𝑎 + 𝑏𝑏)2 + (𝑐𝑐 + 𝑑𝑑)2), on the other hand, we have 

𝑔𝑔(‖𝑠𝑠�⃗ ‖2) = 𝑔𝑔(𝑎𝑎2 + 𝑐𝑐2 + 𝐼𝐼[(𝑎𝑎 + 𝑏𝑏)2 + (𝑐𝑐 + 𝑑𝑑)2 − 𝑎𝑎2 − 𝑐𝑐2]

= (𝑎𝑎2 + 𝑐𝑐2, (𝑎𝑎 + 𝑏𝑏)2 + (𝑐𝑐 + 𝑑𝑑)2) = ‖𝑓𝑓(𝑠𝑠�⃗ )‖2. 

(c) Suppose that 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) = 𝑓𝑓(𝑥𝑥 + 𝑦𝑦𝐼𝐼, 𝑧𝑧 + 𝑛𝑛𝐼𝐼), hence  �(𝑎𝑎,𝑎𝑎 + 𝑏𝑏), (𝑐𝑐, 𝑐𝑐 +

𝑑𝑑)� 

= �(𝑥𝑥, 𝑥𝑥 + 𝑦𝑦), (𝑧𝑧, 𝑧𝑧 + 𝑛𝑛)�, thus 𝑥𝑥 = 𝑎𝑎, 𝑏𝑏 = 𝑦𝑦, 𝑧𝑧 = 𝑐𝑐,𝑑𝑑 = 𝑛𝑛, so that 𝑓𝑓 𝑎𝑎𝑠𝑠 injective. 

It is clear that 𝑓𝑓 is surjective, thus it is a bijection. 

(d) Consider the following neutrosophic vector 𝑠𝑠�⃗ = (𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) 

With the following neutrosophic real number 𝑚𝑚 + 𝑛𝑛𝐼𝐼,𝑤𝑤𝑛𝑛 ℎ𝑎𝑎𝑣𝑣𝑛𝑛 

(𝑚𝑚 + 𝑛𝑛𝐼𝐼).𝑠𝑠�⃗ = ((𝑚𝑚 + 𝑛𝑛𝐼𝐼)(𝑎𝑎 + 𝑏𝑏𝐼𝐼), (𝑚𝑚 + 𝑛𝑛𝐼𝐼)(𝑐𝑐 + 𝑑𝑑𝐼𝐼) = ((𝑚𝑚𝑎𝑎 + 𝐼𝐼[𝑚𝑚𝑏𝑏 + 𝑛𝑛𝑎𝑎 +

𝑛𝑛𝑏𝑏]), (𝑚𝑚𝑐𝑐 + 𝐼𝐼[𝑚𝑚𝑑𝑑 + 𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑]),  on the other hand, we have 

𝑓𝑓�(𝑚𝑚 + 𝑛𝑛𝐼𝐼).𝑠𝑠�⃗ �   = ��𝑚𝑚𝑎𝑎, (𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏 + 𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑏𝑏)�, (𝑚𝑚𝑐𝑐,𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑑𝑑 + 𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑)�

= (𝑚𝑚,𝑚𝑚 + 𝑛𝑛). �(𝑎𝑎,𝑎𝑎 + 𝑏𝑏), (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑)�

= 𝑔𝑔(𝑚𝑚 + 𝑛𝑛𝐼𝐼).𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼). 

Example 5.2.5: Consider the following two neutrosophic points 𝐴𝐴(1 +

2𝐼𝐼, 𝐼𝐼),𝐵𝐵(3𝐼𝐼,−2 + 𝐼𝐼), we have: 
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(a) The isometric points of A, B are 𝐴𝐴′ = �(1,3), (0,1)�,𝐵𝐵′ = �(0,3), (−2,−1)�. 

(b) 𝐴𝐴𝐵𝐵�����⃗ = (−1 + 𝐼𝐼,−2), 𝑛𝑛ℎ𝑛𝑛 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛𝑑𝑑𝑎𝑎𝑛𝑛𝑔𝑔 𝑎𝑎𝑠𝑠𝑜𝑜𝑚𝑚𝑛𝑛𝑛𝑛𝑟𝑟𝑎𝑎𝑐𝑐 𝑣𝑣𝑛𝑛𝑐𝑐𝑛𝑛𝑜𝑜𝑟𝑟 𝑎𝑎𝑠𝑠 𝐴𝐴′𝐵𝐵′��������⃗ =

�(−1,0), (−2,−2)� = 𝑓𝑓(𝐴𝐴𝐵𝐵�����⃗ ). 

(c) The neutrosophic distance [𝐴𝐴𝐵𝐵] = �1 + 4 + 𝐼𝐼[0 + 4 − 1 − 4] 

      = √5 − 𝐼𝐼 = √5 + 𝐼𝐼[4 − √5]. The classical distance between isometric images is 

[𝐴𝐴′𝐵𝐵′] = ��(−1)2 + (−2)2,�(0)2 + (−2)2� = �√5, 4� = 𝑔𝑔([𝐴𝐴𝐵𝐵]). 

Theorem 5.2.6: [57] introduces an algorithm to transform any neutrosophic point to 

a classical Cartesian product of two classical points. The following theorem 

describes the inverse relation between classical coordinates and neutrosophic 

coordinates, i.e. It clarifies how to go back from classical coordinates to neutrosophic 

coordinates. 

Theorem 5.2.7: [57] Let 𝐴𝐴((𝑎𝑎, 𝑏𝑏), (𝑐𝑐,𝑑𝑑)) be a Cartesian product of two classical 

points, then the inverse isometric image (the corresponding neutrosophic point) is 

𝐵𝐵(𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝐼𝐼, 𝑐𝑐 + (𝑑𝑑 − 𝑐𝑐)𝐼𝐼). 

Proof: 

It holds directly by taking the image of 𝐵𝐵 with respect to AH-isometry, the point 𝐴𝐴 is 

obtained. 

5.2.8 Example: Consider the following classical point 𝐴𝐴((1,2), (−1,4)), its 

corresponding neutrosophic point is 

𝐵𝐵(1 + 𝐼𝐼,−1 + 5𝐼𝐼). 

As a result of Section 4, we can find that all geometrical famous properties are still 

true in neutrosophic Euclidean geometry, that is because we can transform any 

neutrosophic point to a corresponding classical point by preserving addition, 

distances, and multiplication by scalars. 

5.3 Some Neutrosophic Geometrical Shapes With 2-dimensions 

Definition 5.3.1: [57] (Neutrosophic circle) 
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Let 𝐸𝐸(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) be a fixed neutrosophic point, we define the neutrosophic 

circle with center 𝐸𝐸 and radius  𝑅𝑅 = 𝑟𝑟1 + 𝑟𝑟2𝐼𝐼 ≥ 0 to be the set of all two n-

dimensional points 𝑁𝑁(𝑋𝑋,𝑌𝑌) = 𝑁𝑁(𝑥𝑥0 + 𝑥𝑥1𝐼𝐼,𝑦𝑦0 + 𝑦𝑦1𝐼𝐼);𝑑𝑑𝑎𝑎𝑠𝑠𝑛𝑛(𝐸𝐸,𝑁𝑁) = 𝑅𝑅 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑛𝑛. 

Theorem 5.3.2: [57] Let 𝐸𝐸(𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑐𝑐 + 𝑑𝑑𝐼𝐼) be a fixed neutrosophic point, 𝑅𝑅 = 𝑟𝑟1 +

𝑟𝑟2𝐼𝐼 be a neutrosophic real positive number, we have: 

(a) The equation of the circle with center 𝐸𝐸 and radius 𝑅𝑅 is 

([(𝑥𝑥0 + 𝑥𝑥1𝐼𝐼] − [𝑎𝑎 + 𝑏𝑏𝐼𝐼])2 + ([𝑦𝑦0 + 𝐼𝐼𝑦𝑦1] − [𝑐𝑐 + 𝑑𝑑𝐼𝐼])2 = 𝑅𝑅2 . 

(b) The previous neutrosophic circle is equivalent to the following direct product of 

two classical circles 

    𝐶𝐶1: (𝑥𝑥0 − 𝑎𝑎)2 + (𝑦𝑦𝑟𝑟 − 𝑐𝑐)2 = 𝑟𝑟12,𝐶𝐶2: ([𝑥𝑥0 + 𝑥𝑥1] − [𝑎𝑎 + 𝑏𝑏])2 + ([𝑦𝑦0 + 𝑦𝑦1] − [𝑐𝑐 +

𝑑𝑑])2 = (𝑟𝑟1 + 𝑟𝑟2)2. 

Proof: 

(a) By using the neutrosophic distance form defined in Definition 5.1.7 and 

Definition 5.1.8  we get 

 is ([(𝑥𝑥0 + 𝑥𝑥1𝐼𝐼] − [𝑎𝑎 + 𝑏𝑏𝐼𝐼])2 + ([𝑦𝑦0 + 𝐼𝐼𝑦𝑦1] − [𝑐𝑐 + 𝑑𝑑𝐼𝐼])2 = 𝑅𝑅2 . 

(b) To obtain the classical equivalent geometrical system of the neutrosophic circle, 

it is sufficient to take its isometric image as follows: 

𝑓𝑓(([(𝑥𝑥0 + 𝑥𝑥1𝐼𝐼] − [𝑎𝑎 + 𝑏𝑏𝐼𝐼])2) + 𝑓𝑓(([𝑦𝑦0 + 𝐼𝐼𝑦𝑦1] − [𝑐𝑐 + 𝑑𝑑𝐼𝐼])2) = 𝑓𝑓(𝑅𝑅2), hence 

((𝑥𝑥0 − 𝑎𝑎)2, (𝑥𝑥0 + 𝑥𝑥1 − [𝑎𝑎 + 𝑏𝑏])2) + ((𝑦𝑦0 − 𝑐𝑐)2, (𝑦𝑦0 + 𝑦𝑦1 − [𝑐𝑐 + 𝑑𝑑])2) =

(𝑟𝑟12, (𝑟𝑟1 + 𝑟𝑟2)2), thus 

�((𝑥𝑥0 − 𝑎𝑎)2 + (𝑦𝑦0 − 𝑐𝑐)2), ((𝑥𝑥0 + 𝑥𝑥1 − [𝑎𝑎 + 𝑏𝑏])2 + (𝑦𝑦0 + 𝑦𝑦1 − [𝑐𝑐 + 𝑑𝑑])2)�

= (𝑟𝑟12, (𝑟𝑟1 + 𝑟𝑟2)2), 

Thus, we get  (𝑥𝑥0 − 𝑎𝑎)2 + (𝑦𝑦𝑟𝑟 − 𝑐𝑐)2 = 𝑟𝑟12 and 

              ([𝑥𝑥0 + 𝑥𝑥1] − [𝑎𝑎 + 𝑏𝑏])2 + ([𝑦𝑦0 + 𝑦𝑦1] − [𝑐𝑐 + 𝑑𝑑])2 = (𝑟𝑟1 + 𝑟𝑟2)2. 

Example 5.3.3: Consider the following neutrosophic circle: 𝐶𝐶: (𝑋𝑋 − 𝐼𝐼)2 +

(𝑌𝑌 − (2 − 3𝐼𝐼))2 = (2 + 𝐼𝐼)2 
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It is equivalent to the direct product of the following two classical circles: 

𝐶𝐶1: (𝑥𝑥0 − 0)2 + (𝑦𝑦0 − 2)2 = 22,𝐶𝐶2: ([𝑥𝑥0 + 𝑥𝑥1] − [1])2 + ([𝑦𝑦0 + 𝑦𝑦1] − [−1])2 =

(2 + 1)2. 

Definition 5.3.4: [57] (Neutrosophic line) 

We define the neutrosophic line by the set of all two n-dimensional points (X, Y) 

with the property 

𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑌𝑌 + 𝐶𝐶 = 0;𝑋𝑋 = 𝑥𝑥0 + 𝑥𝑥1𝐼𝐼,𝑌𝑌 = 𝑦𝑦0 + 𝑦𝑦1𝐼𝐼,𝐴𝐴 = 𝑎𝑎0 + 𝑎𝑎1𝐼𝐼,𝐵𝐵 = 𝑏𝑏0 + 𝑏𝑏1𝐼𝐼,𝐶𝐶

= 𝑐𝑐0 + 𝑐𝑐1𝐼𝐼. 

Theorem 5.3.5: [57] Let  𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑌𝑌 + 𝐶𝐶 = 0  be an equation of a neutrosophic line 

𝑑𝑑, this line is equivalent to the direct product of the following two classical lines: 

𝑑𝑑1:𝑎𝑎0𝑥𝑥0 + 𝑏𝑏0𝑦𝑦0 + 𝑐𝑐0 = 0,𝑑𝑑2: (𝑎𝑎0 + 𝑎𝑎1)(𝑥𝑥0 + 𝑥𝑥1) + (𝑏𝑏0 + 𝑏𝑏1)(𝑦𝑦0 + 𝑦𝑦1) + 𝑐𝑐0 + 𝑐𝑐1
= 0. 

Proof: 

By taking the isometric image to the equation +𝐵𝐵𝑌𝑌 + 𝐶𝐶 = 0 , we get the proof. 

Example 5.3.6: 

Consider the following neutrosophic line (1 + 𝐼𝐼)𝑋𝑋 + (2 − 4𝐼𝐼)𝑌𝑌 + 1 − 3𝐼𝐼 = 0, it is 

equivalent to the following two classical lines 

𝑑𝑑1: 𝑥𝑥0 + 2𝑦𝑦0 + 1 = 0,𝑑𝑑2: 2 (𝑥𝑥0 + 𝑥𝑥1) − 2(𝑦𝑦0 + 𝑦𝑦1) − 2 = 0. 

Remark 5.3.7: 

(a) If we have two classical circles 𝐶𝐶1: (𝑥𝑥0 − 𝑎𝑎)2 + (𝑦𝑦0 − 𝑐𝑐)2 = (𝑟𝑟1)2,𝐶𝐶2: (𝑥𝑥1 −

𝑏𝑏)2 + (𝑦𝑦1 − 𝑑𝑑)2 = (𝑟𝑟2)2, then we can transform the set of their direct product 

𝐶𝐶1 × 𝐶𝐶2, into one neutrosophic circle by using the inverse image of the AH-isometry 

as follows: 

𝐶𝐶: (𝑋𝑋 −𝐸𝐸)2 + (𝑌𝑌 − 𝑁𝑁)2 = 𝑟𝑟2;𝑋𝑋 = 𝑥𝑥0 + (𝑥𝑥1 − 𝑥𝑥0)𝐼𝐼,𝑌𝑌 = 𝑦𝑦0 + (𝑦𝑦1 − 𝑦𝑦0)𝐼𝐼,𝐸𝐸 =

𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝐼𝐼,𝑁𝑁 = 𝑐𝑐 + (𝑑𝑑 − 𝑐𝑐)𝐼𝐼, 𝑟𝑟 = 𝑟𝑟1 + (𝑟𝑟2 − 𝑟𝑟1)𝐼𝐼. 

The proof holds easily by taking the inverse image with respect to AH-isometry. 
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(b) By the same argument, if we have two classical lines: 

𝑎𝑎0𝑥𝑥0 + 𝑏𝑏0𝑦𝑦0 + 𝑐𝑐0 = 0,𝑎𝑎1𝑥𝑥1 + 𝑏𝑏1𝑦𝑦1 + 𝑐𝑐1 = 0. , we can transform the set of their 

direct product into one neutrosophic line as follows: 

𝐴𝐴𝑋𝑋 + 𝐵𝐵𝑌𝑌 + 𝐶𝐶 = 0;𝐴𝐴 = 𝑎𝑎0 + (𝑎𝑎1 − 𝑎𝑎0)𝐼𝐼,𝐵𝐵 = 𝑏𝑏0 + (𝑏𝑏1 − 𝑏𝑏0)𝐼𝐼,𝑋𝑋

= 𝑥𝑥0 + (𝑥𝑥1 − 𝑥𝑥0)𝐼𝐼,𝑌𝑌 = 𝑦𝑦0 + (𝑦𝑦1 − 𝑦𝑦0)𝐼𝐼,𝐶𝐶 = 𝑐𝑐0 + (𝑐𝑐1 − 𝑐𝑐0)𝐼𝐼. 
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CHAPTER VI 
 

SOME OF KANDASAMY-SMARANDACHE PROBLEMS  
 

 

In this section, we present the basic definitions that are useful in this chapter. Here 

the solution for 18 problems of Kandasamy–Smarandache open problems.  

Definition 6.1.1 : [58] Let the set  𝐶𝐶(〈𝑍𝑍 ∪  𝐼𝐼〉)  =  {𝑎𝑎 +  𝑏𝑏𝐼𝐼 +  𝑐𝑐𝑎𝑎 +

 𝑎𝑎𝑑𝑑𝐼𝐼 | 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈  𝑍𝑍} then: 

1-  Is an integer complex neutrosophic group under addition 

2- Is an integer neutrosophic complex monoid commutative monoid under 

multiplication. 

3- Is an integer neutrosophic complex commutative ring with unit of infinite order 

under addition + and multiplication ×. 

Definition 6.1.2: [58] Let 𝑆𝑆 =  {(𝑎𝑎𝑖𝑖𝑖𝑖) | 𝑎𝑎𝑖𝑖𝑖𝑖  ∈  𝐶𝐶 (〈𝑍𝑍 ∪  𝐼𝐼〉);  1 ≤  𝑎𝑎, 𝑗𝑗 ≤  𝑛𝑛} be a 

collection of 𝑛𝑛 ×  𝑛𝑛 complex neutrosophic integer matrices. 𝑆𝑆 is a ring of 𝑛𝑛 ×  𝑛𝑛 

integer complex neutrosophic ring of infinite order and is non commutative. 𝑆𝑆 has 

zero divisors, units, idempotents, subrings and ideals. 

Definition 6.1.3: [58] Let the set  𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉)  =  {𝑎𝑎 +  𝑏𝑏𝑎𝑎 +  𝑐𝑐𝐼𝐼 +

 𝑎𝑎𝑑𝑑𝐼𝐼 | 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈  𝑄𝑄} then: 

1- 𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉) is a rational complex neutrosophic ring has no zero divisors.  

2- 𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉) is a rational complex neutrosophic field. 

Definition 6.1.4: [58] Let 𝐶𝐶 (𝑍𝑍𝑛𝑛)  =  {𝑎𝑎 +  𝑏𝑏𝑎𝑎𝐼𝐼 | 𝑎𝑎, 𝑏𝑏 ∈  𝑍𝑍𝑛𝑛, 𝑎𝑎𝐼𝐼 is the finite complex 

modulo number such that 𝑎𝑎𝐹𝐹2  =  𝑛𝑛– 1,𝑛𝑛 <  ∞} we define 𝑎𝑎𝐹𝐹 as the finite complex 

modulo number. 𝐶𝐶 (𝑍𝑍𝑛𝑛) is the finite complex modulo integer numbers.

https://www.researchgate.net/publication/359371552_Solutions_of_Some_Kandasamy-Smarandache_Problems_about_Neutrosophic_Complex_Numbers_and_Group_of_Units'_Problem
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Definition 6.1.5: [59] A Smarandache ring (S-ring) is defined to be a ring 𝐴𝐴, such 

that a proper subset of 𝐴𝐴 is a field with respect to the operations induced. By proper 

subset we understand a set included in 𝐴𝐴 different from the empty set, from the unit 

element if any and from 𝐴𝐴. 

6.2 Problem (3) and problem (4) of Kandasamy–Smarandache 

Problem (3) 6.2.1: [59] Can 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) be a Smarandache ring? 

The answer is no. We give a proof. 

We suppose that 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) is a Smarandache ring, then there is a proper subset 

𝐴𝐴 ⊆ 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >), such that A has a field structure with respect to multiplication on 

𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >). Consider an arbitrary element 𝑛𝑛 = 𝑎𝑎 + 𝑏𝑏𝐼𝐼 + (𝑐𝑐 + 𝑑𝑑𝐼𝐼)𝑎𝑎;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑍𝑍 

in 𝐴𝐴, since 𝐴𝐴 is an abelian group under addition we can see that 𝑟𝑟 ∙ 𝑥𝑥 ∈ 𝐴𝐴 for every 

𝑟𝑟 ∈ 𝑍𝑍, thus 𝐴𝐴 has infinite cardinality. 

It is well known that the minimal field of infinite cardinality is the field of rationales 

𝑄𝑄, hence the field 𝐴𝐴 has a characteristic zero (𝐴𝐴 contains an isomorphic image of 𝑄𝑄). 

The field 𝐴𝐴 has only two principal ideals {0} and 𝐴𝐴, hence 𝐴𝐴 =< 𝑎𝑎 + 𝑏𝑏𝐼𝐼 +

(𝑐𝑐 + 𝑑𝑑𝐼𝐼)𝑎𝑎 >. It is probable that 𝐴𝐴 has a unity different from 1, we will prove that the 

identity of 𝐴𝐴 must be 1. 

For this goal, we suppose that 𝑚𝑚 = 𝑥𝑥 + 𝑦𝑦𝐼𝐼 + (𝑧𝑧 + 𝑛𝑛𝐼𝐼)𝑎𝑎 is the identity of A and 

different from 1, 

We have 𝑚𝑚 ∙ 𝑛𝑛 = 𝑛𝑛, thus 

[𝑎𝑎+ 𝑏𝑏𝐼𝐼+ (𝑐𝑐+ 𝑑𝑑𝐼𝐼)𝑎𝑎][𝑥𝑥+ 𝑦𝑦𝐼𝐼 + (𝑧𝑧+ 𝑛𝑛𝐼𝐼)𝑎𝑎] = 𝑎𝑎+ 𝑏𝑏𝐼𝐼+ (𝑐𝑐+ 𝑑𝑑𝐼𝐼)𝑎𝑎, we get 

(𝑎𝑎 ∙ 𝑥𝑥 − 𝑐𝑐 ∙ 𝑧𝑧) + 𝐼𝐼(𝑎𝑎 ∙ 𝑦𝑦+ 𝑏𝑏 ∙ 𝑥𝑥+ 𝑏𝑏 ∙ 𝑦𝑦) + 𝑎𝑎 ∙ 𝑧𝑧𝑎𝑎+ 𝐼𝐼𝑎𝑎(𝑎𝑎 ∙ 𝑛𝑛+ 𝑏𝑏 ∙ 𝑧𝑧+ 𝑏𝑏 ∙ 𝑛𝑛+ 𝑐𝑐 ∙ 𝑥𝑥𝑎𝑎+

𝐼𝐼𝑎𝑎(𝑐𝑐 ∙ 𝑦𝑦+ 𝑑𝑑 ∙ 𝑥𝑥+ 𝑑𝑑 ∙ 𝑦𝑦) + 𝐼𝐼(−𝑐𝑐 ∙ 𝑛𝑛 − 𝑑𝑑 ∙ 𝑧𝑧 − 𝑑𝑑 ∙ 𝑛𝑛) = 𝑎𝑎+ 𝑏𝑏𝐼𝐼+ (𝑐𝑐+ 𝑑𝑑𝐼𝐼)𝑎𝑎, this implies 

(𝑎𝑎 ∙ 𝑥𝑥 − 𝑐𝑐 ∙ 𝑧𝑧) + (𝑎𝑎 ∙ 𝑧𝑧+ 𝑐𝑐 ∙ 𝑥𝑥)𝑎𝑎+ 𝐼𝐼(𝑎𝑎 ∙ 𝑦𝑦+ 𝑏𝑏 ∙ 𝑥𝑥+ 𝑏𝑏 ∙ 𝑦𝑦 − 𝑐𝑐 ∙ 𝑛𝑛 − 𝑑𝑑 ∙ 𝑧𝑧 − 𝑑𝑑 ∙ 𝑛𝑛) +

𝐼𝐼𝑎𝑎(𝑎𝑎 ∙ 𝑛𝑛+ 𝑏𝑏 ∙ 𝑧𝑧+ 𝑏𝑏 ∙ 𝑛𝑛+ 𝑐𝑐 ∙ 𝑦𝑦+ 𝑑𝑑 ∙ 𝑥𝑥+ 𝑑𝑑 ∙ 𝑦𝑦) = 𝑎𝑎+ 𝑐𝑐𝑎𝑎+ 𝑏𝑏𝐼𝐼+ 𝑑𝑑𝐼𝐼𝑎𝑎, hence 

(1)𝑎𝑎 + 𝑐𝑐𝑎𝑎 = (𝑎𝑎.𝑥𝑥 − 𝑐𝑐. 𝑧𝑧) + (𝑎𝑎. 𝑧𝑧+ 𝑐𝑐.𝑥𝑥)𝑎𝑎, 

(2) 𝑎𝑎 ∙ 𝑦𝑦 + 𝑏𝑏 ∙ 𝑥𝑥 + 𝑏𝑏 ∙ 𝑦𝑦 − 𝑐𝑐 ∙ 𝑛𝑛 − 𝑑𝑑 ∙ 𝑛𝑛 − 𝑑𝑑 ∙ 𝑧𝑧 = 𝑏𝑏, 
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(3) 𝑎𝑎 ∙ 𝑛𝑛 + 𝑏𝑏 ∙ 𝑧𝑧 + 𝑏𝑏 ∙ 𝑛𝑛 + 𝑐𝑐 ∙ 𝑦𝑦 + 𝑑𝑑 ∙ 𝑥𝑥 + 𝑑𝑑 ∙ 𝑦𝑦 = 𝑑𝑑, 

From equation (1) we get the following two equivalent equations 

(I) 𝑎𝑎 = 𝑎𝑎 ∙ 𝑥𝑥 − 𝑐𝑐 ∙ 𝑧𝑧,  

(𝐼𝐼𝐼𝐼)𝑐𝑐 = 𝑎𝑎 ∙ 𝑧𝑧+ 𝑐𝑐 ∙ 𝑥𝑥, 

We multiply (I) by c and (II) by a to get 

(I) 𝑎𝑎 ∙ 𝑐𝑐 = 𝑎𝑎 ∙ 𝑐𝑐 ∙ 𝑥𝑥 − 𝑐𝑐2𝑧𝑧, 

(𝐼𝐼𝐼𝐼)𝑎𝑎 ∙ 𝑐𝑐 = 𝑎𝑎2𝑧𝑧+ 𝑎𝑎 ∙ 𝑐𝑐 ∙ 𝑥𝑥, we compute (𝐼𝐼𝐼𝐼) − (𝐼𝐼), 

0 = 𝑎𝑎2𝑧𝑧 + 𝑐𝑐2𝑧𝑧 = 𝑧𝑧(𝑎𝑎2 + 𝑐𝑐2), thus 𝑧𝑧 = 0, that is because 𝑎𝑎2 + 𝑐𝑐2 ≠ 0, so that 𝑥𝑥 = 1. 

By putting 𝑧𝑧 = 0 and 𝑥𝑥 = 1 in equations (2), (3), we get 

𝑎𝑎 ∙ 𝑦𝑦 + 𝑏𝑏 + 𝑏𝑏 ∙ 𝑦𝑦 − 𝑐𝑐 ∙ 𝑛𝑛 − 𝑑𝑑. 𝑛𝑛 = 𝑏𝑏, hence 𝑦𝑦(𝑎𝑎 + 𝑏𝑏) − 𝑛𝑛(𝑐𝑐 + 𝑑𝑑) = 0 (𝐼𝐼𝐼𝐼𝐼𝐼). 

𝑎𝑎 ∙ 𝑛𝑛 + 𝑏𝑏 ∙ 𝑛𝑛 + 𝑐𝑐 ∙ 𝑦𝑦 + 𝑑𝑑 + 𝑑𝑑 ∙ 𝑦𝑦 = 𝑑𝑑, hence 𝑦𝑦(𝑐𝑐 + 𝑑𝑑) + 𝑛𝑛(𝑎𝑎 + 𝑏𝑏) = 0 (𝐼𝐼𝐸𝐸). 

We multiply equation (III) by (𝑎𝑎 + 𝑏𝑏), and equation (IV) by (𝑐𝑐 + 𝑑𝑑) and then we add 

them to get: 

 𝑦𝑦 ∙ [(𝑎𝑎 + 𝑏𝑏)2 + (𝑐𝑐 + 𝑑𝑑)2] = 0, hence 𝑦𝑦 = 0 and then 𝑛𝑛 = 0. So that 𝑚𝑚 = 1. 

The previous discussion implies that 𝑄𝑄 ⊆ 𝐴𝐴, thus 𝑄𝑄 ⊆ 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) which is a 

contradiction, thus 𝐴𝐴 cannot be a field and 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) is not a Smarandache ring. 

Problem (4) 6.2.2: [59] Is 𝐸𝐸 = {(𝑎𝑎1,𝑎𝑎2); 𝑎𝑎1,𝑎𝑎2 ∈ 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >)} under (×) a 

Smarandache semigroup?. 

The answer is yes, we give a proof. 

We have to search for a proper subset 𝐴𝐴 of 𝐸𝐸, where 𝐴𝐴 has a group structure. 

It is easy to see that 𝑍𝑍(𝐼𝐼) ⊆ 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >), so if we take the group of units in the ring 

𝑍𝑍(𝐼𝐼), which is equal to 𝑈𝑈�𝑍𝑍(𝐼𝐼)� = {1,−1,1 − 2𝐼𝐼,−1 + 2𝐼𝐼} it will be a subgroup of 

the semi group 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >), hence the direct product 𝑈𝑈(𝑍𝑍(𝐼𝐼)) × 𝑈𝑈(𝑍𝑍(𝐼𝐼)) is a 

subgroup contained in the semigroup 𝐸𝐸, thus 𝐸𝐸 is a Smarandache semi group. 
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6.3 Neutrosophic Complex Rings As Direct Products 

This section is devoted to solve problems (1), (13), (15), (11), (14), (12), (17), (82), 

(83). 

Problem (1) 6.3.1  : [59] Obtain some interesting results enjoyed by 

(a) Neutrosophic complex reals. 

(b) Neutrosophic complex modulo integers. 

(c) Neutrosophic complex rationales. 

The best answer we can obtain is to classify those rings as direct products of classical 

algebraic rings. This desired classification can help in many other problems. 

Theorem 6.3.2: [59] Let 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >)be the neutrosophic complex ring of reals, 

then 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) = 𝐶𝐶(𝐼𝐼). 

Proof: 

It is clear that the neutrosophic ring 𝐶𝐶(𝐼𝐼) is contained in 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >). Conversely, 

suppose that 

𝑥𝑥 = 𝑎𝑎 + 𝑏𝑏𝐼𝐼 + 𝑐𝑐𝑎𝑎 + 𝑑𝑑𝑎𝑎𝐼𝐼 ∈ 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >), then 𝑥𝑥 = (𝑎𝑎 + 𝑐𝑐𝑎𝑎) + 𝐼𝐼(𝑏𝑏 + 𝑑𝑑𝑎𝑎) ∈ 𝐶𝐶(𝐼𝐼).  

Thus our proof is complete. 

Theorem 6.3.3: [59] 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) ≅ 𝐶𝐶 × 𝐶𝐶. 

Proof: 

We shall prove that there is a ring isomorphism between 𝐶𝐶(𝐼𝐼)𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶 × 𝐶𝐶. 

We define 𝑓𝑓:𝐶𝐶(𝐼𝐼) → 𝐶𝐶 × 𝐶𝐶; 𝑓𝑓(𝑥𝑥 + 𝑦𝑦𝐼𝐼) = (𝑥𝑥, 𝑥𝑥 + 𝑦𝑦);𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶. 

(a) 𝑓𝑓 is well defined: 

Suppose that 𝑎𝑎 + 𝑏𝑏𝐼𝐼 = 𝑥𝑥 + 𝑦𝑦𝐼𝐼;𝑎𝑎, 𝑏𝑏, 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶, this implies 𝑎𝑎 = 𝑥𝑥, 𝑏𝑏 = 𝑦𝑦. Hence 

(𝑎𝑎,𝑎𝑎+ 𝑏𝑏) = (𝑥𝑥,𝑥𝑥+ 𝑦𝑦), 𝑎𝑎.𝑛𝑛 𝑓𝑓(𝑎𝑎+ 𝑏𝑏𝐼𝐼) = 𝑓𝑓(𝑥𝑥+ 𝑦𝑦𝐼𝐼). 

(b) 𝑓𝑓 is a bijective: 
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It is clear that 𝑓𝑓 is a surjective function. On the other hand we assume that 

𝑓𝑓(𝑥𝑥 + 𝑦𝑦𝐼𝐼) = 𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝐼𝐼), 𝑛𝑛ℎ𝑎𝑎𝑠𝑠 𝑚𝑚𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠 (𝑎𝑎,𝑎𝑎 + 𝑏𝑏) = (𝑥𝑥, 𝑥𝑥 + 𝑦𝑦), thus 𝑎𝑎 = 𝑥𝑥 𝑎𝑎𝑛𝑛𝑑𝑑 𝑏𝑏 =

𝑦𝑦.  

(c) 𝑓𝑓 is a ring homomorphism: 

  We take 𝑚𝑚 = 𝑎𝑎 + 𝑏𝑏𝐼𝐼, 𝑛𝑛 = 𝑐𝑐 + 𝑑𝑑𝐼𝐼 ∈ 𝐶𝐶(𝐼𝐼), then 𝑚𝑚 + 𝑛𝑛 = (𝑎𝑎 + 𝑐𝑐) + (𝑏𝑏 + 𝑑𝑑)𝐼𝐼, 

𝑚𝑚.𝑛𝑛 = 𝑎𝑎. 𝑐𝑐 + 𝐼𝐼(𝑎𝑎 ∙ 𝑑𝑑 + 𝑏𝑏 ∙ 𝑐𝑐 + 𝑏𝑏 ∙ 𝑑𝑑), so that 

𝑓𝑓(𝑚𝑚 + 𝑛𝑛) = (𝑎𝑎 + 𝑐𝑐,𝑎𝑎 + 𝑐𝑐 + 𝑏𝑏 + 𝑑𝑑) = (𝑎𝑎,𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑) = 𝑓𝑓(𝑚𝑚) + 𝑓𝑓(𝑛𝑛), and 

𝑓𝑓(𝑚𝑚.𝑛𝑛) = (𝑎𝑎 ∙ 𝑐𝑐,𝑎𝑎 ∙ 𝑐𝑐 + 𝑎𝑎 ∙ 𝑑𝑑 + 𝑏𝑏 ∙ 𝑐𝑐 + 𝑏𝑏 ∙ 𝑑𝑑) = �𝑎𝑎 ∙ 𝑐𝑐, (𝑎𝑎 + 𝑏𝑏)(𝑐𝑐 + 𝑑𝑑)� =

(𝑎𝑎,𝑎𝑎 + 𝑏𝑏) ∙ (𝑐𝑐, 𝑐𝑐 + 𝑑𝑑) = 𝑓𝑓(𝑚𝑚) ∙ 𝑓𝑓(𝑛𝑛). 

Thus f is an isomorphism and the proof holds. 

Problem (13) 6.3.4: [59] Can 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) have irreducible polynomials? 

The answer is no, we give a proof. 

Since 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) ≅ 𝐶𝐶 × 𝐶𝐶, then 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >)[𝑥𝑥] ≅ 𝐶𝐶 × 𝐶𝐶[𝑥𝑥], i.e for each 

polynomial 𝑁𝑁(𝑥𝑥) in 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >)[𝑥𝑥] there is a corresponding polynomial with form 

(𝑔𝑔(𝑥𝑥),ℎ(𝑥𝑥)) in 𝐶𝐶 × 𝐶𝐶[𝑥𝑥], if 𝑠𝑠(𝑥𝑥) is not irreducible in 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >)[𝑥𝑥], then one of 

𝑔𝑔(𝑥𝑥),ℎ(𝑥𝑥) at least is irreducible over the field of complex numbers 𝐶𝐶, which is not 

possible, that is because 𝐶𝐶 is algebraically closed field. 

The following theorem classifies 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >).   

Theorem 6.3.5: [59] Let 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) be the neutrosophic complex ring of 

rationales, then 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) ≅ 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎), where 𝑄𝑄(𝑎𝑎) = {𝑎𝑎 + 𝑏𝑏𝑎𝑎;𝑎𝑎, 𝑏𝑏 ∈ 𝑄𝑄} is 

the algebraic extension of the field 𝑄𝑄 by 𝑎𝑎. 

Proof: 

We define 𝑓𝑓:𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) → 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎);𝑓𝑓(𝑎𝑎 + 𝑏𝑏𝑎𝑎 + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)𝐼𝐼) = (𝑎𝑎 +

𝑏𝑏𝑎𝑎, (𝑎𝑎 + 𝑏𝑏𝑎𝑎) + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)), where 𝑎𝑎, 𝑐𝑐, 𝑏𝑏,𝑑𝑑 ∈ 𝑄𝑄. We have 

(a) 𝑓𝑓 is well defined: 
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Suppose that 𝑎𝑎 + 𝑏𝑏𝑎𝑎 + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)𝐼𝐼 = 𝑥𝑥 + 𝑦𝑦𝑎𝑎 + (𝑧𝑧 + 𝑛𝑛𝑎𝑎)𝐼𝐼, then 𝑎𝑎 = 𝑥𝑥, 𝑏𝑏 = 𝑦𝑦, 𝑐𝑐 =

𝑧𝑧,𝑑𝑑 = 𝑛𝑛. 

(b) 𝑓𝑓 is a bijective map: 

It is similar to that of Theorem 6.3.3 

(c) 𝑓𝑓 is a ring homomorphism: 

Consider two arbitrary elements 𝑚𝑚 = 𝑎𝑎 + 𝑏𝑏𝑎𝑎 + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)𝐼𝐼,𝑛𝑛 = 𝑥𝑥 + 𝑦𝑦𝑎𝑎 + (𝑧𝑧 + 𝑛𝑛𝑎𝑎)𝐼𝐼, 

we have 

𝑓𝑓(𝑚𝑚 + 𝑛𝑛) = ([𝑎𝑎 + 𝑏𝑏𝑎𝑎 + 𝑎𝑎 + 𝑦𝑦𝑎𝑎], [(𝑐𝑐 + 𝑑𝑑𝑎𝑎) + (𝑧𝑧 + 𝑛𝑛𝑎𝑎) + (𝑎𝑎 + 𝑏𝑏𝑎𝑎) + (𝑥𝑥 + 𝑦𝑦𝑎𝑎)]) =

𝑓𝑓(𝑚𝑚) + 𝑓𝑓(𝑛𝑛). 

𝑓𝑓(𝑚𝑚.𝑛𝑛) = 𝑓𝑓([(𝑎𝑎 + 𝑏𝑏𝑎𝑎). (𝑥𝑥 + 𝑦𝑦𝑎𝑎)] + 𝐼𝐼[(𝑎𝑎 + 𝑏𝑏𝑎𝑎)(𝑧𝑧 + 𝑛𝑛𝑎𝑎) + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)(𝑥𝑥 + 𝑦𝑦𝑎𝑎) +

(𝑐𝑐 + 𝑑𝑑𝑎𝑎)(𝑧𝑧 + 𝑛𝑛𝑎𝑎)]= 

([(𝑎𝑎 + 𝑏𝑏𝑎𝑎)(𝑥𝑥 + 𝑦𝑦𝑎𝑎), [(𝑎𝑎 + 𝑏𝑏𝑎𝑎). (𝑥𝑥 + 𝑦𝑦𝑎𝑎) + (𝑎𝑎 + 𝑏𝑏𝑎𝑎)(𝑧𝑧 + 𝑛𝑛𝑎𝑎) + (𝑐𝑐 + 𝑑𝑑𝑎𝑎)(𝑥𝑥 + 𝑦𝑦𝑎𝑎) +

(𝑐𝑐 + 𝑑𝑑𝑎𝑎)(𝑧𝑧 + 𝑛𝑛𝑎𝑎)]) = 𝑓𝑓(𝑚𝑚).𝑓𝑓(𝑛𝑛). 

Remark 6.3.6: By same argument, we can write 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) ≅ 𝑍𝑍(𝑎𝑎) × 𝑍𝑍(𝑎𝑎), i.e 

𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) can be classified as a direct product of the ring 𝑍𝑍(𝑎𝑎) = {𝑎𝑎 + 𝑏𝑏𝑎𝑎;𝑎𝑎, 𝑏𝑏 ∈

𝑍𝑍} with itself. 

By our classification results we can answer many other open problems. 

Problem (11) 6.3.7: [59]  Is 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) a field?  Is it a prime field? 

The answer is no, that is because: 

Since 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) ≅ 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎), we can find that it is not a field since the 

element 

𝑥𝑥 = (1,0) ∈ 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎) and it is not invertible, hence its inverse isomorphic image 

1 − 𝐼𝐼 is not invertible in 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). Thus 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) cannot be a field. 

Problem (14) 6.3.8  : [59] Determine the irreducible polynomials over 𝐶𝐶(< 𝑄𝑄 ∪

𝐼𝐼 >)?. 
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It is really a hard problem, but by using the fact 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) ≅ 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎), we 

can find all irreducible polynomial over 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 

Let  𝑠𝑠(𝑥𝑥) be any polynomial defined over 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >), then it has a corresponding 

polynomial (𝑔𝑔(𝑥𝑥) ,ℎ(𝑥𝑥) ) in (𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎))[𝑥𝑥]. It is sufficient to compute its 

isomorphic image (𝑔𝑔(𝑥𝑥) ,ℎ(𝑥𝑥) ). 

If one of 𝑔𝑔(𝑥𝑥) ,ℎ(𝑥𝑥)  is irreducible at least over 𝑄𝑄(𝑎𝑎), then 𝑠𝑠(𝑥𝑥) is irreducible over 

𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 

Example 6.3.9: Let 𝑠𝑠(𝑥𝑥) = 𝑋𝑋2 + (1 + (1 + 𝑎𝑎)𝐼𝐼)𝑋𝑋 + 1 + (5 − 𝑎𝑎)𝐼𝐼, where 𝑋𝑋 = 𝑥𝑥1 +

𝑥𝑥2𝐼𝐼;  𝑥𝑥1, 𝑥𝑥2 ∈ 𝑄𝑄(𝑎𝑎) be a polynomial defined over 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 

The corresponding isomorphic polynomial of 𝑠𝑠(𝑥𝑥) is 

𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓�𝑠𝑠(𝑥𝑥)� = 𝑓𝑓(𝑋𝑋2) + 𝑓𝑓(1 + (1 + 𝑎𝑎)𝐼𝐼).𝑓𝑓(𝑋𝑋) + 𝑓𝑓(1 + (5 − 𝑎𝑎)𝐼𝐼) 

     = (𝑥𝑥12, (𝑥𝑥1 + 𝑥𝑥2)2) + (1,2 + 𝑎𝑎). (𝑥𝑥1, 𝑥𝑥1 + 𝑥𝑥2) + (1,6 − 𝑎𝑎) 

                                           = (𝑥𝑥12 + 𝑥𝑥1 + 1, (𝑥𝑥1 + 𝑥𝑥2)2 + (2 + 𝑎𝑎)(𝑥𝑥1 + 𝑥𝑥2) + 6 − 𝑎𝑎), 

We get the following two equivalent polynomials: 

𝑔𝑔(𝑥𝑥1) = 𝑥𝑥12 + 𝑥𝑥1 + 1, ℎ(𝑥𝑥1, 𝑥𝑥2) = (𝑥𝑥1 + 𝑥𝑥2)2 + (2 + 𝑎𝑎)(𝑥𝑥1 + 𝑥𝑥2) + 6 − 𝑎𝑎, it is 

clear that 𝑔𝑔(𝑥𝑥)   is irreducible over 𝑄𝑄(𝑎𝑎), thus 𝑠𝑠(𝑥𝑥) is irreducible over 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 

Problem (15) 6.3.10: [59] Find irreducible polynomials in 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >)[𝑥𝑥]? Is 

every ideal in 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) is principal? 

The first part of Problem (15) can be solved in a similar way of Problem (14), just by 

taking the isomorphic corresponding polynomial, since 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) ≅ 𝑍𝑍(𝑎𝑎) ×

𝑍𝑍(𝑎𝑎). 

Example 6.3.11: Let 𝑠𝑠(𝑥𝑥) = 𝑋𝑋2 + (1 + (1 + 𝑎𝑎)𝐼𝐼)𝑋𝑋 + 1 + (5 − 𝑎𝑎)𝐼𝐼, where 𝑋𝑋 = 𝑥𝑥1 +

𝑥𝑥2𝐼𝐼;  𝑥𝑥1, 𝑥𝑥2 ∈ 𝑍𝑍(𝑎𝑎) be a polynomial defined over 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >). 

The corresponding isomorphic polynomial of 𝑠𝑠(𝑥𝑥) is 

𝑛𝑛(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓�𝑠𝑠(𝑥𝑥)� = 𝑓𝑓(𝑋𝑋2) + 𝑓𝑓(1 + (1 + 𝑎𝑎)𝐼𝐼).𝑓𝑓(𝑋𝑋) + 𝑓𝑓(1 + (5 − 𝑎𝑎)𝐼𝐼)= 
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�𝑥𝑥1
2, (𝑥𝑥1 + 𝑥𝑥2)2� + (1,2 + 𝑎𝑎). (𝑥𝑥1,𝑥𝑥1 + 𝑥𝑥2) + (1,6− 𝑎𝑎) = (𝑥𝑥1

2 + 𝑥𝑥1 + 1, (𝑥𝑥1 +

𝑥𝑥2)2 + (2 + 𝑎𝑎)(𝑥𝑥1 + 𝑥𝑥2) + 6− 𝑎𝑎), 

We get the following two equivalent polynomials: 

𝑔𝑔(𝑥𝑥1) = 𝑥𝑥12 + 𝑥𝑥1 + 1,ℎ(𝑥𝑥1, 𝑥𝑥2) = (𝑥𝑥1 + 𝑥𝑥2)2 + (2 + 𝑎𝑎)(𝑥𝑥1 + 𝑥𝑥2) + 6 − 𝑎𝑎 

it is clear that 𝑔𝑔 is irreducible over 𝑍𝑍(𝑎𝑎), thus 𝑠𝑠(𝑥𝑥) is irreducible over 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >). 

Problem (12) 6.3.12: [59] Can one say for all polynomials with complex 

neutrosophic coefficients 𝐶𝐶 (〈𝑅𝑅 ∪  𝐼𝐼〉) is algebraically closed?. 

The answer is yes. That is because  𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) ≅ 𝐶𝐶 × 𝐶𝐶, and C is algebraically 

closed, thus 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) is an algebraically closed ring, i.e each root of any 

polynomial with coefficients from  𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) is from 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >). 

Problem (17) 6.3 .12: [59] Is 𝐺𝐺 = {�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ;𝑎𝑎.𝑑𝑑 − 𝑐𝑐. 𝑏𝑏 ≠ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ 𝐶𝐶(<

𝑍𝑍 ∪ 𝐼𝐼 >)}  a group? Is 𝐺𝐺 simple? 

The answer in no. 𝐺𝐺 is not even a group, we take (1 2
3 7) ∈ 𝐺𝐺, its inverse is not in 𝐺𝐺, 

thus 𝐺𝐺 is not a group. 

Problem (82) 6.3.13: [59] Is 𝐶𝐶(〈𝑍𝑍 ∪  𝐼𝐼〉) a unique factorization domain? 

The answer is no. We clarify our claim by the following discussion. 

We have 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) ≅ 𝑍𝑍(𝑎𝑎) × 𝑍𝑍(𝑎𝑎), it is east to see that 

(1,0) = (1,2). (1,0) = (1,3). (1.0), i.e  𝑍𝑍(𝑎𝑎) × 𝑍𝑍(𝑎𝑎) is not a unique factorization 

domain, hence 𝐶𝐶(〈𝑍𝑍 ∪  𝐼𝐼〉) is not a unique factorization domain. 

Problem (83) 6.3.14: [59] Can 𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉) be a principal ideal domain? 

The answer is no. It is sufficient to prove that 𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉)has zero divisors. 

We have C(〈R ∪  I〉) ≅ 𝐶𝐶 × 𝐶𝐶, and (1,0). (0,1) = (0,0), so that 𝐶𝐶 × 𝐶𝐶 is not a 

principal ideal domain because it has zero divisors, thus 𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉) is not a 

principal ideal domain. 

6.4 Other open problems 
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This section is devoted to study Problems (5), (6), (7), (8), (19), (20), (2). 

Problem (2) 6.4.1: [59] Can any geometrical interpretation be given to the field of 

neutrosophic complex numbers 𝐶𝐶 (〈𝑄𝑄 ∪  𝐼𝐼〉)?. 

The answer is no. But there is an algebraic interpretation of 𝐶𝐶 (〈𝑄𝑄 ∪  𝐼𝐼〉). We 

describe it by the following theorem. 

Theorem 6.4.2: [59] Let 𝐶𝐶 (〈𝑄𝑄 ∪  𝐼𝐼〉) be the complex neutrosophic ring of 

rationales. Then it can be considered as an algebraic extension of the neutrosophic 

ring 𝑄𝑄(𝐼𝐼) with degree two. 

Proof: 

We have 𝑁𝑁(𝑥𝑥) = 𝑥𝑥2 + 1 is a monic polynomial over 𝑄𝑄(𝐼𝐼), we shall prove that it is 

irreducible over 𝑄𝑄(𝐼𝐼). 

Suppose that 𝑠𝑠(𝑥𝑥) = (𝑥𝑥 + 𝑎𝑎 + 𝑏𝑏𝐼𝐼)(𝑥𝑥 + 𝑐𝑐 + 𝑑𝑑𝐼𝐼);𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑄𝑄, then 

𝑁𝑁(𝑥𝑥) = 𝑥𝑥2 + 𝑥𝑥(𝑎𝑎 + 𝑏𝑏𝐼𝐼 + 𝑐𝑐 + 𝑑𝑑𝐼𝐼) + 𝑎𝑎. 𝑐𝑐 + 𝐼𝐼(𝑎𝑎.𝑑𝑑 + 𝑏𝑏. 𝑐𝑐 + 𝑏𝑏.𝑑𝑑), hence 

𝑎𝑎 + 𝑏𝑏𝐼𝐼 + 𝑐𝑐 + 𝑑𝑑𝐼𝐼 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎.𝑑𝑑 + 𝑏𝑏. 𝑐𝑐 + 𝑏𝑏.𝑑𝑑 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎. 𝑐𝑐 = 1, so that 𝑎𝑎 + 𝑐𝑐 = 0(∗

) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑏𝑏 + 𝑑𝑑 = 0. 

We get from (*) 𝑎𝑎 = −𝑐𝑐, 𝑛𝑛ℎ𝑠𝑠𝑠𝑠 − 𝑎𝑎2 = 1, which is a contradiction since 𝑎𝑎 ∈ 𝑄𝑄. Thus 

𝑠𝑠(𝑥𝑥) is irreducible. 

𝑁𝑁(𝑥𝑥) has a root 𝑚𝑚 = 𝑎𝑎, hence the ring [𝑄𝑄(𝐼𝐼)](𝑎𝑎) is an algebraic extension of Q(I) with 

degree equal to 𝑑𝑑𝑛𝑛𝑔𝑔(𝑁𝑁) = 2. It is clear that [𝑄𝑄(𝐼𝐼)](𝑎𝑎) = {𝑥𝑥+ 𝑦𝑦𝑎𝑎;𝑥𝑥,𝑦𝑦 ∈ 𝑄𝑄(𝐼𝐼)} =

{𝑎𝑎+ 𝑏𝑏𝐼𝐼+ 𝑐𝑐𝑎𝑎+ 𝑑𝑑𝑎𝑎𝐼𝐼;𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑄𝑄} = C (〈Q ∪  I〉). 

Problem (5) 6.4.3: [59] Let 𝐸𝐸 = {(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4); 𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >), +} be a group  

i) Define an automorphism 𝜂𝜂 ∶  𝐸𝐸 →  𝐸𝐸 so that 𝑘𝑘𝑛𝑛𝑟𝑟 𝜂𝜂 is a nontrivial subgroup. 

ii) Is 𝐸𝐸 ≅  𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉)  ×  𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉)  ×  𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼〉)  ×  𝐶𝐶(〈𝑄𝑄 ∪  𝐼𝐼 〉)? 

 (i) is not possible, since every group automorphism needs to be a bijective map, 

hence its kernel will be trivial. 
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The question (ii) is easy and clear, that is because 𝐸𝐸 is defined to be the direct 

product of 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) with itself four times. 

Problem (6) 6.4.4: [59] Let 𝐸𝐸 = {�
𝑎𝑎1 𝑎𝑎2
𝑎𝑎3 𝑎𝑎4� ;  𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >)} be a semigroup 

under multiplication. 

(i) Prove 𝐸𝐸 is a S-semigroup. 

(ii) Is 𝐸𝐸 commutative?. 

(iii) Find at least three zero divisors in 𝐸𝐸. 

(iv) Does 𝐸𝐸 have ideals?. 

(v) Give subsemigroups in 𝐸𝐸 which are not ideals. 

(i) We define 𝐴𝐴 = {�𝑥𝑥 0
0 𝑥𝑥� ; 𝑥𝑥 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >)}, A is a proper subset of 𝐸𝐸, and it is 

an abelian group clearly. Thus 𝐸𝐸 is a S-semigroup. 

(ii) No it is not. Since matrices over Q do not commute, and Q is contained in 

𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 

(iii) Take 𝑥𝑥 = �0 0
0 1� ,𝑦𝑦 = �0 0

0 2� , 𝑧𝑧 = (2 3
0 0). It is easy to see that 𝑥𝑥 ∙ 𝑧𝑧 = 𝑦𝑦 ∙ 𝑧𝑧 =

0, thus 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are zero divisors. 

(iv) Take 𝑆𝑆 = {�𝑎𝑎𝐼𝐼 𝑏𝑏𝐼𝐼
𝑐𝑐𝐼𝐼 𝑑𝑑𝐼𝐼� ;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >)}, S is a subgroup with respect to 

addition. 

Let 𝑚𝑚 = (𝑥𝑥 𝑦𝑦
𝑧𝑧 𝑛𝑛) ∈ 𝐸𝐸 and = �𝑎𝑎𝐼𝐼 𝑏𝑏𝐼𝐼

𝑐𝑐𝐼𝐼 𝑑𝑑𝐼𝐼� ∈ 𝑆𝑆 , we have 𝑚𝑚.𝑛𝑛 ∈ 𝑆𝑆, thus S is an ideal and 

M has ideals. 

(v) We define 𝑆𝑆1 = ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ;𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑄𝑄(𝑎𝑎)� ,𝑆𝑆2 = {�𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� ;𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑄𝑄}. These 

two sets are semi groups with respect to multiplication but they are not ideals clearly. 

Problem (7) 6.4.5: [59] Let 𝑆𝑆 = {�

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑎𝑎4 𝑎𝑎5 𝑎𝑎6
𝑎𝑎7 𝑎𝑎8 𝑎𝑎9
𝑎𝑎10 𝑎𝑎11 𝑎𝑎12

� ;  𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >), +}. 
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i. Find subgroups of 𝑆𝑆. 

ii. Can 𝑆𝑆 have ideals? 

iii. Can 𝑆𝑆 have idempotents? 

iv. Can 𝑆𝑆 have zero divisors? 

We summarize the answer as follows: 

(i) Consider that (𝐻𝐻𝑖𝑖, +) is a subgroup of (𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >), +), and 𝐸𝐸 =

{�

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
𝑎𝑎4 𝑎𝑎5 𝑎𝑎6
𝑎𝑎7 𝑎𝑎8 𝑎𝑎9
𝑎𝑎10 𝑎𝑎11 𝑎𝑎12

� ; 𝑎𝑎𝑖𝑖 ∈ 𝐻𝐻𝑖𝑖; 1 ≤ 𝑎𝑎 ≤ 12}, then S has the following  property: 

For every 𝑥𝑥,𝑦𝑦 ∈ 𝐸𝐸,𝑤𝑤𝑛𝑛 ℎ𝑎𝑎𝑣𝑣𝑛𝑛 𝑥𝑥 − 𝑦𝑦 ∈ 𝐸𝐸, hence M is a subgroup of 𝑆𝑆. All subgroups 

will have the same form.  

(ii) The answer in no. That is because the multiplication is not defined on 𝑆𝑆, thus it is 

not even a ring. 

(iii) No, for the same reason. 

(iv) No, for the same reason. 

Problem (8) 6.4.6: [59] Let 𝐸𝐸 = {�
𝑎𝑎1 𝑎𝑎2
𝑎𝑎3 𝑎𝑎4� ;  𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >)} be a semigroup 

under product. 

i. Is 𝐸𝐸 commutative?. 

ii. Can 𝐸𝐸 have idempotents?. 

iii. Does 𝐸𝐸 have a semigroup which is not an ideal?. 

iv. Can 𝐸𝐸 have zero divisors?. 

v. Give an ideal in 𝐸𝐸. 

vi. Is 𝐸𝐸 a Smarandache semigroup?. 

vii. Is 𝐸𝐸 a Smarandache semigroup?. 

The answer is: 

(i) No it is not. Since matrices over 𝑄𝑄 do not commute, and 𝑄𝑄 is contained in 

𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >). 
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(ii) Yes, for example take 𝑥𝑥 = �𝐼𝐼 0
0 𝐼𝐼�. 

(iii) Yes, the set 𝑆𝑆 = {�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ;𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ 𝑄𝑄} is a semigroup which is not an ideal. 

(iv) Yes, we have �𝐼𝐼 𝐼𝐼
𝐼𝐼 𝐼𝐼� . �−𝐼𝐼 −𝐼𝐼

𝐼𝐼 𝐼𝐼 � = �0 0
0 0�. 

(v) Consider 𝑆𝑆 = {�𝑎𝑎𝐼𝐼 𝑏𝑏𝐼𝐼
𝑐𝑐𝐼𝐼 𝑑𝑑𝐼𝐼� ;𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >)}, it is an ideal in 𝐸𝐸. 

(vi) Yes, 𝐸𝐸 contains the set 𝑆𝑆 = {�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ;𝑎𝑎.𝑑𝑑 − 𝑐𝑐. 𝑏𝑏 ≠ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑄𝑄}, which 

is a group with respect to multiplication. 

(vii) Yes, 𝐸𝐸 contains the set 𝑆𝑆 = {�𝑎𝑎 0
0 𝑎𝑎� ;𝑎𝑎 ≠ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 ∈ 𝑄𝑄},which is an abelian 

group with respect to multiplication.. 

Problem (19) 6.4.7: [59] What are the advantages of using the algebraic 

structure𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉)? 

Problem (20) 6.4.8: [59] Give some uses of this complete algebraic structure 

𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉). 

Problems (19) and (20) are solved partially, that is because 𝐶𝐶(〈𝑅𝑅 ∪  𝐼𝐼〉) is being 

classified as a direct product of the complex field 𝐶𝐶 with itself according to Theorem 

6.3.5. 

6.5 Group of units problem 

A well known problem in the theory of rings is to describe the group of units under 

multiplication for a ring 𝑅𝑅. We will solve this famous problem in the case of 

 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >),𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >),𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >), by using classification properties. 

Theorem 6.5.1: [59] The group of units of the ring 𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) is U= 𝐶𝐶∗ × 𝐶𝐶∗. 

Proof: 

Since  𝐶𝐶(< 𝑅𝑅 ∪ 𝐼𝐼 >) ≅ 𝐶𝐶 × 𝐶𝐶, then 𝑈𝑈 = 𝑈𝑈(𝐶𝐶) × 𝑈𝑈(𝐶𝐶), but C is a field, hence 

𝑈𝑈(𝐶𝐶) = 𝐶𝐶∗. Thus the proof is complete. 
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Theorem 6.5.2: [59] The group of units of the ring 𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) is U= (𝑄𝑄(𝑎𝑎))∗ ×

(𝑄𝑄(𝑎𝑎))∗. 

Proof: 

Since  𝐶𝐶(< 𝑄𝑄 ∪ 𝐼𝐼 >) ≅ 𝑄𝑄(𝑎𝑎) × 𝑄𝑄(𝑎𝑎), then 𝑈𝑈 = 𝑈𝑈(𝑄𝑄(𝑎𝑎))) × 𝑈𝑈(𝑄𝑄(𝑎𝑎)), but 𝑄𝑄(𝑎𝑎) is a 

field, hence 𝑈𝑈(𝑄𝑄(𝑎𝑎)) = (𝑄𝑄(𝑎𝑎))∗. Thus the proof is complete. 

Theorem 6.5.3: [59] The group of units of the ring 𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) is U= 𝑍𝑍2 × 𝑍𝑍2 ×

𝑍𝑍2 × 𝑍𝑍2. 

Proof: 

Since  𝐶𝐶(< 𝑍𝑍 ∪ 𝐼𝐼 >) ≅ 𝑍𝑍(𝑎𝑎) × 𝑍𝑍(𝑎𝑎), then 𝑈𝑈 = 𝑈𝑈(𝑍𝑍(𝑎𝑎))) × 𝑈𝑈(𝑍𝑍(𝑎𝑎)), but 𝑈𝑈�𝑍𝑍(𝑎𝑎)� =

{1,−1, 𝑎𝑎,−𝑎𝑎} ≅ 𝑍𝑍2 × 𝑍𝑍2, thus U= 𝑍𝑍2 × 𝑍𝑍2 × 𝑍𝑍2 × 𝑍𝑍2.
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CHAPTER VII 
  

NEUTROSOPHIC SQUARE MATRICES 

 

 

The objective of this chapter is to study algebraic properties of neutrosophic 

matrices, where a necessary and sufficient condition for the invertibility of a square 

neutrosophic matrix is presented by defining the neutrosophic determinant. 

Definition7.1.1: [60]  Classical neutrosophic number has the form 𝑎𝑎 + 𝑏𝑏𝐼𝐼 where 𝑎𝑎, 𝑏𝑏 

are real or complex numbers and 𝐼𝐼 is the indeterminacy such that 0 ∙ 𝐼𝐼 = 0 and 𝐼𝐼2 = 𝐼𝐼 

which results that 𝐼𝐼𝑛𝑛 = 𝐼𝐼 for all positive integers 𝑛𝑛.  

Definition 7.1.2: [61] Let 𝐸𝐸𝑡𝑡×𝑛𝑛 = {(𝑎𝑎𝑖𝑖𝑖𝑖)  ∶  𝑎𝑎𝑖𝑖𝑖𝑖  ∈  𝐾𝐾(𝐼𝐼)} , where 𝐾𝐾(𝐼𝐼) is a 

neutrosophic field. We call to be the neutrosophic matrix.  

 

7.2 Invertible Neutrosophic n Square Matrix 

Definition 7.2.1: [62]  Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 a neutrosophic 𝑛𝑛 square  matrix, where 𝐴𝐴 

and 𝐵𝐵 are two 𝑛𝑛 squares matrices, then 𝐸𝐸 is called an invertible neutrosophic 𝑛𝑛 

square matrix, if and only if there exists an 𝑛𝑛 square matrix  𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2𝐼𝐼 , where 𝑆𝑆1 

and 𝑆𝑆2 are two 𝑛𝑛 square matrices such that 

 𝑆𝑆 ∙ 𝐸𝐸 = 𝐸𝐸 ∙ 𝑆𝑆 = 𝑈𝑈𝑛𝑛×𝑛𝑛, where 𝑈𝑈𝑛𝑛×𝑛𝑛 denotes the 𝑛𝑛 × 𝑛𝑛 identity matrix. 

Definition 7.2.2: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a neutrosophic 𝑛𝑛 square matrix. The 

determinant of M is defined as: 

 

  𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 = 𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 + 𝐼𝐼[𝑑𝑑𝑛𝑛𝑛𝑛(𝐴𝐴 + 𝐵𝐵) − 𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴]
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Theorem 7.2.3: [63]  Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 a neutrosophic square 𝑛𝑛 × 𝑛𝑛 matrix, where  , 

𝐵𝐵 are two squares 𝑛𝑛 × 𝑛𝑛 matrices, then 𝐸𝐸 is invertible if and only if 𝐴𝐴 and 𝐴𝐴 + 𝐵𝐵 are 

invertible matrices and 𝐸𝐸−1 = 𝐴𝐴−1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1] . 

 

Poof: If 𝐴𝐴 and 𝐴𝐴 + 𝐵𝐵 are invertible matrices, then (𝐴𝐴 + 𝐵𝐵)−1, 𝐴𝐴−1 are existed, and  

 𝐸𝐸−1 = 𝐴𝐴−1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1] exists too. Now to prove  𝐸𝐸−1is the inverse of 

𝐸𝐸,  

𝐸𝐸𝐸𝐸−1 = (𝐴𝐴 + 𝐵𝐵𝐼𝐼) ∙ (𝐴𝐴−1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1]) 

= 𝐴𝐴𝐴𝐴−1 + 𝐼𝐼[𝐴𝐴(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴𝐴𝐴−1 + 𝐵𝐵 ∙ 𝐴𝐴−1 + 𝐵𝐵(𝐴𝐴 + 𝐵𝐵)−1 − 𝐵𝐵𝐴𝐴−1] 

                 = 𝑈𝑈𝑛𝑛×𝑛𝑛 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝐴𝐴 + 𝐵𝐵)−1 − 𝑈𝑈𝑛𝑛×𝑛𝑛] 

                 = 𝑈𝑈𝑛𝑛×𝑛𝑛 + 𝐼𝐼[𝑈𝑈𝑛𝑛×𝑛𝑛 − 𝑈𝑈𝑛𝑛×𝑛𝑛] = 𝑈𝑈𝑛𝑛×𝑛𝑛 = 𝐸𝐸−1𝐸𝐸. 

conversely, we suppose that 𝐸𝐸  is invertible, thus there is a matrix  𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2𝐼𝐼, 

with the property 𝐸𝐸 ∙ 𝑆𝑆 = 𝑆𝑆 ∙ 𝐸𝐸 = 𝑈𝑈𝑛𝑛×𝑛𝑛 . 

𝐸𝐸𝑆𝑆 = (𝐴𝐴 + 𝐵𝐵𝐼𝐼)(𝑆𝑆1 + 𝑆𝑆2𝐼𝐼) = 𝐴𝐴𝑆𝑆1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝑆𝑆1 + 𝑆𝑆2) − 𝐴𝐴𝑆𝑆1] = 𝑈𝑈𝑛𝑛×𝑛𝑛 +

0𝑛𝑛×𝑛𝑛=𝑆𝑆𝐸𝐸. Hence, we get: 

(a)    𝑆𝑆1𝐴𝐴 = 𝐴𝐴𝑆𝑆1 = 𝑈𝑈𝑛𝑛×𝑛𝑛, 𝑛𝑛ℎ𝑠𝑠𝑠𝑠 𝐴𝐴 𝑎𝑎𝑠𝑠 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛𝑟𝑟𝑛𝑛𝑎𝑎𝑏𝑏𝑀𝑀𝑛𝑛 𝑎𝑎𝑛𝑛𝑑𝑑 𝐴𝐴−1 = 𝑆𝑆1. 

(b)    (𝐴𝐴 + 𝐵𝐵)(𝑆𝑆1 + 𝑆𝑆2) − 𝐴𝐴𝑆𝑆1 = (𝑆𝑆1 + 𝑆𝑆2)(𝐴𝐴 + 𝐵𝐵) − 𝑆𝑆1𝐴𝐴 = 𝑂𝑂𝑛𝑛×𝑛𝑛, thus, 

(𝑆𝑆1 + 𝑆𝑆2)(𝐴𝐴 + 𝐵𝐵) = (𝐴𝐴 + 𝐵𝐵)(𝑆𝑆1 + 𝑆𝑆2) = 𝐴𝐴𝑆𝑆1 = 𝑈𝑈𝑛𝑛×𝑛𝑛  . This implies that (𝐴𝐴 + 𝐵𝐵) is 

invertible. 

Theorem7.2.4: [63] 𝐸𝐸 is invertible matrix if and only if 𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 ≠ 0. 

Proof: 

From Theorem 7.1.3  we find that  𝐸𝐸 is invertible matrix if and only if 𝐴𝐴 + 𝐵𝐵,𝐴𝐴 are 

two invertible matrices, hence  𝑑𝑑𝑛𝑛𝑛𝑛[𝐴𝐴 + 𝐵𝐵] ≠ 0,𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 ≠ 0 which means  

𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 = 𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 + 𝐼𝐼[det (𝐴𝐴 + 𝐵𝐵) − 𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴]  ≠ 0. 

Example 7.2.5  : Consider the following neutrosophic matrix  
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 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 = (1 −1 + 𝐼𝐼
𝐼𝐼 2 + 𝐼𝐼 )   . Where 𝐴𝐴 = �1 −1

0 2 �  , 𝐵𝐵 = �0 1
1 1�. 

(a)𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 = 2,𝐴𝐴 + 𝐵𝐵 = �1 0
1 3� , det(𝐴𝐴 + 𝐵𝐵) = 3,𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 = 2 + 𝐼𝐼[3 − 2] = 2 + 𝐼𝐼 ≠

0, ℎ𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛 𝐸𝐸 𝑎𝑎𝑠𝑠 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛𝑟𝑟𝑛𝑛𝑎𝑎𝑏𝑏𝑀𝑀𝑛𝑛. 

(b) We have 𝐴𝐴−1 = �
1 1

2

0 1
2

� , (𝐴𝐴 + 𝐵𝐵)−1 = �
1 0
−1

3
1
3
� , 𝑛𝑛ℎ𝑠𝑠𝑠𝑠 𝐸𝐸−1 = (𝐴𝐴−1) +

𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1] 

= �
1 1

2

0 1
2

� + 𝐼𝐼 �
0 −1

2

− 1
3

− 1
6

� = �
1 1

2
− 1

2
 𝐼𝐼

− 1
3
𝐼𝐼 1

2
− 1

6
𝐼𝐼
�. 

(c) We can compute 𝐸𝐸𝐸𝐸−1 = �1 0
0 1� = 𝑈𝑈2×2. 

Theorem 7.2.6: [63]  Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a neutrosophic 𝑛𝑛 square matrix, were 𝐴𝐴 

and 𝐵𝐵 are two 𝑛𝑛 square matrices, then 

1)  𝐸𝐸𝑟𝑟 = 𝐴𝐴𝑟𝑟 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)𝑟𝑟 − 𝐴𝐴𝑟𝑟]. 

2)𝐸𝐸 𝑎𝑎𝑠𝑠 𝑛𝑛𝑎𝑎𝑀𝑀𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑀𝑀𝑦𝑦 𝑎𝑎𝑓𝑓 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 𝑎𝑎𝑟𝑟𝑛𝑛 𝑛𝑛𝑎𝑎𝑀𝑀𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 

3)𝐸𝐸 𝑎𝑎𝑠𝑠 𝑎𝑎𝑑𝑑𝑛𝑛𝑚𝑚𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑀𝑀𝑦𝑦 𝑎𝑎𝑓𝑓 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 𝑎𝑎𝑟𝑟𝑛𝑛 𝑎𝑎𝑑𝑑𝑛𝑛𝑚𝑚𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 

Proof: 

1) By using mathematical induction, it easy to see 𝑁𝑁(𝑟𝑟 = 1) is true.  

Suppose 𝑁𝑁(𝑘𝑘), then we must prove 𝑁𝑁(𝑘𝑘 + 1) is true like the following 

𝐸𝐸𝑘𝑘+1 = 𝐸𝐸𝑘𝑘 ∙ 𝐸𝐸 = (𝐴𝐴𝑘𝑘 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)𝑘𝑘 − 𝐴𝐴𝑘𝑘]) ∙ (𝐴𝐴 + 𝐼𝐼𝐵𝐵) 

= 𝐴𝐴𝑘𝑘+1 + 𝐼𝐼[(𝐴𝐴^𝑘𝑘 ∙ 𝐵𝐵 + (𝐴𝐴 + 𝐵𝐵)^𝑘𝑘 ∙ 𝐴𝐴 + (𝐴𝐴 + 𝐵𝐵)^𝑘𝑘 ∙ 𝐵𝐵 − 𝐴𝐴^𝑘𝑘 ∙ 𝐴𝐴 − 𝐴𝐴^𝑘𝑘 ∙ 𝐵𝐵)] 

= 𝐴𝐴𝑘𝑘+1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)𝑘𝑘 ∙ (𝐴𝐴 + 𝐵𝐵) − 𝐴𝐴𝑘𝑘+1] 

= 𝐴𝐴𝑘𝑘+1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)𝑘𝑘+1 − 𝐴𝐴𝑘𝑘+1]. 

2) 𝐸𝐸 is nilpotent 𝑎𝑎𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑀𝑀𝑦𝑦 𝑎𝑎𝑓𝑓 ∃ 𝑛𝑛 ∈ 𝑁𝑁+;  𝐸𝐸𝑛𝑛 = 0, this is equivalent to 
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𝐴𝐴𝑛𝑛 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)𝑛𝑛 − 𝐴𝐴𝑛𝑛] = 0, thus 

𝐴𝐴𝑛𝑛 = (𝐴𝐴 + 𝐵𝐵)𝑛𝑛 = 0. Which is equivalent to 

𝐴𝐴,𝐴𝐴 + 𝐵𝐵 are nilpotent. 

3) The proof is similar to (2). 

Theorem 7.2.7: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 and 𝑁𝑁 = 𝐶𝐶 + 𝐷𝐷𝐼𝐼 be two neutrosophic 

𝑛𝑛 square matrices, then 

1) 𝑑𝑑𝑛𝑛𝑛𝑛(𝐸𝐸 ∙ 𝑁𝑁) = 𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 ∙ 𝑑𝑑𝑛𝑛𝑛𝑛𝑁𝑁. 

2) det(𝐸𝐸−1) = (𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸)−1. 

3) 𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 =1 if and only if 𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 = 𝑑𝑑𝑛𝑛𝑛𝑛(𝐴𝐴 + 𝐵𝐵) = 1. 

Proof: 

1) 𝐸𝐸 ∙ 𝑁𝑁 = 𝐴𝐴 ∙ 𝐶𝐶 + 𝐼𝐼[𝐵𝐵 ∙ 𝐶𝐶 + 𝐵𝐵 ∙ 𝐷𝐷 + 𝐴𝐴 ∙ 𝐷𝐷] 

= 𝐴𝐴 ∙ 𝐶𝐶 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷) − 𝐴𝐴 ∙ 𝐶𝐶]. 

det(𝐸𝐸 ∙ 𝑁𝑁) = det(𝐴𝐴 ∙ 𝐶𝐶) + 𝐼𝐼�det�(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷)� − det(𝐴𝐴 ∙ 𝐶𝐶)�, 

= det𝐴𝐴 ∙ det𝐶𝐶 + 𝐼𝐼[det(𝐴𝐴 + 𝐵𝐵) ∙ det(𝐶𝐶 + 𝐷𝐷) − det(𝐴𝐴 ∙ 𝐶𝐶)], 

= det𝐴𝐴 ∙ det𝐶𝐶 + 𝐼𝐼[det(𝐴𝐴 + 𝐵𝐵) ∙ det(𝐶𝐶 + 𝐷𝐷) − det𝐴𝐴 ∙ det𝐶𝐶], 

= (det𝐴𝐴 + 𝐼𝐼[det(𝐴𝐴 + 𝐵𝐵) − det𝐴𝐴]) ∙ (det𝐶𝐶 + 𝐼𝐼[det(𝐶𝐶 + 𝐷𝐷) − det𝐶𝐶]), 

= det𝐸𝐸 ∙ det𝑁𝑁. 

2) We have 

 det(𝐸𝐸𝐸𝐸−1) = det(𝑈𝑈𝑛𝑛×𝑛𝑛) = 1, 𝑛𝑛ℎ𝑠𝑠𝑠𝑠 𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸. det(𝐸𝐸−1) = 1, 𝑠𝑠𝑜𝑜 𝑛𝑛ℎ𝑎𝑎𝑛𝑛 det(𝐸𝐸−1) =

(𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸)−1. 

3) 𝑑𝑑𝑛𝑛𝑛𝑛 𝐸𝐸 = 1 is equivalent to det𝐴𝐴 + 𝐼𝐼[det(𝐴𝐴 + 𝐵𝐵) − det𝐴𝐴] = 1, thus it is 

equivalent to 

𝑑𝑑𝑛𝑛𝑛𝑛𝐴𝐴 = 𝑑𝑑𝑛𝑛𝑛𝑛(𝐴𝐴 + 𝐵𝐵) = 1. 
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Definition 7.2.8: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a neutrosophic 𝑛𝑛 square matrix, where 𝐴𝐴 

and 𝐵𝐵 are two 𝑛𝑛 square matrices. 𝐸𝐸 is satisfying the orthogonality property if and 

only if 𝐸𝐸 ∙ 𝐸𝐸𝑇𝑇 = 𝑈𝑈𝑛𝑛×𝑛𝑛. 

Theorem 7.1.9: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 a neutrosophic 𝑛𝑛 square matrix, then 

(a) 𝐸𝐸 𝑎𝑎𝑠𝑠 orthogonal  𝑎𝑎𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑀𝑀𝑦𝑦 𝑎𝑎𝑓𝑓 𝐴𝐴,𝐵𝐵 are two orthogonal  matrices . 

(b) 𝐼𝐼𝑓𝑓 𝐸𝐸 𝑎𝑎𝑠𝑠 orthogonal, then   𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 = ±1. 

Proof: 

(a) 𝐸𝐸 𝑎𝑎𝑠𝑠 orthogonal neutrosophic matrix 𝑎𝑎𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑀𝑀𝑦𝑦 𝑎𝑎𝑓𝑓 𝐸𝐸𝑇𝑇 = 𝐸𝐸−1, this is 

equivalent to 

𝐴𝐴𝑇𝑇 + 𝐵𝐵𝑇𝑇𝐼𝐼 = 𝐴𝐴−1 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1], thus 

 𝐴𝐴−1 = 𝐴𝐴𝑇𝑇 , (𝐴𝐴 + 𝐵𝐵)−1 − 𝐴𝐴−1 = 𝐵𝐵𝑇𝑇  . This is equivalent to 

𝐴𝐴−1 = 𝐴𝐴𝑇𝑇 𝑎𝑎𝑛𝑛𝑑𝑑 (𝐴𝐴 + 𝐵𝐵)−1 = 𝐵𝐵𝑇𝑇 + 𝐴𝐴−1 = 𝐵𝐵𝑇𝑇 + 𝐴𝐴𝑇𝑇 = (𝐴𝐴 + 𝐵𝐵)𝑇𝑇. Thus the proof is 

complete. 

(b) If M is orthogonal, we get that 𝑑𝑑𝑛𝑛𝑛𝑛(𝐸𝐸 ∙ 𝐸𝐸𝑇𝑇) = 𝑑𝑑𝑛𝑛𝑛𝑛(𝑈𝑈𝑛𝑛×𝑛𝑛) = 1. This implies 

𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 ∙ 𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸𝑇𝑇 = 1, 

(det𝐸𝐸)2 = 1, hence 

𝑑𝑑𝑛𝑛𝑛𝑛𝐸𝐸 = ±1. 

Definition 7.2.10: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a square neutrosophic matrix, we say that 

M is diagonalizable if and only if there is an invertible neutrosophic matrix 𝑆𝑆 = 𝐶𝐶 +

𝐷𝐷𝐼𝐼 such that 𝑆𝑆−1𝐸𝐸𝑆𝑆 = 𝐷𝐷. Where 𝐷𝐷 is a diagonal neutrosophic matrix�𝑎𝑎. 𝑛𝑛.  𝑑𝑑𝑖𝑖𝑖𝑖 =

0  ∀𝑎𝑎 ≠ 𝑗𝑗,𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑𝑖𝑖𝑖𝑖 ≠ 0   ∀𝑎𝑎 = 𝑗𝑗�. 

Theorem 7.2.11: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼  be any square neutrosophic matrix. Then M 

is diagonalizable if and only if 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 are diagonalizable. 

Proof: 

Consider a diagonalizable neutrosophic matrix M, then there exists S such that 
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 𝑆𝑆−1𝐸𝐸𝑆𝑆 = 𝐾𝐾�𝑘𝑘𝑖𝑖𝑖𝑖� (∗). 

Now, to compute the entries elements 𝑘𝑘𝑖𝑖𝑖𝑖 , solve (∗) as follows: 

�𝐶𝐶−1 + 𝐼𝐼[(𝐶𝐶 + 𝐷𝐷)−1 − 𝐶𝐶−1]�(𝐴𝐴 + 𝐵𝐵𝐼𝐼)(𝐶𝐶 + 𝐷𝐷𝐼𝐼) = �𝐶𝐶−1 + 𝐼𝐼[(𝐶𝐶 + 𝐷𝐷)−1 −

𝐶𝐶−1]��𝐴𝐴𝐶𝐶 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷) − 𝐴𝐴𝐶𝐶]� = 𝐶𝐶−1𝐴𝐴𝐶𝐶 + 𝐼𝐼[(𝐶𝐶 + 𝐷𝐷)−1(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷) −

𝐶𝐶−1𝐴𝐴𝐶𝐶] = 𝐷𝐷1 + (𝐷𝐷2 − 𝐷𝐷1)𝐼𝐼 = 𝐾𝐾. Where 𝐾𝐾 is a diagonal matrix, thus 𝐷𝐷1,𝐷𝐷2  are 

diagonal, and 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 are diagonalizable. conversely, assume that 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 are 

diagonalizable, then there are 𝐶𝐶,𝐷𝐷 where  𝐶𝐶−1𝐴𝐴𝐶𝐶 = 𝐷𝐷1,𝐷𝐷−1(𝐴𝐴 + 𝐵𝐵)𝐷𝐷 = 𝐷𝐷2 . put 

𝑆𝑆 = 𝐶𝐶 + (𝐷𝐷 − 𝐶𝐶)𝐼𝐼. 

Now we compute 𝑆𝑆−1𝐸𝐸𝑆𝑆 = �𝐶𝐶−1 + 𝐼𝐼[𝐷𝐷−1 − 𝐶𝐶−1]�(𝐴𝐴 + 𝐵𝐵𝐼𝐼)(𝐶𝐶 + (𝐷𝐷 − 𝐶𝐶)𝐼𝐼) 

= �𝐶𝐶−1 + 𝐼𝐼[𝐷𝐷−1 − 𝐶𝐶−1]��𝐴𝐴𝐶𝐶 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝐷𝐷) − 𝐴𝐴𝐶𝐶]�

= 𝐶𝐶−1𝐴𝐴𝐶𝐶 + 𝐼𝐼[𝐷𝐷−1(𝐴𝐴 + 𝐵𝐵)𝐷𝐷 − 𝐶𝐶−1𝐴𝐴𝐶𝐶] 

= 𝐷𝐷1 + (𝐷𝐷2 − 𝐷𝐷1)𝐼𝐼 = 𝐾𝐾. Thus, 𝐸𝐸 is diagonalizable, that is because 𝐷𝐷1,𝐷𝐷2 are 

diagonal matrices. 

Remark 7.2.12: If 𝐶𝐶 is the diagonalization matrix of 𝐴𝐴, and 𝐷𝐷 is the diagonalization 

matrix of 𝐴𝐴 + 𝐵𝐵, then 

 𝑆𝑆 = 𝐶𝐶 + (𝐷𝐷 − 𝐶𝐶)𝐼𝐼 is the diagonalization matrix of 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼. 

Example 7.2.13: Consider the neutrosophic matrix defined in Example 7.2.5, we 

have: 

(a) 𝐴𝐴 is a diagonalizable matrix. Its diagonalization matrix is = �1 1
0 −1� , the 

corresponding diagonal matrix is 𝐷𝐷1 = �1 0
0 2�, we can see that 𝐶𝐶−1𝐴𝐴𝐶𝐶 = 𝐷𝐷1. Also, 

the diagonalization matrix of 𝐴𝐴 + 𝐵𝐵 is 𝐷𝐷 = �
1 0
−1

2
1�, the corresponding diagonal 

matrix is 𝐷𝐷2 = �1 0
0 3�. It is easy to check that 

𝐷𝐷−1(𝐴𝐴 + 𝐵𝐵)𝐷𝐷 = 𝐷𝐷2  . 
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(b) Since 𝐴𝐴,𝐴𝐴 + 𝐵𝐵 are diagonalizable, then M is diagonalizable. The neutrosophic 

diagonalization matrix of M is 𝑆𝑆 = 𝐶𝐶 + (𝐷𝐷 − 𝐶𝐶)𝐼𝐼 = �
1 1 − 𝐼𝐼

− 1
2
𝐼𝐼 −1 + 2𝐼𝐼�. The 

corresponding diagonal matrix is 

 𝐿𝐿 = 𝐷𝐷1 + 𝐼𝐼[𝐷𝐷2 − 𝐷𝐷1] = �1 0
0 2 + 𝐼𝐼�. 

(c) It is easy to see that 𝑆𝑆−1 = 𝐶𝐶−1 + 𝐼𝐼[𝐷𝐷−1 − 𝐶𝐶−1] = �
1 1 − 𝐼𝐼
1
2
𝐼𝐼 −1 + 2𝐼𝐼�. 

(d) We can compute 𝑆𝑆−1𝐸𝐸𝑆𝑆 = �
1 1 − 𝐼𝐼
1
2
𝐼𝐼 −1 + 2𝐼𝐼� �

1 −1 + 𝐼𝐼
𝐼𝐼 2 + 𝐼𝐼 � �

1 1 − 𝐼𝐼
− 1

2
𝐼𝐼 −1 + 2𝐼𝐼�   

=�1 0
0 2 + 𝐼𝐼� = 𝐿𝐿. 

Definition 7.2.14: [63] Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a 𝑛𝑛 square neutrosophic matrix over the 

neutrosophic field 𝐹𝐹(𝐼𝐼), we say that 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌𝐼𝐼 is a neutrosophic Eigen vector if 

and only if 𝐸𝐸𝑍𝑍 = (𝑎𝑎 + 𝑏𝑏𝐼𝐼)𝑍𝑍. The neutrosophic number 𝑎𝑎 + 𝑏𝑏𝐼𝐼 is called the Eigen 

value of the eigen vector 𝑍𝑍. 

Theorem 7.1.15: [63]  Let 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 be a 𝑛𝑛 square neutrosophic matrix, then 𝑎𝑎 +

𝑏𝑏𝐼𝐼 is an Eigen value of 𝐸𝐸 if and only if 𝑎𝑎 is an eigen value of 𝐴𝐴, and 𝑎𝑎 + 𝑏𝑏 is an 

eigen value of 𝐴𝐴 + 𝐵𝐵. As well as, the eigen vector of 𝐸𝐸 is 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌𝐼𝐼 if and only if 

𝑋𝑋 is the corresponding eigen vector of 𝐴𝐴, and 𝑋𝑋 + 𝑌𝑌 is the corresponding eigen 

vector of 𝐴𝐴 + 𝐵𝐵. 

Proof: 

We suppose that 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌𝐼𝐼 is an eigen vector of 𝐸𝐸 with the corresponding eigen 

value 𝑎𝑎 + 𝑏𝑏𝐼𝐼, hence 𝐸𝐸𝑍𝑍 = (𝑎𝑎 + 𝑏𝑏𝐼𝐼)𝑍𝑍, this implies 

(𝐴𝐴 + 𝐵𝐵𝐼𝐼)(𝑋𝑋 + 𝑌𝑌𝐼𝐼) = (𝑎𝑎 + 𝑏𝑏𝐼𝐼)(𝑋𝑋 + 𝑌𝑌𝐼𝐼), 𝑛𝑛ℎ𝑠𝑠𝑠𝑠 𝐴𝐴𝑋𝑋 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝑋𝑋 + 𝑌𝑌) − 𝐴𝐴𝑋𝑋] =

𝑎𝑎𝑋𝑋 + 𝐼𝐼[(𝑎𝑎 + 𝑏𝑏)(𝑋𝑋 + 𝑌𝑌) − 𝑎𝑎𝑋𝑋]. We get: 

𝐴𝐴𝑋𝑋 = 𝑎𝑎𝑋𝑋, (𝐴𝐴 + 𝐵𝐵)(𝑋𝑋 + 𝑌𝑌) = (𝑎𝑎 + 𝑏𝑏)(𝑋𝑋 + 𝑌𝑌), so that 𝑋𝑋 is an eigen vector of 𝐴𝐴, 𝑋𝑋 +

𝑌𝑌 is an eigen vector of 𝐴𝐴 + 𝐵𝐵. The corresponding eigen value of 𝑋𝑋 is 𝑎𝑎, and the 

corresponding eigen value of 

 𝑋𝑋 + 𝑌𝑌 is 𝑎𝑎 + 𝑏𝑏. 
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For the converse, we assume that 𝑋𝑋 is an eigen vector of 𝐴𝐴 with 𝑎𝑎 as the 

corresponding eigen value, and 𝑋𝑋 + 𝑌𝑌 is an eigen vector of 𝐴𝐴 + 𝐵𝐵 with 𝑎𝑎 + 𝑏𝑏 as the 

corresponding eigen value, so that we get 𝐴𝐴𝑋𝑋 = 𝑎𝑎𝑋𝑋, (𝐴𝐴 + 𝐵𝐵)(𝑋𝑋 + 𝑌𝑌) = (𝑎𝑎 + 𝑏𝑏)(𝑋𝑋 +

𝑌𝑌). 

Let us compute  

𝐸𝐸𝑍𝑍 = (𝐴𝐴 + 𝐵𝐵𝐼𝐼)(𝑋𝑋 + 𝑌𝑌𝐼𝐼) = 𝐴𝐴𝑋𝑋 + 𝐼𝐼[(𝐴𝐴 + 𝐵𝐵)(𝑋𝑋 + 𝑌𝑌) − 𝐴𝐴𝑋𝑋] 

= 𝑎𝑎𝑋𝑋 + 𝐼𝐼[(𝑎𝑎 + 𝑏𝑏)(𝑋𝑋 + 𝑌𝑌) − 𝑎𝑎𝑋𝑋] = (𝑎𝑎 + 𝑏𝑏𝐼𝐼)(𝑋𝑋 + 𝑌𝑌𝐼𝐼) = (𝑎𝑎 + 𝑏𝑏𝐼𝐼)𝑍𝑍. Thus 𝑍𝑍 = 𝑋𝑋 +

𝑌𝑌𝐼𝐼 is an eigen vector of M with 𝑎𝑎 + 𝑏𝑏𝐼𝐼 as a neutrosophic eigen value. 

Theorem 7.2.16: [63] The eigen values of a neutrosophic matrix 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼 can be 

computed by solving the neutrosophic equation 𝑑𝑑𝑛𝑛𝑛𝑛(𝐸𝐸 − (𝑎𝑎 + 𝑏𝑏𝐼𝐼) 𝑈𝑈𝑛𝑛×𝑛𝑛) = 0. 

Proof: 

We have 𝑑𝑑𝑛𝑛𝑛𝑛(𝐸𝐸− (𝑎𝑎 + 𝑏𝑏𝐼𝐼)𝑈𝑈𝑛𝑛×𝑛𝑛) = det([𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛] + 𝐼𝐼[𝐵𝐵 − 𝑏𝑏𝑈𝑈𝑛𝑛×𝑛𝑛]) 

= det ([𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛] + 𝐼𝐼[det((𝐴𝐴 + 𝐵𝐵) − (𝑎𝑎 + 𝑏𝑏)𝑈𝑈𝑛𝑛×𝑛𝑛) − det[𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛]]. Thus, 

the equation  

𝑑𝑑𝑛𝑛𝑛𝑛(𝐸𝐸 − (𝑎𝑎 + 𝑏𝑏𝐼𝐼) 𝑈𝑈𝑛𝑛×𝑛𝑛) = 0 is equivalent to  

det ([𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛] = 0 (𝑎𝑎),  

𝑎𝑎𝑛𝑛𝑑𝑑  [det ((𝐴𝐴 + 𝐵𝐵) − (𝑎𝑎 + 𝑏𝑏)𝑈𝑈𝑛𝑛×𝑛𝑛) − det[𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛] = 0   (𝑎𝑎𝑎𝑎). 

From equation (𝑎𝑎),  we get 𝑎𝑎 as eigen value of 𝐴𝐴, and from  (𝑎𝑎𝑎𝑎) we get 

[det((𝐴𝐴 + 𝐵𝐵) − (𝑎𝑎 + 𝑏𝑏)𝑈𝑈𝑛𝑛×𝑛𝑛) = det[𝐴𝐴 − 𝑎𝑎𝑈𝑈𝑛𝑛×𝑛𝑛] = 0, thus 𝑎𝑎 + 𝑏𝑏 is an eigen value 

of 𝐴𝐴 + 𝐵𝐵. 

Example 7.2.17: Consider 𝐸𝐸 the neutrosophic matrix defined in Example 7.2.5, we 

have 

(a) The eigen values of the matrix A are {1,2},𝑎𝑎𝑛𝑛𝑑𝑑 {1,3} for the matrix 𝐴𝐴 + 𝐵𝐵. This 

implies that the eigen values of the neutrosophic matrix 𝐸𝐸 are 

 {1 + (3 − 1)𝐼𝐼, 1 + (1 − 1)𝐼𝐼, 2 + (3 − 2)𝐼𝐼, 2 + (1 − 2)𝐼𝐼} = {1 + 2𝐼𝐼, 1,2 + 𝐼𝐼, 2 − 𝐼𝐼}. 
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(b) If we solved the equation det(𝐸𝐸 − (𝑎𝑎 + 𝑏𝑏𝐼𝐼)𝑈𝑈𝑛𝑛×𝑛𝑛) = 0 has been solved, the same 

values will be gotten. 

(c) The eigen vectors of A are {(1,0), (1,−1)}, the eigen vectors of 𝐴𝐴 + 𝐵𝐵 are 

{(1,−1/2), (0,1)}. Thus, the neutrosophic eigen vectors of M are 

�(1,0) + 𝐼𝐼[(0,1) − (1,0)], (1,0) + 𝐼𝐼 ��1,−1
2
� − (1,0)� , (1,−1) + 𝐼𝐼[(0,1) −

(1,−1)], (1,−1) + 𝐼𝐼 ��1,−1
2
� − (1,−1)�� = {(1,0) + 𝐼𝐼(−1,1), (1,0) +

𝐼𝐼(0,−1/2), (1,−1) + 𝐼𝐼(−1,2), (1,−1) + 𝐼𝐼(0,1/2)} = {(1 − 𝐼𝐼, 𝐼𝐼), (1,−1/2 𝐼𝐼), (1 −

𝐼𝐼,−1 + 2𝐼𝐼), (1,−1 + 1/2 𝐼𝐼)} . 

To determine the neutrosophic eigen vectors using Theorem 7.1.15  let 𝑋𝑋 be an 

eigen vector of 𝐴𝐴,𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌 be an eigen vector of 𝐴𝐴 + 𝐵𝐵, hence 𝑋𝑋 + [(𝑌𝑌) − 𝑋𝑋]𝐼𝐼 = 𝑋𝑋 +

(𝑌𝑌 − 𝑋𝑋)𝐼𝐼 is an Eigen vector of 𝐸𝐸 = 𝐴𝐴 + 𝐵𝐵𝐼𝐼.
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CHAPTER VII 
 

CONCLUSION 
 

  

This book, the historical development process of the neutrosophic structure theory is 

given. In the second part, the effect of the neutrosophic logic on the decision tree has 

been compiled. The existence of indeterminacy in the problem actually affects the 

process of taking the suitable decision. Therefore, the indeterminate values can’t be 

ignored while studying in order to get more accurate results that leads us to the best 

options. In the third chapter, the prospector neutro function with their applications 

were studied. We provided the Cayley table of 𝛩𝛩, which is not associative when we 

included the undefined value and it generates a Neutro Binary Law.  In the fourth 

chapter, the subject of Neutro ordered R-module and their properties is examined in 

detail. Several interesting results and examples on NeutroOrdered R-module, 

NeutroOrdered Sub R-module and NeutroOrdered R-module Homomorphisms are 

presented. In the fifth chapter, the Fundamental Theorem in neutrosophic Euclidean 

Geometry is given. In the sixth chapter, the solutions of some Kandasamy-

Smarandache problems about neutrosophic complex numbers and group of units' 

problem are given. In the seventh chapter, the algebraic creativity in the neutrosophic 

square matrices and the results are given with examples, necessary and sufficient 

conditions for the invertibility and diagonalization of neutrosophic matrices are 

determined. Also, an easy algorithm to compute the inverse of a neutrosophic matrix 

and its Eigen values and vectors are found. 
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