
The generation of hyper-power
sets

1ONERA, 29 Av. de la Division Leclerc 92320, Chatillon, France

 2Department of Mathematics University of New Mexico Gallup, NM 8730, U.S.A.

Jean Dezert1, Florentin Smarandache2

Published in:
Florentin Smarandache & Jean Dezert (Editors)
Advances and Applications of DSmT for Information Fusion
(Collected works), Vol. I
American Research Press, Rehoboth, 2004
ISBN: 1-931233-82-9
Chapter II, pp. 37 - 48

Abstract: The development of DSmT is based on the notion of Dedekind’s lattice,

called also hyper-power set in the DSmT framework, on which is defined the general

basic belief assignments to be combined. In this chapter, we explain the structure of

the hyper-power set, give some examples of hyper-power sets and show how they can

be generated from isotone Boolean functions. We also show the interest to work with

the hyper-power set rather than the power set of the refined frame of discernment in

terms of complexity.

2.1 Introduction

O
ne of the cornerstones of the DSmT is the notion of Dedekind’s lattice, coined as hyper-power set

by the authors in literature, which will be defined in next section. The starting point is to consider

Θ = {θ1, . . . , θn} as a set of n elements which cannot be precisely defined and separated so that no

refinement of Θ in a new larger set Θref of disjoint elementary hypotheses is possible. This corresponds

to the free DSm model. This model is justified by the fact that in some fusion problems (mainly those

manipulating vague or continuous concepts), the refinement of the frame is just impossible to obtain;

nevertheless the fusion still applies when working on Dedekind’s lattice and based on the DSm rule of

This chapter is based on a paper [6] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.

37

38 CHAPTER 2. THE GENERATION OF HYPER-POWER SETS

combination. With the DSmT approach, the refinement of the frame is not prerequisite for managing

properly the combination of evidences and one can abandon Shafer’s model in general. Even if Shafer’s

model is justified and adopted in some cases, the hybrid DSm rule of combination appears to be a new

interesting and preferred alternative for managing high conflicting sources of evidence. Our approach

actually follows the footprints of our predecessors like Yager [23] and Dubois and Prade [7] to circumvent

the problem of the applicability of Dempster’s rule face to high conflicting sources of evidence but with a

new mathematical framework. The major reason for attacking the problem directly from the bottom level,

i.e. the free DSm model comes from the fact that in some real-world applications observations/concepts

are not unambiguous. The ambiguity of observations is explained by Goodman, Mahler and Nguyen

in [9] pp. 43-44. Moreover, the ambiguity can also come from the granularity of knowledge, known as

Pawlak’s indiscernability or roughness [15].

2.2 Definition of hyper-power set DΘ

The hyper-power set DΘ is defined as the set of all composite propositions built from elements of Θ with

∪ and ∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ which

are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example given in the

next section. The cardinality of DΘ is majored by 22n

when Card(Θ) = |Θ| = n. The generation of

hyper-power set DΘ is closely related with the famous Dedekind problem [4, 3] on enumerating the set

of monotone Boolean functions as it will be presented in the sequel with the generation of the elements

of DΘ.

2.3 Example of the first hyper-power sets

• In the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 , ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 , ∅, α1 , θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 , ∅, α1 , θ1 ∩ θ2,

α2 , θ1, α3 , θ2 and α4 , θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, the elements of DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 (see [5] for details)

are now given by (following the informational strength indexation explained in the next chapter):

2.4. THE GENERATION OF DΘ 39

Elements of DΘ={θ1,θ2,θ3}

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3
α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2
α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1
α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2
α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3
α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3
α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3

Note that the classical complementary Ā of any proposition A (except for ∅ and Θ), is not involved

within the free DSm model because of the refutation of the third excluded middle; it can however be

introduced if necessary when dealing with hybrid models as it will be shown in chapter 4 if we introduce

explicitly some exclusivity constraints into the free DSm model when one has no doubt on the exclusivity

between given elements of Θ depending on the nature of the fusion problem. |DΘ| for n ≥ 1 follows the

sequence of Dedekind’s numbers1 1, 2, 5, 19, 167, 7580, 7828353, 56130437228687557907787... [17]. Note

also that this huge number of elements of hyper-power set is comparatively far less than the total number

of elements of the power set of the refined frame Θref if one would to work on 2Θref and if we admit the

possibility that such refinement exists as it will be seen in section 2.4.1.

2.4 The generation of DΘ

2.4.1 Memory size requirements and complexity

Before going further on the generation of DΘ, it is important to estimate the memory size for storing

the elements of DΘ for |Θ| = n. Since each element of DΘ can be stored as a 2n − 1-binary string, the

memory size for DΘ is given by the right column of the following table (we do not count the size for ∅
which is 0 and the minimum length is considered here as the byte (8 bits)):

1Actually this sequence corresponds to the sequence of Dedekind minus one since we don’t count the last degenerate

isotone function f
22n

−1
(.) as element of DΘ (see section 2.4).

40 CHAPTER 2. THE GENERATION OF HYPER-POWER SETS

|Θ| = n size/elem. # of elem. Size of DΘ

2 1 byte 4 4 bytes

3 1 byte 18 18 bytes

4 2 bytes 166 0.32 Kb

5 4 bytes 7579 30 Kb

6 8 bytes 7828352 59 Mb

7 16 bytes ≈ 2.4 · 1012 3.6 · 104 Gb

8 32 bytes ≈ 5.6 · 1022 1.7 · 1015 Gb

This table shows the extreme difficulties for our computers to store all the elements of DΘ when |Θ| > 6.

This complexity remains however smaller than the number of all Boolean functions built from the ultimate

refinement (if accessible) 2Θref of same initial frame Θ for applying DST. The comparison of |DΘ| with

respect to |2Θref | is given in the following table

|Θ| = n |DΘ| |2Θref | = 22n−1

2 5 23 = 8

3 19 27 = 128

4 167 215 = 32768

5 7580 231 = 2147483648

Fortunately, in most fusion applications only a small subset of elements of DΘ have a non null basic

belief mass because all the commitments are just usually impossible to assess precisely when the dimension

of the problem increases. Thus, it is not necessary to generate and keep in memory all elements of DΘ or

2Θref but only those which have a positive belief mass. However there is a real technical challenge on how

to manage efficiently all elements of the hyper-power set. This problem is obviously more difficult when

working on 2Θref . Further investigations and research have to be carried out to develop implementable

engineering solutions for managing high dimensional problems when the basic belief functions are not

degenerated (i.e. all m(A) > 0, A ∈ DΘ or A ∈ 2Θref).

2.4.2 Monotone Boolean functions

A simple Boolean function f(.) maps n-binary inputs (x1, . . . , xn) ∈ {0, 1}n , {0, 1} × . . . × {0, 1} to a

single binary output y = f(x1, . . . , xn) ∈ {0, 1}. Since there are 2n possible input states which can map

to either 0 or 1 at the output y, the number of possible Boolean functions is 22n

. Each of these functions

can be realized by the logic operations ∧ (and), ∨ (or) and ¬ (not) [3, 21]. As a simple example, let’s

consider only a 2-binary input variable (x1, x2) ∈ {0, 1} × {0, 1} then all the 222

= 16 possible Boolean

functions fi(x1, x2) built from (x1, x2) are summarized in the following tables:

2.4. THE GENERATION OF DΘ 41

(x1, x2) f0 f1 f2 f3 f4 f5 f6 f7

(0, 0) 0 0 0 0 0 0 0 0

(0, 1) 0 0 0 0 1 1 1 1

(1, 0) 0 0 1 1 0 0 1 1

(1, 1) 0 1 0 1 0 1 0 1

Notation False x1 ∧ x2 x1 ∧ x̄2 x1 x̄1 ∧ x2 x2 x1 Y x2 x1 ∨ x2

(x1, x2) f8 f9 f10 f11 f12 f13 f14 f15

(0, 0) 1 1 1 1 1 1 1 1

(0, 1) 0 0 0 0 1 1 1 1

(1, 0) 0 0 1 1 0 0 1 1

(1, 1) 0 1 0 1 0 1 0 1

Notation x1∨̄x2 x14x2 x̄2 x1 ∨ x̄2 x̄1 x̄1 ∨ x2 x1 Z x2 True

with the notation x̄ , ¬x, x1 Y x2 , (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) (xor), x1∨̄x2 , ¬(x1 ∨ x2) (nor), x14x2 ,

(x1 ∧ x2) ∨ (x̄1 ∧ x̄2) (xnor) and x1 Z x2 , ¬(x1 ∧ x2) (nand).

We denote by Fn(∧,∨,¬) = {f0(x1, . . . , xn), . . . , f22n−1(x1, . . . , xn)} the set of all possible Boolean

functions built from n-binary inputs. Let x , (x1, . . . , xn) and x′ , (x′1, . . . , x
′
n) be two vectors in

{0, 1}n. Then x precedes x′ and we denote x � x′ if and only if xi ≤ x′i for 1 ≤ i ≤ n (≤ is applied

componentwise). If xi < x′i for 1 ≤ i ≤ n then x strictly precedes x′ which will be denoted as x ≺ x′.

A Boolean function f is said to be a non-decreasing monotone (or isotone) Boolean function (or

just monotone Boolean function for short) if and only if ∀x,x′ ∈ {0, 1}n such that x � x′, then

f(x) � f(x′) [19]. Since any isotone Boolean function involves only ∧ and ∨ operators (no ¬ opera-

tions) [21] and there exists a parallel between (∨,∧) operators in logics with (+, ·) in algebra of numbers

and (∪,∩) in algebra of sets, the generation of all elements of DΘ built from Θ with ∪ and ∩ opera-

tor is equivalent to the problem of generating isotone Boolean functions over the vertices of the unit

n-cube. We denote by Mn(∧,∨) the set of all possible monotone Boolean functions built from n-binary

inputs. Mn(∧,∨) is a subset of Fn(∧,∨,¬). In the previous example, f1(x1, x2), f3(x1, x2), f5(x1, x2),

f7(x1, x2) are isotone Boolean functions but special functions f0(x1, x2) and f22n−1(x1, . . . , xn) must also

be considered as monotone functions too. All the other functions belonging to F2(∧,∨,¬) do not belong

to M2(∧,∨) because they require the ¬ operator in their expressions and we can check easily that the

monotonicity property x � x′ ⇒ f(x) � f(x′) does not hold for these functions.

42 CHAPTER 2. THE GENERATION OF HYPER-POWER SETS

The Dedekind’s problem [4] is to determine the number d(n) of distinct monotone Boolean functions

of n-binary variables. Dedekind [4] computed d(0) = 2, d(1) = 3, d(2) = 6, d(3) = 20 and d(4) = 168.

Church [1] computed d(5) = 7581 in 1940. Ward [20] computed d(6) = 7828354 in 1946. Church [2]

then computed d(7) = 2414682040998 in 1965. Between sixties and eighties, important advances have

been done to obtain upper and lower bounds for d(n) [10, 12, 14]. In 1991, Wiedemann [22] computed

d(8) = 56130437228687557907788 (200 hours of computing time with a Cray-2 processor) which has

recently been validated by Fidytek and al. in [8]. Until now the computation of d(n) for n > 8 is still a

challenge for mathematicians even if the following direct exact explicit formula for d(n) has been obtained

by Kisielewicz and Tombak (see [11, 18] for proof) :

d(n) =

22n

∑

k=1

2n−1∏

j=1

j−1
∏

i=0

(1− bki (1− bkj)

l(i)
∏

m=0

(1− bim(1− bjm))) (2.1)

where l(0) = 0 and l(i) = [log2 i] for i > 0, bki , [k/2i]− 2[k/2i+1] and [x] denotes the floor function (i.e.

the nearest integer less or equal to x). The difficulty arises from the huge number of terms involved in

the formula, the memory size and the high speed computation requirements. The last advances and state

of art in counting algorithms of Dedekind’s numbers can be found in [18, 8, 19].

2.4.3 Generation of MBF

Before describing the general algorithm for generating the monotone Boolean functions (MBF), let exam-

ine deeper the example of section 2.4.2. From the previous tables, one can easily find the set of (restricted)

MBF M?
2(∧,∨) = {f0(x1, x2) = False, f1(x1, x2) = x1 ∧ x2, f5(x1, x2) = x2, f7(x1, x2) = x1 ∨ x2} which

is equivalent, using algebra of sets, to hyper-power set DX = {∅, x1 ∩ x2, x1, x2, x1 ∪ x2} associated with

frame of discernment X = {x1, x2}. Since the tautology f15(x1, x2) is not involved within DSmT, we do

not include it as a proper element of DX and we consider onlyM?
2(∧,∨) ,M2(∧,∨) \ {f15} rather than

M2(∧,∨) itself.

Let’s now introduce Smarandache’s codification for the enumeration of distinct parts of a Venn diagram

X with n partially overlapping elements xi,i = 1, 2, . . . , n. Such a diagram has 2n− 1 disjoint parts. One

denotes with only one digit (or symbol) those parts which belong to only one of the elements xi (one

denotes by < i > the part which belongs to xi only, for 1 ≤ i ≤ n), with only two digits (or symbols)

those parts which belong to exactly two elements (one denotes by < ij >, with i < j, the part which

belongs to xi and xj only, for 1 ≤ i < j ≤ n), then with only three digits (or symbols) those parts which

belong to exactly three elements (one denotes by < ijk > concatenated numbers, with i < j < k, the

part which belongs to xi, xj , and xk only, for 1 ≤ i < j < k ≤ n), and so on up to < 12 . . . n > which

represents the last part that belongs to all elements xi. For 1 ≤ n ≤ 9, Smarandache’s encoding works

normally as in base 10. But, for n ≥ 10, because there occur two (or more) digits/symbols in notation of

2.4. THE GENERATION OF DΘ 43

the elements starting from 10 on, one considers this codification in base n+ 1, i.e. using one symbol to

represent two (or more) digits, for example: A = 10, B = 11, C = 12, etc.

• For n = 1 one has only one part, coded < 1 >.

• For n = 2 one has three parts, coded < 1 >, < 2 >, < 12 >. Generally, < ijk > does not represent

xi ∩ xj ∩ xk but only a part of it, the only exception is for < 12 . . . n >.

• For n = 3 one has 23 − 1 = 7 disjoint parts, coded < 1 >, < 2 >, < 3 >, < 12 >, < 13 >, < 23 >,

< 123 >. < 23 > means the part which belongs to x2 and x3 only, but < 23 > 6= x2 ∩ x3 because

x2 ∩ x3 = {< 23 >,< 123 >} in the Venn diagram of 3 elements x1, x2, and x3 (see next chapter).

• The generalization for n > 3 is straightforward. Smarandache’s codification can be organized in a

numerical increasing order, in lexicographic order or any other orders.

A useful order for organizing Smarandache’s codification for the generation of DX is the DSm-order

un = [u1, . . . , u2n−1]′ based on a recursive construction starting with u1 , [< 1 >]. Having constructed

un−1, then we can construct un for n > 1 recursively as follows:

• include all elements of un−1 into un;

• afterwards, include element < n > as well in un;

• then at the end of each element of un−1 concatenate the element < n > and get a new set u′
n−1

which then is also included in un.

This is un, which has (2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1 components.

For n = 3, as example, one gets u3 , [< 1 > < 2 > < 12 > < 3 > < 13 > < 23 > < 123 >]′. Because

all elements in un are disjoint, we are able to write each element di of DX in a unique way as a linear

combination of un elements, i.e.

dn = [d1, . . . , d2n−1]′ = Dn · un (2.2)

Thus un constitutes a basis for generating the elements of DX . Each row in the matrix Dn represents

the coefficients of an element of DX with respect to the basis un. The rows of Dn may also be regarded

as binary numbers in an increasing order.

44 CHAPTER 2. THE GENERATION OF HYPER-POWER SETS

Example: For n = 2, one has:











d1 = x1 ∩ x2

d2 = x2

d3 = x1

d4 = x1 ∪ x2











︸ ︷︷ ︸

d2

=











0 0 1

0 1 1

1 0 1

1 1 1











︸ ︷︷ ︸

D2

·








< 1 >

< 2 >

< 12 >








︸ ︷︷ ︸

u2

(2.3)

where the ”matrix product” is done after identifying (+, ·) with (∪,∩), 0· < x > with ∅ and 1· < x >

with < x >.

The generation of DX is then strictly equivalent to generate un and matrix Dn which can be easily

obtained by the following recursive procedure:

• start with Dc
0 = [0 1]′ corresponding to all Boolean functions with no input variable (n = 0).

• build the Dc
1 matrix from each row ri of Dc

0 by adjoining it to any other row rj of Dc
0 such that

ri ∪ rj = rj . This is equivalent here to add either 0 or 1 in front (i.e. left side) of r1 ≡ 0 but only

1 in front of r2 ≡ 1. Since the tautology is not involved in the hyper-power set, then one has to

remove the first column and the last line of

Dc
1 =








0 0

0 1

1 1








to obtain finally D1 =




0

1





• build Dc
2 from Dc

1 by adjoining to each row ri of Dc
1, any row rj of Dc

1 such that ri ∪ rj = rj and

then remove the first column and the last line of Dc
2 to get D2 as in (2.3).

• build Dc
3 from Dc

2 by adjoining to each row ri of Dc
2 any row rj of Dc

2 such that ri ∪ rj = rj and

then remove the first column and the last line of Dc
3 to get D3 given by (where D′ denotes here the

transposed of the matrix D)

D′
3 =





















0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1

0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1

0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





















• Likewise, Dc
n is built from Dc

n−1 by adjoining to each row ri of Dc
n−1 any row rj of Dc

n−1 such that

ri ∪ rj = rj . Then Dn is obtained by removing the first column and the last line of Dc
n.

2.5. CONCLUSION 45

Example for Θ = {θ1, θ2, θ3}: Note that the new indexation of elements of DΘ now follows the MBF

generation algorithm.



























































α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3
α2 , θ2 ∩ θ3
α3 , θ1 ∩ θ3

α4 , (θ1 ∪ θ2) ∩ θ3
α5 , θ3

α6 , θ1 ∩ θ2
α7 , (θ1 ∪ θ3) ∩ θ2
α8 , (θ2 ∪ θ3) ∩ θ1

α9 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)

α10 , (θ1 ∩ θ2) ∪ θ3
α11 , θ2

α12 , (θ1 ∩ θ3) ∪ θ2
α13 , (θ2 ∪ θ3)

α14 , θ1

α15 , (θ2 ∩ θ3) ∪ θ1
α16 , (θ1 ∪ θ3)

α17 , (θ1 ∪ θ2)

α18 , (θ1 ∪ θ2 ∪ θ3)



























































︸ ︷︷ ︸

d3

=



























































0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 0 0 0 1

0 0 1 0 0 1 1

0 0 1 0 1 0 1

0 0 1 0 1 1 1

0 0 1 1 1 1 1

0 1 1 0 0 1 1

0 1 1 0 1 1 1

0 1 1 1 1 1 1

1 0 1 0 1 0 1

1 0 1 0 1 1 1

1 0 1 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1



























































︸ ︷︷ ︸

D3

·





















< 1 >

< 2 >

< 12 >

< 3 >

< 13 >

< 23 >

< 123 >





















︸ ︷︷ ︸

u3

For convenience, we provide in appendix the source code in Matlab2 language to generate DΘ. This

code includes the identification of elements of DΘ corresponding to each monotone Boolean function

according to Smarandache’s codification.

2.5 Conclusion

In this chapter, one has introduced the notion of Dedekind’s lattice DΘ (hyper-power set) on which are

defined basic belief functions in the framework of DSmT and the acceptance of the free DSm model. The

justification of the free DSm model as a starting point (ground level) for the development of our new

theory of plausible and paradoxical reasoning for information fusion has been also given and arises from

the necessity to deal with possibly ambiguous concepts which can appear in real-world applications. The

lower complexity of the hyper-power set with respect to the complexity of the classical refined power set

2Matlab is a trademark of The MathWorks, Inc.

46 REFERENCES

2Θref has been clearly demonstrated here. We have proven the theoretical link between the generation of

hyper-power set with Dedekind’s problem on counting isotone Boolean functions. A theoretical solution

for generating lattices DΘ has been presented and a MatLab source code has been provided for users

convenience.

2.6 References

[1] Church R., Numerical analysis of certain free distributive structures, Duke Math. J., Vol. 6, no. 3,

pp. 732-734, 1940.

[2] Church R., Enumeration by rank of the elements of the free distributive lattice with seven generators,

Not. Amer. Math. Soc., Vol. 12, p. 724, 1965.

[3] Comtet L., Sperner Systems, sec.7.2 in Advanced Combinatorics: The Art of Finite and Infinite

Expansions, D. Reidel Publ. Co., pp. 271-273, 1974.

[4] Dedekind R. Über Zerlegungen von Zahlen durch ihre grössten gemeinsammen Teiler, In Gesammelte

Werke, Bd. 1. pp. 103-148, 1897.

[5] Dezert J., Fondations pour une nouvelle théorie du raisonnement plausible et paradoxal, ONERA

Tech. Rep. RT 1/06769/DTIM, Jan. 2003.

[6] Dezert J., Smarandache F., On the generation of hyper-power sets, Proc. of Fusion 2003, Cairns,

Australia, July 8-11, 2003.

[7] Dubois D., Prade H., Representation and combination of uncertainy with belief functions and possi-

bility measures, Computational Intelligence, 4, pp. 244-264, 1988.

[8] Fidytek R., Mostowski A.W., Somla R., Szepietowski A., Algorithms counting monotone Boolean

functions, Inform. Proc. Letters, Vol. 79, pp. 203-209, 2001.

[9] Goodman I.R., Mahler R.P.S., Nguyen H.T., Mathematics of Data Fusion, Kluwer Academic Press,

Boston, 1997.

[10] Hansel G., Sur le nombre des fonctions booléennes monotones de n variables, C.R. Acad. Sci. Paris,

Serie A-B, p. 262, 1966.

[11] Kisielewicz A., A solution of Dedekind’s problem on the number of isotone Boolean functions, J.

reine angew. math., Vol. 386, pp. 139-144, 1988.

[12] Kleitman D., On Dedekind’s problem: The number of Boolean functions, Proc. of the Amer. Math

Society, Vol. 21, pp. 677-682, 1969.

REFERENCES 47

[13] Kleitman D., Markowsky G., On Dedekind’s problem: The number of isotone Boolean functions. II,

Trans. of the Amer. Math. Soc., Vol. 213, 1976.

[14] Korshunov A., On the number of Boolean functions, Prob. kibernetiki, Vol. 38, pp. 5-108, 1981.

[15] Pawlak Z., Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers,

Dortrecht, 1991.

[16] Shapiro H.N. On the counting problem for monotone Boolean functions, Comm. on pure and applied

math., Vol. XXIII, pp. 299-312, 1970.

[17] Sloane N.J.A., The On-line Encyclopedia of Integer Sequences 2003, (Sequence No. A014466),

http://www.research.att.com/~njas/sequences/.

[18] Tombak M., Isotamm A., Tamme T., On logical method for counting Dedekind numbers, Lect. Notes

on Comp.Sci., 2138, p. 424-427, Springer-Verlag, 2001. www.cs.ut.ee/people/m_tombak/publ.html.

[19] Triantaphyllou, E., Torvik V.I., Inference of Monotone Boolean Functions, Encyclopedia of Opti-

mization, (P.M. Pardalos and C. Floudas, Eds.), Kluwer Acad. Publi., Boston, Vol. 2, pp. 472-480.,

2001.

[20] Ward M., Note on the order of free distributive lattices , Bull. Amer. Math. Soc., Vol. 52, no. 5, p.

423, 1946.

[21] Weisstein E. W., CRC Concise Encyclopedia of Mathematics , CRC Press; 2nd edition, 3252 pages,

Dec. 2002. http://mathworld.wolfram.com/.

[22] Wiedemann D., A computation of the eighth Dedekind number, Order, no. 8, pp. 5-6, 1991.

[23] Yager R.R., On the Dempster-Shafer Framework and New Combination Rules, Information Sciences,

Vol. 41, pp.93-137, 1987.

48 APPENDIX

Appendix: MatLab code for generating hyper-power sets

%∗∗

% Copyright (c) 2003 J . Dezert and F. Smarandache

%

% Purpose : Generation of DˆTheta f o r the DSmT for

% Theta={t he ta 1 , . . , Theta n } . Due to the huge

% # of e lements o f DˆTheta . only cases up to n<7

% are usua l l y t r a c t a b l e on computers .

%∗∗

n=input (’ Enter c a r d i n a l i t y f o r Theta (0<n<6) ? ’) ;

% Generation of the Smarandache c od i f i c a t i on

% Note : t h i s should be implemented using

% charac t e r s t r i n g s f o r n>9

u n = [1] ;

for nn=2:n

u n=[u n nn (u n∗10+nn∗ones (1 , size (u n ∗ 1 0 , 2)))] ;

end

% Generation of D n (i so tone boolean f unc t i on s)

D n1 = [0 ; 1] ;

for nn=1:n , D n = [] ;

for i =1: size (D n1 , 1) , Li=D n1 (i , :) ;

for j=i : size (D n1 , 1)

Lj=D n1 (j , :) ; L i i n t e r L j=and (Li , Lj) ;

L i un ion Lj=or (Li , Lj) ;

i f ((L i i n t e r L j==Li)&(L i un ion Lj==Lj))

D n=[D n ; Li Lj] ;

end

end

end

D n1=D n ;

end

DD=D n ;DD(: , 1) = [] ;DD(size (DD, 1) , :) = [] ; D n=DD;

% Resu l t d i s p l ay

disp ([’ | Theta |=n=’ ,num2str(n)])

disp ([’ |DˆTheta |= ’ ,num2str(size (D n , 1))])

disp (’Elem . o f DˆTheta are obtained by D n∗u n ’)

disp ([’ with u n=[’ ,num2str(u n) , ’] ’ ’ and ’])

D n=D n

Matlab source code for generating DΘ

